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Abstract—Refactoring is an integral part of the modern software development process. Often, the refactoring
must be performed at the global level with modifications in a large number of files. Making these modifica-
tions is a long and painstaking work. However, users rarely employ automated tools for this purpose because
they consider them unreliable and difficult to use. In this paper, a new tool for transforming the source code
is described. It is based on the intuitively clear specification of transformation rules in the form of short code
fragments in C or C++. These rules describe the code before and after the transformation. We believe that,
due to the absence of additional abstractions (such as domain-specific languages), this approach can be easily
used in practice. Even though the tool uses source code templates, it operates on the level of the abstract syn-
tax tree. This enables the tool to better analyze the code and verify the validity of transformations.

DOI: 10.1134/S0361768820040052

1. INTRODUCTION
Any software product is evolving. The evolution in

this case is not only the addition of new code imple-
menting new functions but also continuous modifica-
tion of the existing code. The excessive attention to the
first aspect can result in the rapid accumulation of
technical debt in the project. The technical debt [2] is a
metaphor of software engineering that denotes simpli-
fications in the architecture and code aimed at accel-
erating the initial development and deployment of the
software product. If the technical debt is not paid off,
it can, as time goes on, accumulate “interest”—the
additional time needed for the developers to modify
the program. In the worst case, the accumulated prob-
lems make the further development impossible.

A standard method of overcoming this difficulty is
refactoring [1, 12], which is a modification of the
internal program structure that does not affect its

functionality [3]. Refactoring helps get rid of the exist-
ing architectural issues and simplify the program
maintenance in future. According to Murphy-Hill
estimates [8], software engineers spend 41% of their
time on the refactoring-related activity. This paper
also contains statistical data showing that developers
prefer to make manual modifications of the code
rather than use automated tools for program transfor-
mations even though the risk of making an error is
higher in the former case. Another research performed
on the site StackOverflow [9] showed that such tools
are typically unreliable, difficult to use, and require a
lot of additional actions from the user.

This enables us to formulate the minimal require-
ments for the refactoring tool that make it helpful.
It must be easy to use and ensure the correctness of
transformations taking into account the available syn-
tactic and semantic information.
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There are popular refactoring tools for C and C++,
such as Proteus [4] and Eclipse C++ Tooling
[5]. With these tools, the user can specify rules for
code transformation using domain-specific languages
(DSL). In these languages, it is possible to express both
the required refactoring type and the syntactic and
semantic structure of the target programming language.

However, there are difficulties in using DSL with C
and C++. Studies show that learning C and C++ is
more complicated than learning other popular pro-
gramming languages [7], and it is easier to make errors
in C and C++ [10]. As a result, taking into account the
DSL, the difficulty of using refactoring tools drasti-
cally increases.

Thus, the definition of ease of use can be refined:
the refactoring tool should not require additional spe-
cific skills except for C/C++ knowledge.

In this paper, we describe the tool Nobrainer
designed for performing automatic transformations of
the source code of C and C++ programs. It is based on the
Clang/LLVM1 infrastructure and meets the require-
ments described above. The name Nobrainer
reflects its basic idea: this is a tool that allows users to
easily create and apply their rules for code transforma-
tion.

Rules for Nobrainer are written in C/C++ with-
out using DSL. They are indistinguishable from the
ordinary code in the project, which allows the user to
quickly master this tool.

Below, we describe the basic principles of Nobrainer,
demonstrate the main architectural and technical solu-
tions, and give examples of its use in industrial projects.

2. REVIEW OF EXISTING SOLUTIONS
This section is devoted to the existing approaches

to code transformation and automated refactoring. In
this review, we differentiate two key aspects—the form
of the transformation description and the way the
transformations are performed.

The majority of tools described in this section use a
special syntax for specifying transformation rules. For
example, in [4] a new language YATL is defined, and
in [6] Java is extended to simplify the specification of
such rules. We believe that DSLs can only confuse the
user because of their complexity. The authors of
ClangMR [14] propose another approach. Their tool
uses Clang Abstract Syntax Tree (AST) Matchers [11].
They are needed for describing the parts of code that
should be transformed. The user must describe the
replacement of these parts in terms of the abstract syn-
tax tree (AST). The authors assume that the users
know syntax trees in general and how they are con-
structed for the C/C++ code in particular. We think
that this is usually not the case, and the use of
ClangMR can be difficult for ordinary users.

1 https://clang.llvm.org/
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Wasserman in [13] described the tool Refaster
designed for refactoring Java codes that does not
require any DSL. The author proposes to use the tar-
get programming language for specifying transforma-
tion rules. This makes it possible to include these rules
into the project codebase, which simplifies the verifi-
cation of their syntax and semantic constraints. Each
rule is written in the form of a class that contains
methods with one of the two annotations @Before-
Template or @AfterTemplate. Such a class
describes a transformation; it must contain one or
more methods with @BeforeTemplate and exactly
one method with @AfterTemplate. The tool inter-
prets such a description as follows: it uses the code in
the methods with @BeforeTemplate for finding
and matching, and then replaces the detected code
with the code written in the method with @After-
Template. Since this approach seems to be most
clear and convenient for end users, we accepted it as
the basis for Nobrainer.

We also decided that the ClangMR approach is
optimal for code search and matching. However, the
direct use of AST matchers can be difficult. For this
reason, we developed a higher level framework that in
turn uses AST matchers.

In code transformation, the conventional solution
is the construction of an AST, its transformation, and
code generation. Such an approach is used in Pro-
teus [4], Jackpot [6], and Eclipse C++ Tool-
ing [5]. The main difficulty here is the preservation of
the source code formatting at the stage of generation.
However, the authors of ClangMR [14] managed to
avoid this difficulty due to the use of the Clang/LLVM
infrastructure for the code transformation. This allows
the developers directly change the source code at the
token level. We also use this infrastructure because we
believe that this is the best solution for transforming
the C/C++ codes.

3. ARCHITECTURE

In this section, we describe the general architecture
and outline the Nobrainer operation.

The tool is based on using special examples—code
fragments written in C/C++. Each example can
describe a family of cases. This is why we denote/call
them templates. First, the user provides an example of
language constructs that should be replaced. It is
called a Before template. Then, in an After tem-
plate the user must provide the code that should
replace the constructs matching the Before tem-
plate. The descriptions of the Before and After
templates may be added to any (e.g., a separate) file in
the user project.

To run Nobrainer on a project, the user must do
the following:

• add code transformation rules to the project;
46  No. 5  2020
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Fig. 1. Block diagram of Nobrainer operation.
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• specify instructions for the project compilation
(currently, instructions in the JSON2 format from the
Clang/LLVM infrastructure are used).

Figure 1 illustrates the Nobrainer internal struc-
ture. Each numbered block corresponds to a phase of
the tool operation. The rectangular areas in the lower
part of the figure show the data obtained at the output
of each phase.

In the first phase, the Before and After tem-
plates are sought in the project code.

In the second phase, the list of transformation rules
is made up by grouping the templates and validating
their correctness.

In the third phase, the rules are applied and the
replacements are generated. For each rule, the tool
tries to match Before templates to the project source
code. For the successful matches, replacements are
generated using the After template.

Nobrainer makes it possible to immediately
apply the replacements to the project files or save them
in the YAML3 format. In the latter case, the replace-
ments can be later applied using the special tool
clang-apply-replacements included in
Clang Extra Tools.4

These phases are described in Section 4 in detail.

4. FORMAL DESCRIPTION
AND IMPLEMENTATION DETAILS

Nobrainer provides API for writing templates.
It is divided into the interface for C and the interface
for C++. Both interfaces make it possible to write
templates for transforming individual expressions and
sequences of statements in the original files in the cor-
responding language.

To better explain the concept of a template, we
consider an example of expression transformation.
Assume that the user wants to find all calls of the func-
tion foo with two arguments. The first argument is an
arbitrary expression of type int. The second argu-
ment is the global variable globalVar. These calls

2 https://clang.llvm.org/docs/JSONCompilationDatabase.html
3 https://yaml.org/
4 https://clang.llvm.org/extra/index.html
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should be replaced by the calls of the bar function with
the same arguments. Listing 1 shows an example of
description of such a rule using the C interface.

int NOB_BEFORE_EXPR(ruleId)(int a) {
return foo(a, globalVar);

}
int NOB_AFTER_EXPR(ruleId)(int a) {
return bar(a, globalVar);

}
Listing 1. Example of templates
for expression transformation.

The expressions for matching and replacing are
described within the return statement. This is done
to delegate the verification of the compatibility of
expression types in Before and After templates to
the compiler.

In Nobrainer, transformations are based on the
fact that two expressions of the same type are syntac-
tically interchangeable. This is true except for certain
situations in which the expressions must be parenthe-
sized. There is a set of special rules for overcoming this
issue; however, they are out of the scope of this paper.

To give a formal definition of template in a pro-
gram, we introduce the following notation:

•  is the finite set of all types in the program;
•  is the finite set of all symbols (functions, vari-

ables, and types) declared in the program;
•  is the finite set of all nodes in the program’s

AST;
•  is the finite set of symbols that may be used in

identifiers in C/C++;
•  is the finite set of all parameters of a function,

 and , where  is the parameter
name and  is its type.

The expression template can be formally described
as the 6-tuple

(1)

where
•  {Before, After} is the template type;
•  is the rule identifier used to link the

Before and After templates;

Θ
Σ

!

#

3

∈p 3 =  , p pp n t ∈ *pn #

∈ Θpt

= , , , , , ,exprT k n r B P S

∈k
∈ *n #
ND COMPUTER SOFTWARE  Vol. 46  No. 5  2020



NOBRAINER: A TOOL FOR EXAMPLE-BASED 365

Fig. 2. Parsing the Before template.

int NOB_BEFORE_EXPR(ruleId)(int a) {
return foo(a, globalVar);

}

•  is the expression type;

•  is the template body;

•  is the set of parameters;

•  is the set of symbols used in the body B.

The last two elements require a clarification.

The parameters of the template P are used to
express special semantics. Nobrainer considers
each parameter as an arbitrary expression of the corre-
sponding type. For example, the parameter a in List-
ing 1 corresponds to any expression of type int.

The set of symbols  is used for correctness verifi-
cation (see Subsections 4.2.3 and 4.3.2).

Figure 2 shows the detailed structure of the
Before template in Listing 1.

In the following subsections, the phases of
Nobrainer operation are considered in more detail.

4.1. Search for Templates
In the first phase, all the templates defined in the

project are collected and their validity is verified.

4.1.1. Collecting templates. Nobrainer examines
each file and tries to find the functions that were ear-
lier defined using the Nobrainer API. This search can
be made only in the parsed files. If this procedure were
performed for the entire project, it would significantly
decelerate the tool operation. This can be avoided by
processing only the files containing the #include
directives with Nobrainer API header files.

As a result, the set of all templates defined by the

user is obtained. We denote this set by .

4.1.2. Verification of template validity. When all
templates are collected, Nobrainer proceeds to verify-
ing the validity of each template. It must also check

that the templates in  have a correct structure. It is
important that the syntactic validity of templates is
guaranteed by the compiler. The template declarations
are a part of the project code and, therefore, they are
parsed during the search. This also includes the verifi-
cation of accessibility of all symbols used in the tem-
plate, type verification, etc.

Each template  must define exactly one expres-

sion. Formally, this rule can be formulated as follows:
The template body B must consist of a single non-
empty return statement.

∈ Θr
⊂B !

⊆P 3

⊆ ΣS

S

7

7

exprT
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 
Currently, Nobrainer ignores the templates that
use the functional style macros and C++ lambda
expressions. This is a temporary limitation, and it will
be later removed.

The result of this phase is the set of valid (from the
viewpoint of rules described above) templates, which

we denote by .

4.2. Matching the List of Transformation Rules

For an arbitrary identifier , we define two

groups of templates  and  as follows:

(2)

(3)

These two groups describe a unique code transforma-
tion because they include the Before and After
templates with the same name. However, in order for

 and  to specify a transformation rule, the two
following conditions must be additionally satisfied:

(4)

where

(5)

Here  is the compatibility operator. It specifies the
relation between the templates x and y that indicates
that the fragment of code matching y can be safely
replaced by the code of x. The equality of the returned
types  guarantees that the expression to be replaced
has the same type as the original expression. At the

same time, the condition  ensures that the tool

has a sufficient number of expressions for substituting
the parameters in .

Thus, we can define the transformation rule as a pair

, where  and  satisfy conditions (4).

The set of all rules defined in the project is denoted by .

4.2.1. Processing the Before templates. In this
phase of Nobrainer operation, the Before templates
are transformed into AST matchers. The latter are
convenient for finding subtrees that satisfy the given
conditions. Each AST matcher consists of predicates
for the subtree root and predicates of all its nodes.
Such a structure resembles the syntax tree itself, and
Nobrainer uses this fact for the AST matcher gener-
ation. We recursively traverse all nodes of the tree con-
structed for the body of Before, and generate an AST
matcher for each node type. In addition, special AST
matchers are created for the type parameters; they will
link the subtrees to be matched with the parameter
name. As a result, the final “tree” consisting of AST
matchers is constructed. Therefore, it is sufficient to

+7

∈ *id #

idB idA
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Fig. 3. Recursive generation of an AST matcher.

CallExpr "foo"

BinaryOperator "+"

IntegerLiteral "3"

DeclRefExpr "x"

callExpr(callee("foo"),
         hasArgument(*))

binaryOperator(hasOperator("+"),
               hasLHS(*), hasRHS(*))

integerLiteral(hasValue(3))

expr().bind("x")

int before(int x) {
 return foo(3 + x);

}

organize the generation of an AST matchers for each
node type.

Figure 3 illustrates a simplified example of such a
transformation. In this example, we see three repre-
sentations of Before: the original code, the syntax
tree, and AST matcher. Solid arrows lead from the par-
ent to the child AST node and the dashed arrows indi-
cate the correspondence between syntax tree nodes and
AST matchers. AST matchers must be constructed
from the bottom to the top; therefore, the AST is parsed
depth first.

4.2.2. Matching identical subtrees. Consider the
Before template in Listing 2. It is unlikely that the
user wants to find a call of foo with two arbitrary
expressions of type int as its arguments. A more prob-
able interpretation as follows: find a call of foo into
which two identical expressions are passed.

int before(int x) {

return foo(x, x);

}

Listing 2. Example of reusing a template parameter.

The Clang/LLVM infrastructure has no ready-to-
use solution for matching identical subtrees. Using a
mechanism available in Nobrainer, we dynamically
generate AST matchers in the process of matching.
This is done as follows. When the first argument of the
foo call is matched, the corresponding subtree is
associated with the parameter x. Next, using this sub-
tree, an AST matcher is generated and then used for
matching with the second argument of the call.

4.2.3. Processing the After templates. The aim of
processing the After template is to construct the text
that will be used as the replacement. For this reason,
we transform the After templates into format strings.
The template body B may contain elements for which
it is impossible to simply take the text representation as
is . Such parts are called mutable. During the traversal
of the body of After, we extract the ranges corre-
sponding to the mutable parts. Each range contains
the initial and the final positions of a certain node of
the syntax tree. There are two types of mutable parts.
PROGRAMMING A
The parts of the first type are the parameters in the
body of After, which are filled during the generation
of replacements (see Subsection 4.3.2).

The parts of the second type are symbols (identifi-
ers that are not the parameters of the template).
Inserting symbols into arbitrary places of the source
code can be syntactically incorrect because this sym-
bol can be undeclared in the place where it should be
inserted. For this reason, we collect information about
the symbols that is later used during the generation of
replacements (see Subsection 4.3.2).

For example, for the After template in Listing 3,
the format string “${bar}($[x]) + 42" will be
generated. In this example, Nobrainer selects the sym-
bol bar and the parameter x and labels them accord-
ingly. The other parts of the string are considered as
immutable by Nobrainer.

int after(int x) {
return bar(x) + 42;

}
Listing 3. Example of an After template.

4.3. Application of Rules
and Generation of Replacements

4.3.1. Application of rules. At the next step, we must

detect the situations in which the rules  should be
applied. In order to do this in the entire project,
Nobrainer parses all the source files. Then, it
applies the AST matchers generated for each rule.

Each time when an AST matcher finds a node in
the syntax tree satisfying all the predicates,
Nobrainer gets this node and the list of subtrees
associated with the parameters of the corresponding
Before template. Using this information and the
After template, Nobrainer generates the transfor-
mation of the source code called replacement.

4.3.2. Generation of replacements. Each replace-
ment includes:

• the file name to which the replacement is
applied;

• the offset of the text to be replaced from the
beginning of the file;

5
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Fig. 4. Replacement generation.

int before(int x, char y) {
 return foo(y, x, y);

}

int after(int x, char y) {
 return bar(y) + x;

}

foo('a', 10 * 42, 'a')

"bar(${y}) + ${x}"

"bar('a') + 10 * 42"

format string

match

result
• the length of text to be replaced;

• the replacement text.

Nobrainer gets the first three elements from the

associated node. The replacement text is constructed

on the basis of the format string for After and the

subtrees associated with the template parameters. For

each such subtree, Nobrainer gets its text represen-

tation from the source code and then replaces the cor-

responding parameter by this substring in the format

string. Figure 4 illustrates the replacement text gener-

ation for a real-life code fragment.

However, such a replacement can cause compilation

errors because certain symbols appearing as the result of

the replacement can be undeclared or miss namespace

specifiers. To avoid these errors, Nobrainer can:

• add the directives #include for the header file

in which this symbol is declared;

• specify the namespace or scope.

Therefore, the resulting code fragment is correct.

4.4. Type Parameters
The use of arbitrary expressions as parameters of

the templates makes it possible to specify rules in a

generalized form. However, this can be insufficient.

The indication of specific types in a rule can signifi-

cantly restrict its expressive power and narrow its field

of application.

To overcome this drawback, we introduce the set of

type parameters  into the template syntax

Thus, we extend the definition of template for replac-

ing expression (1) to obtain

(6)

and the definition of compatibility  (5) becomes

(7)

Note that the type parameters Φ are completely

analogous to the parameters P.

Φ ⊂ *#

= , , , , , ,Φ ,'exprT k n r B P S

≺

+

Φ ⊆ Φ
∀ , ∈ → ⇔ ⊆
 =

≺

.

x y

x y

x y

x y T x y P P
r r
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template <class T> T *before() {

return (T *)malloc(sizeof(T));

}

template <class T> T *after() {

return new T;

}

Listing 4. Example of a rule with a type parameter.

Listing 4 shows a rule in which type parameters are

used.

4.5. Transformation of a Sequence of Statements
Nobrainer can be used to transform not only

individual expressions but sequences of statements as

well. To make such transformations correct, we extend

the definition of the template  (6) to  as fol-

lows:

(8)

here D is the finite set of all declarations of local vari-

ables of the function, , and , where

 is the parameter name and  is its type.

We also strengthen the definition of the compatibility

operator  (7):

(9)

Thus, all local variables in the templates  are

considered as parameters. We additionally require that

the user is not allowed to add and remove declarations

of variables. However, the scopes of local variables are

ignored in definition (9), and the tool cannot guaran-

tee that the code will successfully compile after the

replacement. This is a temporary limitation. Listing 5

shows an example in which an uncompilable code can

be produced if the counter is used outside the loop.

'exprT stmtT

= , , , , , , Φ, ;stmtT k n r P B S D

∈d D = ,d dd n t
∈ *dn # ∈ Θdt

≺

+

Φ ⊆ Φ
 ⊆∀ , ∈ → ⇔  =
 = .

≺ .

x y

x y

x y

x y

P P
x y x y

D D
r r

7

stmtT
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void before() {
int i;
for (i = 0; i < 10; ++i) {

foo(i);
}

}
void after() {
for (int i = 0; i < 10; ++i) {

foo(i);
}
}

Listing 5. Example of an incorrect template
with scope changing.

The templates  also allow an empty body in the
After function, which allows the user to remove the
code matching a Before template.

4.6. Matching an Arbitrary Statement
Using transformations of a sequence of statements,

the code structure as a whole can be changed. For this
reason, it would be convenient to generalize the trans-
formation rules. To this end, we added a special func-
tion anystmt to the Nobrainer interface. Its call is
matched to any statement. We demonstrate the appli-
cation of anystmt by way of the following example
(Listing 6).

void before(nobrainer::Name x) {
if (foo())

anystmt(x);
}
void after(nobrainer::Name x) {
if (!foo())

x;
}

Listing 6. Example of using anystmt.

Here, we want to invert the condition in the condi-
tional statement calling the function foo.

It is seen that new parameters of the type
nobrainer::Name now appear in the lists of argu-
ments. This is a custom type that we included in the
Nobrainer interface. In the Before template, the
parameter of this type is associated with an arbitrary
statement matching the call of anystmt. This makes
it possible to use the statement matching the corre-
sponding parameter in the After template.

To match an arbitrary statement in the body of
Before, one must call the function anystmt with the
single parameter of the type nobrainer::Name.
To use the statement matching anystmt in After, the
parameter name associated with it must be specified
(Listing 6).

To ensure this functionality, we introduced an
additional AST matcher that matches the call of the

stmtT
PROGRAMMING A
function anystmt to an arbitrary statement and asso-
ciates the name of the unique parameter of this call
with this statement. Note that, in the current imple-
mentation, the substitution of the statement associ-
ated with the parameter of the nobrainer::Name
type into the After template causes a compiler warn-
ing Unused expression result. Both issues will be
resolved in the near future.

4.7. Matching an Arbitrary Sequence of Statements

To extend the capabilities of the code structure
transformation, we introduced two special functions
block and block_greedy. Their calls are matched
to an arbitrary (including empty) sequence of state-
ments, and they work similar to the lazy (.*?) and
greedy (.*) quantifiers in regular expressions, respec-
tively. The functions block and block_greedy take
a single parameter of the type nobrainer::Name as
their argument and associate its name with the
matched sequence of statements. In order to use this
sequence in the After template, it suffices to write
this name similarly to the mechanism for anystmt.

This functionality is implemented using a special
AST matcher. The internal implementation of this AST
matcher is based on an algorithm described in [15];
however, its description is out of the scope of the pres-
ent paper. In the following example, we demonstrate the
difference in using the lazy (block) and greedy
(block_greedy) interfaces (Listings 7 and 8).

Note that currently only one use of each parameter
of the type nobrainer::Name used with block or
block_greedy in the body of Before is allowed.

void before(Name x) {

block(x);

foo();

}

void after(Name x) {

x;

}

void example() {

// First match:

// <= block(x);

foo(); // <= foo();

// Second match:

bar(); // <= block(x):

foo(); // <= foo();

// Third match:

bar(); // <= block(x);

foo(); // <= foo();

}

Listing 7. Example of using block.
ND COMPUTER SOFTWARE  Vol. 46  No. 5  2020
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void before(Name x) {

block_greedy(x);

foo();

}

void after(Name x) {

x;

}

void example() {

// Unique match:

//

foo(); // <=*

bar(); // *

// * block(x);

foo(); // *

bar(); // <=*

//

foo(); // <= foo();

}
Listing 8. Example of using block_greedy.

In the case when nobrainer::Name is associ-

ated with an empty sequence of statements, the empty

string will be substituted for the corresponding param-

eter when the replacement for the After template is

created.

4.8. Unsafe Transformations
Until now, we tried to ensure that all transforma-

tions are completely correct, which sometimes signifi-

cantly restricts the capabilities of using Nobrainer.

For this reason, we introduce one more type of tem-

plates . Its definition does not differ from the

definition of the template  (8), but it has a weaker

compatibility operator :

(10)

We no longer require that the sets  and  are iden-

tical. This, in turn, makes it possible to delete local

variables and change their type in the After template.

With the introduction of unsafe After, the implemen-

tation of the following replacement (Listing 9) becomes

possible:

void before_unsafe(char *s) {
for (int i = 0; i < strlen(s); ++i) {

foo(s + i);
}

}
void after_unsafe(char *s) {

int len = strlen(s);
for (int i = 0, i < len; ++i) {

foo(s + i);
}

}
Listing 9. Example of using an unsafe template.

However, the responsibility for the compilation
errors related to changes of the local declarations as a
result of replacements is with the user.

5. RESULTS

In this section, we describe an approach to testing
Nobrainer; we consider examples of transformation
rules and analyze the performance.

5.1. Testing
Tests for Nobrainer can be divided into two groups.

The first group consists of unit and integration tests for
each phase described in Section 3. They are mainly
used for checking the correctness of automatically
generated AST matchers for the templates Before
(Subsection 4.2.1) and format strings for the templates
After (Subsection 4.2.3).

The second group consists of regression tests,
which include a number of open source projects. For
each project, we manually created files with transfor-
mation rules. The regression testing system runs
Nobrainer, measures its execution time, and checks
that all the transformations have been successfully
applied and the project compiles.

5.2. Examples of Rules
In this subsection, we discuss examples of the

transformation rules supported by Nobrainer.

The first example (Listing 10) describes a rule that
changes the order of arguments in all calls of the
method compose. Nobrainer replaces each call
of a.compose(x, y) for an arbitrary object a of the
class Agent by a.compose(y, x).

This example demonstrates how the call arguments
can be automatically exchanged.

int NOB_BEFORE_EXPR(ChangeOrder)(
Agent a, char *x, char *y) {

return a.compose(x, y);
}
int NOB_AFTER_EXPR(ChangeOrder)(

Agent a, char *x, char *y) {
return a.compose(y, x);

}
Listing 10. Example of a rule for changing

the order of arguments.

The second example (Listing 11) shows how
Nobrainer can be used to simplify the source code.

unsafeT

stmtT
≺

+

Φ ⊆ Φ
∀ , ∈ → ⇔ ⊆
 = .

≺ .

x y

x y

x y

x y x y P P
r r

7

xD yD
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using namespace nobrainer;
class EmptyRefactoring : public ExprTemplate {
public:
bool beforeSize(const std::string x) {

return x.size() == 0;
}
bool beforeLength(const std::string x) {
return x.length() == 0;

}
bool after(const std::string x) {
return x.empty();

}
};

Listing 11. Example of a rule for checking if a string is empty.

Recall that each rule may contain several Before
templates but only one After template. In this case,
the use of several Before templates helps group log-
ically connected transformations.

The third example uses two types of parameters—
expression and type parameters. Listing 12 shows the
source code of the transformation rule.

using namespace nobrainer;
class CastRefactoring : public Ex-

prTemplate {
public:
template <class T>
T *before(const T *x) {

return (T *)x;
}
template <class T>
T *after(const T *x) {

return const_cast<T *>(x);
}

};
Listing 12. Example of a rule for casting

to a nonconstant type.

This rule finds all operations of casting to a non-
constant type in C and replaces them by equivalent
const_cast expressions. In this case, the parameter x
is an arbitrary expression of the type pointer to any non-

constant type. This expression should be replaced by the
expression of the same type but without the const
qualifier. Nobrainer takes into account all these
requirements and makes the replacements correctly.

The fourth example illustrates the simplification of the
if statement condition using anystmt (Listing 13).

using namespace nobrainer;
class SwapBranches : public Stmt-

Template {
void before(Name x, Name y, bool

cond) {
if (!cond)
anystmt(x);

else
anystmt(y);

}
void after(Name x, Name y, bool

cond) {
if (cond)
y;

else
x;

}
};
Listing 13. Example of a rule with anystmt.
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Table 1. Performance

Project
Size (thousands of 

lines)

Number of 

replacements
I phase (s) II phase (s)

CMake 493 24 31.36 7.13

curl 129 7 3.17 2.01

json 70 7 13.99 1.34

mysql 1170 10 9.54 3.12

protobuf 264 8 16.62 2.97

v8 3055 6 281.57 28.52

xgboost 43 14 6.75 1.18
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This rule removes negation in the condition and exchanges the branches in if.

The fifth example implements an unsafe transformation (Listing 2). Here we change the type of the loop variable.

using namespace nobrainer;
class ChangeType : public UnsafeStmtTemplate {
void before(const char *s, Name x) {

for (int i = 0; i < strlen(s); ++i) {
block(x);

}
}
void after(const char *s, Name x) {

for (size_t i = 0; i < strlen(s); ++i) {
x;

}
}

};
Listing 14. Example of a rule with an unsafe template.

5.3. Performance average. The fact that the time needed to execute the
The performance was measured by running the
regression testing system five times. For this purpose,
the work station with an Intel(R) Core(TM) i7-7700K
CPU running at the clock rate of 4.20GHz with 64 Gb
of RAM under OS Ubuntu 16.04 LTS was used.

Table 1 presents the results of performance mea-
surements. For each project, its size (in thousands of
code lines), number of replacements applied by
Nobrainer, and its execution time for this project are
specified. The execution time is presented for two phases
measured individually. The first phase is the parsing of
the project’s source code. The second phase includes the
main logics of Nobrainer (see Section 3).

It is seen from Table 1 that the execution time
strongly depends on the project. In particular, this is
the case for both phases. Figure 5 additionally shows
the percentage of time spent on parsing for each proj-
ect involved in regression testing. The results show
that parsing takes 81% of the execution time on the
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 

Fig. 5. Time percentage spent on parsing.

CMake curl json mysql protobuf v8 xgboost

Project

0

25

50

75

100

O
p

e
ra

ti
o

n
 t

im
e
 p

e
rc

e
n

ta
g
e
, 

%

File parsing time

Remaining operation time
remaining operations is about 20% indicates that the
performance of Nobrainer is close to optimal.

6. FURTHER RESEARCH

Currently, Nobrainer supports replacement
rules for expressions and statements. In addition, it
supports rules with type parameters. Nobrainer can
already be used in continuous integration (CI) sys-
tems; however, its performance prevents using it inter-
actively in large projects. On the whole, three basic
directions of research can be distinguished:

1. support of the still unsupported AST nodes cor-
responding to C/C++ expressions and statements;

2. performance improvements;

3. usability improvements.

To improve the performance, we are going to
research possible approaches to reducing the parsing
time. There are two promising options. The first one is
the optimization of the matching phase by ignoring
the files not containing symbols from Before tem-
plates. The second one is the automatic generation of
precompiled header files (PCH). These files should
decrease the time needed to parse the header files in
the project.

There is a number of approaches to improving the
usability. Presently, Nobrainer processesall files in
the project. It would be desirable to allow the user to
specify the parts of the projects to be transformed.
We also consider the integration with other developer
tools. For example, Nobrainer can be used as an IDE
plugin to enhance user experience and the convenience
of usage. Another approach is to use Nobrainer as an
auxiliary programming tool. For example, it is possi-
ble to try using it for automatically fixing bugs and
defects found by a static analyzer.
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7. CONCLUSIONS

In this paper, we presented Nobrainer—a tool
designed for making automatic transformations of C
and C++ programs. It is based on two principles—the
simplicity of use and validity of transformation rules.
Special attention was given to the description of the
model, architecture, and implementation details with
the justification of adopted solutions, results, and
examples.

Ourresults show that Nobrainer can already be
used in continuous integration systems for performing
transformations in large projects. We also described
the existing drawbacks , and directions for improve-
ment. In the future, we are going to enhancethe
usabilityof Nobrainer and integrate it with other soft-
ware development tools.
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