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Abstract—In the paper, we study a family of testing equivalences in interleaving, partial-order semantics, and
combined semantics in the context of safe time Petri nets (elementary net systems whose transitions are
labeled with time firing intervals, can fire only if their lower time bounds are attained, and are forced to fire
when their upper time bounds are reached). For this purpose, the following three representations of behavior
of safe time Petri nets are developed: sequences of firings of net transitions, which represent interleaving
semantics; time causal processes, from which partial orders are derived; and time causal tree, whose nodes
are sequences of transition firings and arcs are labeled by information about partial orders. We establish rela-
tionships between these equivalences and show that semantics of time causal processes and time causal trees
coincide.
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1. INTRODUCTION
Testing equivalences are used for comparing

behavior of systems and checking whether the specifi-
cation and the implementation obtained correspond
to one another, as well as for establishing satisfiability
of logical formulas. The concept of testing equivalence
was put forward by Hennessy and de Nicola in [1].
A test is a special process that is executed in parallel
with the process being tested. Such an execution is
considered to be successful if the test reaches a desig-
nated successful state, and the process passes the test if
every computation is successful. Two processes are
said to be test equivalent if they pass the same sets of
tests. To facilitate the study and the use of testing
equivalencies, alternative characterizations for them
have been found. For instance, comparison is per-
formed based on all tests, which are computations of
processes and sets of their possible continuations. The
notion of testing equivalence is intuitively appealing
and has led to a well-developed mathematical theory
of equivalences and preorders on the processes.

Originally, testing equivalences were thoroughly
investigated in the context of models of transition sys-
tems (see, for instance, [2, 3]), which are based on the
interleaving semantics, where the concurrency rela-
tion between system actions is represented as nonde-
terministic choice between executions of linearly
ordered atomic actions rather than directly. Interleav-
ing testing equivalences for elementary net systems
were studied in [4]. To overcome limitations of the

interleaving approach, the concurrency relation is
modeled often as a lack of causality dependence
between system actions, which is presented, as a rule,
by a partial order. In [5, 6]), testing equivalences were
considered in partial order semantics in the framework
of event structure models. Moreover, testing equiva-
lences were actively studied in the context of event
structures models for the causal tree semantics (the
behavior of the system is represented as a tree in which
the arcs are labeled by actions and information about
their predecessors; i.e., information about causal
dependence is preserved). Relationships between par-
tial order and causal tree semantics for event structure
models have been thoroughly studied in [6–8]. Partial
order semantics of Petri nets is most often represented
by means of the so-called causal net processes, which
include events and conditions related by causal depen-
dence and concurrency (see [9–11] and references
therein). Comparison of various testing equivalences
in partial order semantics of Petri nets was carried out
in [4]. To the best authors’ knowledge, causal tree
semantics in the framework of Petri nets has not been
studied yet.

In verification of complex safety-critical systems, it
is important to study not only qualitative characteris-
tics of system behavior but also quantitative ones. For
these purposes, testing equivalences were applied in
the framework of a number of real-time models. For
discrete-time transition systems, alternative charac-
terizations of time testing equivalences were obtained
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in [12, 13] with the use of an extended concept of the
so-called admissible sets. In [14, 15], semantic theory
based on testing equivalences has been suggested for
algebras of processes with time constraints, and alter-
native characterizations of testing pre-orders have
been formulated in terms of the so-called refusal
traces. The authors of paper [15] have proved the pos-
sibility of discretization in the context of time process
algebra developed by them and, as a result, reduced
dense-time testing relations to discrete-time ones. In
[16], interleaving testing relations, as well as results
related to their alternative characterization and possi-
bility of discretization are extended to the Petri net
model with time characteristics associated with
tokens, and time intervals associated with arcs from
places to transitions. In [17], testing relations are stud-
ied for time and causal semantics of event structure
models. In addition, in [18–20], classification of
equivalences from the spectrum of linear/branching
time for interleaving, causal tree, and partial order
semantics is given in the framework of dense-time
event structure models. Partial order semantics was
put forward for timed Petri nets, where each transition
is associated with its firing duration [21, 22], and for
safe time Petri nets, where each transition is made to
correspond to a firing delay interval [23]. However, as
far as we know, no studies of testing equivalences in
semantics of causal net processes and causal trees have
been reported in the literature. It is only works [24, 25]
where relationships between the trace and bisimula-
tion equivalences in the interleaving and partial order
semantics of safe time Petri nets were studied.

The goal of this work is to define, study, and com-
pare testing equivalences in the interleaving, causal
net, and causal tree semantics in the context of safe
time Petri nets (elementary net systems whose transi-
tions are labeled with time firing intervals, can fire
only if their lower time bounds are attained, and are
forced to fire when their upper time bounds are
reached). We establish relationships between the
equivalences under consideration and show that they
coincide in the semantics of time causal processes and
that of time causal trees.

2. TIME PETRI NETS: SYNTAX
AND INTERLEAVING SEMANTICS

In this section, we define basic terminology con-
cerning the model of Petri nets with timing constraints
and its interleaving semantics. First, we recall defini-
tions of Petri net structure and behavior. Let Act be a
set of actions.

Definition 1. A (labeled over ) Petri net (PN) is a
tuple , where P is a finite set of
places, T is a finite set of transitions (  and

),  is a flow relation,
 is an initial marking, and L :  is a

labeling function. For an element , let

Act
= 0( , , , , )P T F M L1

∩ = ∅P T
∪ ≠ ∅P T ⊆ × ∪ ×( ) ( )F P T T P

∅ ≠ ⊆0M P →T Act
∈ ∪x P T
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 and  be sets of
input and output elements. For a subset ,
these sets of elements are extended to the sets

 and , respectively.

A marking M of a Petri net  is an arbitrary subset
of P. A transition  is enabled at a marking M if

1. Let  denote the set of transitions
enabled at M. If transition t is enabled at a M, then its
firing results in a new marking  (denoted as

) when . We will use the

notation  if  and  …
Mk – 1 Mk = M ' ( ). In this case, ϑ is a firing
sequence from M (to ) and  is a marking in the
Petri net  reachable from the marking M. Let 
be a set of all markings in the Petri net  that are
reachable from M0.

A Petri net  is called T-restricted if  for
all transitions ; it is called contact-free if, for an
arbitrary marking  and any transition t that
is enabled at the marking M, condition  = ∅
holds.

A time Petri net [23] is a Petri net in which each
transition is associated with a time interval that shows
possible moments of firing for an enabled transition
(transition that has a sufficient number of tokens at its
input places); the enabled transition can fire if and
only if its lower boundary is reached while the upper
boundary is not exceeded; if the transition is not fired,
it must fire when the upper boundary is reached.

The domain  of time values is a set of nonnegative
rational numbers. We assume that  is a closed
interval between two time instants . The
upper boundary may be equal to infinity. Let  be
a set of all such intervals.

Definition 2. A (labeled over ) time Petri net is a
pair , where  is the underlying (labeled
over Act) Petri net and  is a static timing
function that assigns a time interval to each transition.
The boundaries of the time interval  are
called the earliest firing time (Eft) and the latest firing
time (Lft) of the transition .

The state of a time Petri net  is a pair ,
where M is a marking of the Petri net  and

 is a dynamic timing function. The
initial state of the time Petri net  is a pair

, where M0 is an initial marking of the

1 For convenience of subsequent definitions, we do not use the
classical definition: a transition  is enabled at a marking M

if  and . The second requirement will be
introduced in the definition of the contact-free property.
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Fig. 1. An example of a time Petri net.
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Petri net  and  for all . A transi-
tion t enabled at a marking M in the Petri net  is fire-
able from a state  after a delay time  if
(  + θ) and (  for all t' ∈

). If transition t is fireable from a state S =
 after a delay time , then its firing results in a

new state  (denoted as ) such that
 and, ,

We write  if  and S =
 S1 …  ( ).

Then, σ is a firing sequence of the time Petri net 
from S (to ) and  is a reachable state of the time Petri
net  from S. Let  be a set of all firing se-
quences from  and  be a set of all states in
the time Petri net reachable from . For σ =

 ... , L(σ) = (a1, θ1) ... 
if  for all . Let us define the interleav-
ing language of the time Petri net  as follows:  =
{L(σ) ∈ (Act ×  .

A time Petri net  is said to be T-restricted if the
base Petri net is T-restricted; contact-free if, for any state

 and any transition t fireable from
the state S after some delay time , 2;
and time-progressive if, for any sequence of transitions

 such that  ( )
and , the inequality 3

holds. In what follows, we consider only T-restricted,
contact-free, and time-progressive time Petri nets.

Example 1. An example of a labeled over Act =
 time Petri net  is shown in Fig. 1, where

the places are represented by circles and transitions by
barriers; the names are depicted near the elements.
The elements included in the f low relation are con-
nected by arrows, and each place contained in the ini-
tial marking is that with a token (bold point). The val-
ues of the labeling and static timing functions are printed
next to the transitions. It is not difficult to check that t1
and t3 are transitions enabled at the initial marking

; moreover, they can fire at the initial state

S0 = , where I0(t) = 

after a time delay . Note that  

2 Note that, if the base Petri net N is contact-free, then the time
Petri net  is also contact-free, but the converse is not true.

3 The time-progressive property guarantees correctness of the
modified definition of the contact-free property.
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     is a firing sequence from
S0 in the time Petri net . Furthermore,  is
T-restricted, contact-free, and time-progressive. □

3. CAUSALITY-BASED SEMANTICS
OF TIME PETRI NETS

3.1. Basic Definitions
We begin with definitions related to time nets.
Definition 3. A (labeled over Act) time net is a finite

acyclic net , where B is a set of con-
ditions, E is a set of events,  is a
flow relation such that  =  = E,

 is a labeling function, and  is a
time function such that .

Let us introduce additional notation for the time
net . Let ,  and τ(TN)
= . Let us also introduce sets

 and  for  ∪ E;

 and  for ;

; and  =  B |  = ∅}.
 is referred to as a (labeled over Act)

time causal net if  and  for all conditions .
Note that η(TN) =  is
a (labeled over Act) time partially ordered set (poset).4

Let us introduce notation and definitions for the
time causal net , , , l, :

•  is a set of predecessors of an event
,  is a set of time

predecessors of an event ;
•  is a downward-closed subset of E if

 for every . For such a subset, we

4 A (labeled over Act) time partially ordered set (poset) is a tuple
 consisting of a finite set of elements X; ref lexive,

asymmetric, and transitive relation ; a labeling function λ:
; and a time function  such that

. Let .

,2( 2)t ,3( 2)t ,1( 0)t ,5( 2)t ,4( 0)t
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use notation .  is
called a timely sound subset of  if  for all

 and ;

• A sequence  ( ) of events from 
is a linearization of a time causal net  if every event
from  appears only once in the sequence and the fol-
lowing condition holds:  i <

j for all 1 ≤ i, . Let us introduce the set  =

 ( ). Clearly,  is a downward-closed
and timely sound subset of E, and, moreover,

.
From the definitions of the time causal net and its

linearization, we obtain the following assertion.
Lemma 1. Any time causal net has a linearization.

Time causal nets  and ,
E', G', l', τ') are isomorphic (denoted as ) if there
exists a bijective mapping  such that
(a)  and ; (b)  for
all ; (c)  and 
for all . We say that TN is a prefix of 
(denoted as ) if ,  is a downward-
closed and timely sound subset of , ,

, , and .
Example 2. Figure 2 shows a time causal net

. Here, conditions are depicted by
circles, and events, by barriers; names of elements are
placed next to the elements; elements included in the
flow relation are connected by arrows; the values of
functions l and  are shown next to the events. Let the
time causal nets be , where B' =

, , ,
, , and , where

, , G'' =  ×
× B''), , . It is easy to verify that  is
a prefix of . □

3.2. Time Causal Processes of Time Petri Nets

In this subsection, we discuss the concept of cau-
sality-based net processes of time Petri nets, which
was proposed in [23].

Definition 4. Let  be a
time Petri net and  be a time causal
net. A mapping  is a homomor-

phism from  to  if the following conditions hold:

• , ;

• the restriction of ϕ to  is a bijection between 
and  the restriction of ϕ to  is a bijection
between  and  for all ;

• •= ∪( ') ( ' )\ 'Cut E E TN E ⊆'E E

E τ ≤ τ( ') ( )e e

∈' 'e E ∈ \ 'e E E
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• the restriction of ϕ to  is a bijection between
 and M0;

•  for all .
A pair  is a time causal process of a time

Petri net  if TN is a time causal net and ϕ is a
homomorphism from TN to .

Let  be a time causal process of a time
Petri net , , and . Then, the
time of enabling (TOE) of , i.e., the latest global time
moment when tokens appear in all input places is defined

as follows:  =  ∪

{0}, where .
In order that the values of time functions of time

causal processes of time Petri nets correspond to time
intervals of firing of net transitions, the concept of cor-
rect time causal processes of time Petri nets is intro-
duced.

Definition 5. A time causal process  of a
time Petri net  is said to be correct if, for each

, the following conditions hold:

• ,
• ,

where .
Let  be a set of correct time causal processes

of time Petri nets . Let  =
:TP .

5  denote a set of
time posets isomorphic to time posets obtained from
correct time causal processes of time Petri nets .

Example 3. Let ϕ be a mapping from a time causal net
TN (Fig. 2) to a time Petri net  (Fig. 1) defined as fol-
lows:  ( ),  ( ),
and  ( ), , . For the
time causal net  defined in Example 2, we set

. It is easy to see that  and
 are time causal processes of the time

Petri nets .

For the set  and transition  ∈
, we calculate  =  | b ∈

 = , τ(e3) = 3} ∪ {0}) = 3.
It is easy to check that the time causal processes

 and  are correct. □
We say that  and  from

 are isomorphic (denoted as ) if there
exists an isomorphism  such that ϕ(x) =

5 Two time posets  and  are iso-
morphic (denoted as ) if there exists a bijection

 such that (a)  for all 
and (b)  and  for all .

•
TN
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 for all ; we also write  in
 if  and .

Let us consider relationship between the firing
sequences and correct time causal processes of time
Petri nets. For , we define
function FSπ that maps linearization  of TN

into a sequence of the form 
... .

Proposition 1. Let  be a time Petri net. Then,
(a) if  and ρ is a lineariza-

tion of TN, there exists a unique firing sequence
;

(b) if , there exists a unique (up to iso-
morphism) time causal process πσ = (TN,

 and a unique linearization  of TN

such that .
Proof. Item (a) without the assumption of unique-

ness of the firing sequence  and item (b) with-
out the assumption of uniqueness of the linearization

 were proved in [23, Theorems 19, 21, and 22].
(a) The uniqueness of the firing sequence 

follows from the definitions of the homomorphism of
ϕ and function .

(b) Let  ( ) be a linearization of TN

such that .
Let us assume the contrary, i.e., that there exists a lin-
earization  of  such that  and

. Since all linearizations of  are finite, there
exists the least  such that . It is clear that

. Since  is a T-restricted time Petri
net, . Let us take an arbitrary place . By

the definition of homomorphism, there exist  and

 such that . By virtue of the
definition of time causal net, we have .

Consider two possible cases.

– . Then, . This contradicts
the definition of homomorphism of ϕ.

–  and  (the case where 

and  is analyzed similarly). Since ,
we find that , of the definition of homomor-
phism of ϕ. Then, it follows that  by construc-

tion of πσ in [23]. Assuming that , we find an

event  such that . Since k is minimal, the
number of the event  in both linearizations ρ and  is
the same, i.e.  for some . From the
definition of the function , it follows that  = ti.

Then,  in accordance with the definition of ϕ.

ϕ'( ( ))f x ∈ ∪x B E π → π'
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Moreover,  by construction of  in [23].
Thus, we arrived at the contradiction to property (41)
from [23]: there does not exist a  for any .

– . Hence, there is an event  ( ) such

that  ( ). From the definition of the
homomorphism ϕ, it follows that . Since k is
minimal, the event  ( ) has the same number in the
linearizations ρ and , i.e.,  for some  <
k (  for some ). Then, by the defi-
nition of the linearization, . From the definition
of the function , it follows that  (  =
tj).From the definition of the homomorphism, it fol-

lows that  ( ). It follows from the con-
struction of  in [23] that  ( ). If 
< k ( ), we arrive at the contradiction with
property (41) from [23]:  does not exists for any

 < k ( ). □
Example 4. For a time causal process  of

a time Petri net  (see Example 3) and a linearization
 of a time causal net TN, FSπ(ρ) = 

      is a firing sequence
of the time Petri net  (see Example 1). □

By using the definition of the prefix of a time causal
net and Proposition 1, it is easy to show that, if the fir-
ing sequence and the time causal process of a time
Petri net are interrelated, then their direct extensions
are also interrelated.

Lemma 2. Let  and  be
such that , where ρ is a linearization of .
Then,

(a) if , then there exists  
 such that  in  and

, where  is a linearization of ;
(b) if  in , then there exists  

 such that , where ρe is a lin-
earization of .

3.3. Time Causal Trees of Time Petri Nets

Causal trees [8] are synchronization trees that carry
in their labels not only names of actions but also addi-
tional information about causes of these actions thus
providing us with an interleaving representation of
concurrent processes supplemented with the descrip-
tion of causality relations between their actions. By
adding timing into labels of causal trees, we get time
causal trees. In a time causal tree of a time Petri net

, nodes are firing sequences from the set 
and arcs connect two nodes if one sequence is a direct
extension of another. Information about predecessors
for arc labels is obtained from the causality relation of
the corresponding time processes of .

,=
ki pb b σπ

, ki pb < <0 i k

•, ∈/b b TN �e ê

•=�{ }e b
•=ˆ{ }e b

≠� ˆe e

�e ê

ρ = =� i ie e e ≤1 i

= =ˆ j je e e ≤ <1 j k

≠i j

σπFS ϕ =�( ) ie t ϕ ˆ( )e

•∈k ip t
•∈k jp t

σπ ,=
ki pb b ,=

kj pb b <i j

< <j i k
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<i l < <j l k

π = , ϕ( )TN

71

ρ = 1 3 2 7 6 5 4e e e e e e e ,1( 3)t
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71

σ ∈ ( )^6 71 π ∈ ( )#3 71

πσ = ρ( )FS πTN

σ , θ ∈( ) ( )t ^6 71 π� ∈
( )#3 71 π → π� 71
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�

( ) ( )t FS e ρe π�TN
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Fig. 2. An example of a time causal net.
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Definition 6. The time causal tree of a time Petri net

, , is the tree , where
 is a set of nodes with the root ε; A =

 is a set of arcs; φ is a
labeling function such that  and φ(σ,

, θ, K), where K = {n – l + 1 | σ(t, θ) =
,  is a linearization of ,

and . Let  be a path in 

from the root to a node 6. By  =
 ∈  ∈ , we

denote the set of sequences of path labels in a time
causal tree of a time Petri net .

Example 5. Consider a time Petri net  (Fig. 1)
and a firing sequence     

 . It follows that the sequence of
labels of the path from the root to the node σ has the
following form:   , {1,
2})    , 4,
5, 6}). □

Let us establish relationship between correct time
causal processes and labeled paths in time causal trees
of the two time Petri nets.

Proposition 2. Let  and , be time Petri nets,
and let  and TCT  =

, A', φ') be their time causal trees. Then,

(a) if  and  are time
processes and  is an isomor-
phism, then 
for any linearization  ;

(b) if  for 
and , then there exists an isomorphism

 such that .

Proof. (a) follows from Proposition 1(a) and prop-
erties of isomorphism f.

(b) follows from Proposition 1(b), Definition 6,
and properties of homorphism ϕ and function FS. □

Let us prove a useful auxiliary assertion.

6 We define . Note that, in a , for any node
, there exists a path from the root to a node .

71 ( )TCT 71 φ( ( ), , )A^6 71

( )^6 71

σ σ θ σ σ θ ∈{( , ( , )) | , ( , ) ( )}t t ^6 71

φ =( )e e

σ , θ =( )) ( ( )t l t71

σ ,θπ ( ) 1( )
t nFS e …e e 1 ne …e e

σ ,θπ ( )t
TN

πσ ,θ
≺

( )
}

t
l TNe e σ( )path ( )TCT 71

σ + 71( ( ))TCT

=( )path e e ( )TCT 71

σ ∈ ( )^6 71 σ

φ σ{ ( ( ))path × × σ( 2 )* |Act
N

T ( )}^6 71

71

71

σ = ,1( 3)t ,3( 0)t ,2( 2)t ,3( 2)t ,1( 0)t

,5( 2)t , ∈4( 0) ( )t ^6 71

φ σ = , ,∅( ( )) ( 3 )path a , ,∅( 0 )b ( ,2a

( ,2,{1,2,3})b ( ,0,{2,3,4})a ( ,2,{2,3,4,5})d ( ,0,{2c

71 '71

= , , φ( ) ( ( ) )TCT A71 ^6 71 ( ')71

( ( '^6 71

π ∈ ( )#3 71 π ∈' ( ')#3 71

π π: η → η '( ) ( )f TN TN

π πφ ρ = φ ρ'( ( ( ))) '( ( ( ( ))))path FS path FS f

ρ πTN

φ σ = φ σ( ( )) '( ( '))path path σ ∈ ( )^6 71

σ ∈' ( ')^6 71

σ σπ π: η → η
'

( ) ( )f TN TN σ σρ = ρ '( )f
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Proposition 3. Let  and  be time Petri nets.
Then,  ⇐  =

  .

Proof. The fact that  =  ⇐
, follows directly from

the definitions.Fig. 2

Now, we check that  =  
. Let us consider an arbitrary

time poset . This means that it is possi-
ble to find a time causal process of the net π =

 such that . Consider
an arbitrary linearization  of . According to
Lemma 1, at least one linearization of TN exists. From
Proposition 1(a), it follows that there exists a firing
sequence . In accordance with
Proposition 1(b), without loss of generality, we can
assume that  and . By definition, there
exists a path u in  from the root to the node
σ. Moreover, .
This implies that, in , there exists a path 
from the root to the node  such that

. By virtue of Proposition 1(b), there exists
a unique (up to isomorphism) time causal process

 and a unique lineariza-
tion  of  such that . From Prop-
osition 2(b), it follows that there is an isomorphism

 such that . Thus, we
find that , i.e., .

Finally, let us check that  =  
 = . Consider an arbitrary

. This implies that there exists a
path u in  from the root to the node

 such that . According to Proposi-
tion 1(b), there is a unique (up to isomorphism) time
causal process πσ =  and a unique
linearization  of  such that  = σ. Hence,

 ∈  = . Then, there
exists a time causal process net π' =  ∈

 such that η(TNσ)  . Hence, there is
an isomorphism . Applying

71 '71

=( ) ( ')+ 71 + 71 ( ( ))TCT+ 71

( ( '))TCT+ 71 ⇔ =( ) ( ')os os73 71 73 71

( )+ 71 ( ')+ 71

=( ( )) ( ( '))TCT TCT+ 71 + 71

( ( ))TCT+ 71 ( ( ))TCT+ 71

=( ) ( )os os73 71 73 71

∈ ( )TP os73 71

,ϕ ∈( ) ( )TN #3 71 η �( )TN TP

ρ TN

πσ = ρ ∈( ) ( )FS ^6 71
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( ')TCT 71 'u
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Fig. 3.
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Proposition 2(a), we obtain  =
 ∈ . □

4. TESTING EQUIVALENCES
In the framework of the interleaving approach to

defining testing equivalence, the tests are sequences w
of actions executed (system computations) and sets W
of possible subsequent actions. The process passes the
test if, after execution of each sequence w of actions, at
least one action from W can be executed. Two pro-
cesses are testing equivalent if they pass the same set of
tests. In the time variant, information on action execu-
tion times is added.

Definition 7. Let  and  be time Petri nets.
For a sequence  and a set W ⊆

,  after w MUST  W if, for all
 such that , there exist  ∈

W and  such that  = w(a, θ).
 and  are said to be interleaving testing

equivalent (denoted as ) if, for any
sequence  and any set ,

 after w MUST    ' after w MUST  W.
Example 6. The time Petri nets , , and

 depicted in Fig. 7 are interleaving testing equiva-
lent, whereas  and  are not. It is easy to verify
that  after   W =

. However, in , there exists a firing
sequence labeled by w after which the transition
labeled by a cannot fire at the time moment 3.9. Thus,
the condition  after w  W does not
hold. □

Testing equivalences that take into account causal
dependencies between actions were first introduced by
Aceto et al. in [5] in the context of event structure
models. For the process computations, they consid-
ered partially ordered multisets (pomsets) instead of
sequences of executed actions. In [6], instead of sets of
subsequent actions, directed extensions of executed

σπ σ= φ ρ( ( ( )))w path FS

π σφ ρ''( ( ( ( ))))path FS f ( ( '))TCT+ 71

71 '71

∈ ×( )*w Act T

×( )Act T 71 int

σ ∈ ( )^6 71 σ =( )L w , θ( )a

σ , θ ∈( ) ( )t ^6 71 σ , θ( ( ))L t

71 '71

∼ 'int71 71

∈ ×( )*w Act T ⊆ ×( )W Act T

71 int W ⇔ 71 int

271 371

471

171 271

2( )TCT 71 = , ,( 0)( 0)w b b intMUST
{( ,3.9)}a 1( )TCT 71

1( )TCT 71 intMUST
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pomsets were used. In addition, in [6], one more ver-
sion of causal testing equivalence was suggested, which
uses posets of executed actions as the computations.
It was shown that this is a stronger equivalence. Fol-
lowing this approach, we further define the time poset
based testing equivalence for time Petri nets with the
use of its correct time causal processes.

Definition 8. Let  and  be time Petri nets.
For a time poset TP and a set TP of time posets

such that 7 , for any ,  after TP

MUST  TP if, for any  and
any isomorphism , there exist

, π' = , and isomor-
phism f ' :  → TP' such that  and .

 and  are called poset testing equivalent

(denoted as ) if, for any time poset TP

and any set  of time posets such that , for
all , the following condition holds:  after
TP MUST     after TP MUST  .

Example 7. Consider the time Petri nets ,
, and  depicted in Fig. 7. It is easy to see that
 and  are poset testing equivalent, whereas
 and  are not. Let us prove the latter. Con-

sider the time poset  where
,  = b,  =

0, and the time poset , where
,  = λ'(x2) = b,

, , and  = 3.9. For any
time causal process π3 = (TN3,  in
which  consists of two concurrent events with
labels b and time values equal to 0 and any isomor-
phism , one can find a time causal
process , in which 

7 A time poset  is called prefix of a time poset
 (denoted as ) if , ,
, , , and x is the greatest with

respect to  element of 

71 '71

⋅≺TP 'TP ∈'TP TP 71

η = , , λ, τ( )X �

η = , , λ , τ' ( ' ' ' ')X � η ⋅η≺ ' ⊆ 'X X ='\ { }X X x

= ∩ ×' ( )X X� � λ = λ'|X τ = τ'|X
'� 'X

tpos π = , ϕ ∈( ) ( )TN #3 71

: η →( )f TN TP

∈'TP TP , ϕ ∈( ' ') ( )TN #3 71

η( ')TN π → π' ⊆ 'f f

71 '71

∼ 'tpos71 71

TP ⋅≺ 'TP TP

∈'TP TP 71

tpos TP ⇔ '71 tpos 'TP

271

371 471

271 371

371 471

= λ τ1 2({ , }, , , ),TP x x �

= | ≤ ≤{( , ) 1 2}i ix x i� λ = λ1 2( ) ( )x x τ = τ1 2( ) ( )x x

= λ τ1 2 3' ({ , , }, , ', ')TP x x x �

= | ≤ ≤ ∪ 2 3{( , ) 1 3} {( , )}i ix x i x x� λ 1'( )x

λ =3'( )x a τ = τ =1 2'( ) '( ) 0x x τ 3'( )x
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consists of two concurrent events with labels b and
time values equal to 0 and a third event with label a and
time value 3.9 that is in a relation of causal dependence
with one of b, and isomorphism  such
that  and . However, this is not true in
the case of the time Petri net . □

Further, we define testing equivalence for time
Petri nets based on their time causal trees having in
mind the method employed for the event structure
model in [6]. The tests will be constructed taking into
account time values based on the set of labels of

 tree arcs.
Definition 9. Let  and  be time Petri nets,

and let  and  =
, A', φ') be their time causal trees. For a

sequence  and a set W ⊆ (Act ×
,  after w MUST  W if, for all paths

u in  from the root to the node n such that
, there exist a label  and an arc r

from the node n such that ;
 and  are causal tree testing equivalent

(denoted as   ) if, for any sequence
 and any set ,

 after w  W   after w
 .

Example 8. Consider the time Petri nets ,
, and  depicted in Fig. 7. It is easy to see that
 and  are causal tree testing equivalent,

whereas  and  are not. Let us prove the latter.
To this end, we define  and W =

. It is easy to check that  after w
 W. In , there are two paths

labeled as ; one of them terminates at a
node from which an arc with label  origi-
nates, and the other terminates at a node that lacks
such an arc. Thus, the condition  after w

 W does not hold. □
From the definitions of the interleaving, poset, and

causal tree testing equivalences, we immediately get
the following

Lemma 3. Let  and  be time Petri nets.
Then,

Let us establish relationship between the interleav-
ing and causal tree testing equivalences.

Theorem 1. .
Proof. Suppose that . Let us show

that . Assume the contrary. Let there

η →3 3' '( ) 'f TN TP

π → π3 3' ⊂3 3'f f

471

× × 2Act
N

T

71 '71

= , , φ( ) ( ( ) )TCT A71 ^6 71 ( ')TCT 71

( ( ')^6 71

∈ × ×( 2 )*w Act
N
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× 2 )N
T ( )TCT 71 tct

( )TCT 71

φ =( )u w , , ∈( )a d K W
φ = , ,( ) ( )r a d K

71 '71

71 ∼tct '71

∈ × ×( 2 )*w Act
N

T ⊆ × ×( 2 )ActW N
T

( )TCT 71 tctMUST ⇔ ( )TCT 71

tctMUST W
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371 471

271 371

371 471

= , ,∅ , ,∅( 0 )( 0 )w b b
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tctMUST 4( )TCT 71
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171 271

 =∼1 2 1 2( ) ( ),int71 71 + 71 + 71

 =∼1 2 1 2( ) ( ),tpos os os71 71 73 71 73 71

 =∼1 2 1 2( ( )) ( ( )).tct TCT TCT71 71 + 71 + 71

∼ ∼1 2 1 2tct int71 71 71 71

∼1 2tct71 71

∼1 2int71 71
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exist  and  such that
 after w MUSTint W; however,  after w

MUSTint W). The latter means that there exists
 such that  = w and that, for any

 and , the condition
 does not hold. Taking into

account the definitions, we find that 
and, moreover, ,
with  = w. Let us introduce the set W = {(a, θ,

,  : L(σ) = w and
 = ,  an arc r from  in  : φ1(r) =

(a, θ, K)}. Let us show that  after  MUSTtct W. Take
an arbitrary  such that  = .
Such a σ1 exists, since , by Lemma 3.
Moreover, , according to Proposition 3.
Since  after w MUSTint W, there exist 
and σ1(t,  such that  = w(a,
θ). By the construction of the time causal tree, there is
an arc r =  in  such that  =
(a, θ, K). Hence, it follows that . By virtue of
arbitrariness of , we have  after  MUST  W.
Thus, we arrived at the contradiction, since it is easy to
check that  after  MUST  W). □

In conclusion, we show that testing equivalences
for time causal trees in the semantics of time partially
ordered sets and time causal trees coincide.

Theorem 2. Let  and  be time Petri nets.
Then,

Proof. Let us prove from left to right (the proof
from right to left is similar). Let  =

, Ai, φi) (i = 1, 2). Suppose that  
. Then, according to Lemma 3, we have

 = . From Proposition 3, we
obtain . Let us show
that . Take arbitrary w ∈ 
and . Without loss of generality,
we assume that  (n ≥ 0). Suppose that

 after w MUST  W. Let us check that
 after  MUST  .

If , then the
result is evident. Consider the case where w ∈

 = . Then, we can take
any path u from the root to some node 
such that . According to Proposition 1(b),
there exists a unique (up to isomorphism) time causal
process  and a unique lin-
earization  TNσ such that  = σ.
Let us denote  ∈ .

∈ ×( )*w Act T ⊆ ×( )W Act T

711 ¬ 71 2(

σ ∈2 2( )^6 71 σ2( )L
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For each , we construct a time poset
 as follows: 

( ); , ;
,  = a; ,  =

τ(TNσ) + θ. The set of all constructed time posets is
denoted as .

Let us check that  after  MUST  TPW.
Take an arbitrary time causal process of the net π1 =

 and an isomorphism f1:
. Since , such  and

f1 exist. From Proposition 2(a), we find that  =

 →  is a linearization of
TN1 such that . Since

 after w MUST  W, there exists a label
 and an arc r1 from node σ1 such that

. Then, one can find  ∈
TPW. Hence, by construction of the set TPW, we find
that , ,  =

 – τ(TNσ),  = {n – l + 1 |  

. Moreover, by the definition of ,

there exists , ( ) such that

 and  =  =

. From Lemma 2(a), it follows that there is a
time causal process  such
that  and  for some linear-

ization  of , i.e., . Let us define func-
tion  as follows:  = f1,  =

. In addition, ;

 = ;

   for

all . Hence,  is an isomorphism and .
Thus,  after TPw MUST  TPW. Then, by the
assumption of the theorem,  after TPw MUST
TPW.

Further, let us show that  after w

MUST  W. Take an arbitrary path u2 in 
from the root to the node  such that .
Since , there is at least one such a
path u2 in . In accordance with Proposition
1(b), there exists a unique (up to isomorphism) time
causal process  and a

unique linearization  of  such that
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 = σ2. Using Proposition 2(b), we find that
there is an isomorphism  such that

. Since  after TPw MUST  TPW,
there exist , ,
and an isomorphism  such that

 and . According to Lemma 2(b),
there is  such that, for some linear-

ization  of , we have . By

construction of TPW, there exists a label 
such that , and, hence, {e(a, θ, K)} =

. Since  and , we

have  and  = e(a, θ, K). Since  is an

isomorphism, we have  = a,

 =  + θ,

and    for all

. Then, it follows that  and
 for all . Hence, in ,

there exists an arc  such that  =
(a, θ, K). Thus, we have  after w MUSTtct

W   after w MUSTtct W.

In view of symmetry, we have   
  . □

5. CONCLUSIONS

We have shown that some well-known causality-
based testing equivalences employed in the untimed
and timed event structures literature can be extended
to time Petri nets. In particular, we have introduced
and studied testing equivalences in interleaving, partial
order, and combined semantics in the setting of safe
Petri nets with strong timing (transitions are labeled
with time firing intervals, enabled transitions are able
to fire only if their lower time bounds are attained, and
are forced to fire when their upper time bounds are
reached). In doing so, we dealt with three behavioral
representations of time Petri nets: firing sequences
representing interleaving semantics; time causal net
processes, from causal nets of which partial orders are
derived; and causal tree semantics constructed from
the firing sequences and partial orders. We have found
relationships, firstly, between the firing sequences and
correct time processes for time Petri nets and, sec-
ondly, between labeled paths in time causal trees and
correct time processes. We have established that the
interleaving testing equivalence is weaker than that
determined with the use of the time causal tree. The
main result of the study is the proof of the coincidence
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of the testing equivalences in the semantics of time
partial orders and time causal trees. It is worth noting
that this result is also true for the untimed versions of
the equivalences in the setting of untimed contact-free
elementary net systems.

As for the future work, we plan to study the relation-
ship between the equivalences and semantics under con-
sideration and those in the linear-time/branching-time
and interleaving/partial order spectra ([25]). We also plan
to study the possibility of extending the results obtained
to time Petri nets with invisible actions.
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