
ISSN 0361-7688, Programming and Computer Software, 2020, Vol. 46, No. 3, pp. 244–249. © Pleiades Publishing, Ltd., 2020.
Russian Text © The Author(s), 2020, published in Programmirovanie, 2020, Vol. 46, No. 3.
Method to Extract Isosurfaces on the GPU
by Means of Programmable Tessellation

P. Y. Timokhina,* and M. V. Mikhaylyuka,**
aScientific Research Institute for System Analysis, Russian Academy of Sciences,

Nakhimovskii pr. 36/1, Moscow, 117218 Russia
*e-mail: webpismo@yahoo.de

**e-mail: mix@niisi.ras.ru
Received December 20, 2019; revised January 10, 2020; accepted January 18, 2020

Abstract—This paper considers the task of real-time visualization of detailed 3D scalar fields through isosur-
faces (surfaces representing constant values of scalar fields). A new method is proposed to overcome the lim-
itations associated with the intensive reading of dummy (non-visualized) vertices from video memory and
overheads of their storage, which arise when implementing isosurface polygonization methods on the GPU.
The proposed method is based on the efficient generation of GPU threads (in which an isosurface model is
constructed) by the programmed tessellation of quadrangular patches into regular vertex grids. We also pro-
pose a modified technology for marching cubes implementation on the GPU that is based on the developed
method and allows the time cost of GPU thread generation and video memory footprint to be significantly
reduced. Based on the proposed solutions, a software complex for the real-time construction and visualiza-
tion of polygonal models of isosurfaces is implemented and tested, as well as the verification of synthesized
images is carried out.

DOI: 10.1134/S036176882003010X

1. INTRODUCTION

Currently, many important scientific and applied
fields intensively employ the visualization of 3D scalar
fields obtained by numerical modeling or scanning
objects (processes) with complex internal structures.
In this regard, the real-time visualization [1] (with an
image synthesis frequency of at least 25 images per
second) of the surface representing the constant value
of a scalar field (the so-called isosurface) is one of the
effective methods. It can be used for skeleton visual-
ization in computed tomography [2], phase boundary
visualization in digital models of core material samples
[3], 3D models of terrain with negative slopes in vir-
tual environment systems [4], etc. The extraction of
the isosurface from the field is based on the computa-
tion of the points with a constant field value in the cells
of a scalar grid. The more complex the object under
study, the more detailed scalar grid is required for its
adequate representation and, therefore, the more
computations must be carried out to extract the iso-
surface. In the modern context of ultra-high-defini-
tion screens and stereo devices [5], the amount and
time of these graphics computations increase several-
fold, which complicates the real-time synthesis of iso-
surface images. Thus, it is required to develop efficient
methods and algorithms for isosurface extraction
based on parallelization of computations on modern

thousand-core GPUs and technologies for parallel
processing of graphics data.

In this paper, we propose a new method for solving
this task on the GPU based on scalar field polygoniza-
tion (extracting a set of triangular faces that approxi-
mates the isosurface) that is carried out in real time in
parallel GPU threads generated using programmed
tessellation of parametric graphics primitives [6]. The
proposed solution is implemented in C++ and GLSL
(shader programming language) by using the OpenGL
graphics library.

2. APPROACHES TO ISOSURFACE
EXTRACTION

There are two main directions for the development
of isosurface extraction methods.

The first direction includes methods based on ray
casting from the observer’s position through the pixels
of the screen up to the intersection with the isosurface
[7–9]. This approach yields high-quality isosurface
images. However, the rate of synthesizing these images
decreases significantly with increasing the number of
pixels (rays) to be processed, which complicates real-
time visualization on ultra-high-definition screens.
The latest studies [10] suggest that the recently intro-
duced hardware support of ray tracing on NVidia RTX
graphics cards can significantly improve this situation.
244

METHOD TO EXTRACT ISOSURFACES 245
The second direction includes methods based on
the polygonal approximation of the isosurface in the
cells of a 3D grid (render grid) superimposed onto a
scalar field grid [11–19]. With this approach, active
(intersected by the isosurface) edges and cells of the
render grid are found; then, for these edges and cells,
polygons of the isosurface are generated in accordance
with certain rules. There are direct [11–13], dual [14–
16], and hybrid [17–19] methods for isosurface poly-
gonization. With direct methods, in each active cell,
polygons whose vertices lie on the active edges of the
cell are created (a classic example is marching cubes
[11]). With dual methods, polygons are created for
active edges, while the vertices of these polygons are
placed in active cells. Hybrid methods combine direct
and dual methods and act as dual ones when active
cells contain isosurface features, e.g., sharp edges and
cone-shaped vertices. An extensive investigation and
comparison of isosurface polygonization methods can
be found in [20].

With the addition of the programmable (shader)
stages to the graphics pipeline, the research direction
associated with the parallel GPU-based processing of
active cells and edges became very popular [21–27].
The best results were obtained when parallelizing
direct methods whereby, in contrast to dual methods,
each active cell is triangulated independently. The
efficiency of the GPU-based versions of direct meth-
ods depends heavily on the time cost of generating and
executing GPU threads, as well as on the size of video
memory footprint. In the era of thousand-core GPUs
with hierarchical video memory, the bottleneck of
visualizing high-poly models is the number of accesses
to global video memory (the largest and slowest part of
VRAM). The number of these memory accesses can
be reduced by constructing polygons for an active cell
in the geometry shader (one of the programmable
stages of the graphics pipeline). To run a GPU thread
with the geometry shader, it is sufficient to send a ver-
tex to its input. A common approach is to create a ver-
tex buffer object (VBO) with dummy vertices (vertex
per render grid cell) in video memory and send this
array of vertices to the graphics pipeline. Once the
dummy vertices arrive at the GPU cores, on each core,
the geometry shader replaces each vertex (inde-
pendently and in parallel) with a certain polygonal
structure if the cell is active. Even though the polygo-
nal model of the isosurface is in fact constructed on
the GPU, this approach has some significant limita-
tions associated with the intensive reading of the vertex
data from global video memory and additional over-
heads of their storage. These limitations prevent the
increase in the size of the render grid and hinder the
real-time construction of isosurfaces for complex
objects.

In this paper, we propose a new method to over-
come these limitations; it is based on two new pro-
grammable stages—tessellation control shader and
tessellation evaluation shader—used to construct a
PROGRAMMING AND COMPUTER SOFTWARE Vol.
polygonal model of the isosurface [6]. These stages
precede the geometry shader and, in the general case,
are employed for the parallel GPU-based generation
of a large set of connected triangular approximations
from parametric graphics primitives (patches), e.g., to
construct a polygonal model of the Earth’s surface
[28]. In this work, we use a special case of programma-
ble tessellation whereby a regular grid of vertices is
generated from a quadrangular patch (quad patch) on
the GPU. By the example of constructing a polygonal
model of an isosurface based on marching cubes, we
demonstrate how this approach can significantly
reduce the time required for GPU thread generation
and lower video memory footprint.

3. TECHNOLOGY TO IMPLEMENT
MARCHING CUBES ON THE GPU USING

TESSELLATION SHADERS
Suppose that we have an render grid R

each node (vertex) of which corresponds to a certain
value S of a scalar field under study. The task consists
in constructing a polygonal model of a surface repre-
senting a constant value in the active cells of the
grid R. Each cell for all eight vertices of which the con-
dition or does not hold is considered
active, i.e., the cells that lie entirely inside or outside
the isosurface are excluded.

Let us consider the Ri,j,kth cell. We enumerate the
vertices and edges of this cell with integers from 0 to 7
and from 0 to 11, respectively. A unit bit is assigned to
each vertex satisfying ; otherwise, a zero bit is
assigned (see Fig. 1). According to the rule of marching
cubes, a vertex of a triangle (polygon) is placed on an
edge whose vertices have different bits (active edge); the
coordinates P of this vertex are found as follows:

(1)

where Pa and Pb are coordinates for the vertices of the
active edge, while Sa and Sb are the values of the scalar
field at the vertices of the active edge. By K we denote
a configuration of eight consecutive bits. Each value K
(from 0 to 255) is uniquely associated with a list of tri-
angles, representing a variant of a polygonal part of the
isosurface model. Each such list includes 0 to 5 trian-
gles and is defined by a sequence of 16 indices: three
active edge indices per triangle and (–1) filling the
sequence to the end. All 256 sequences constitute an
array Т of triangle lists (see [12]).

The list of triangles in each Ri, j, k th active cell is
constructed in an individual GPU thread (marching
cube thread). In this paper, these threads are generated
using programmed tessellation of quad patches. Hav-
ing properly programmed the graphics pipeline, each
quad patch can be subdivided in parallel into a regular
grid of up to D × D vertices, where and

 is the maximum tessellation level (the maximum

× ×m n q

*S

< *S S ≥ *S S

< *S S

()−= + −
−

* ,a
a b a

b a

S SP P P P
S S

= +max 1D L
maxL
46 No. 3 2020

246 TIMOKHIN, MIKHAYLYUK

Fig. 1. Encoding a cell of the render grid.

K = (00001010)

TK = (2, 3, 11, 0, 1, 9, −1, ..., −1)

V0 V1

V2
V3 2

11

3

9

0

(0)

(0)

(1)

(1)

V4 V5

V6

V7

(0)

(0) (0)

(0)

1

Fig. 2. Generation of marching cube threads.

D

quad patches

groups of vertices

(threads)

mp

qp

nD

D

m

q

np
number of segments into which the side of a quad
patch can be subdivided). In OpenGL 4.0, this num-
ber is at least 64. In accordance with the architecture
of the graphics pipeline, each vertex obtained as a
result of tessellation is processed in an individual GPU
thread that we program to construct a list of triangles
corresponding to the cell (as part of the isosurface).
In contrast to the solutions based on the CUDA archi-
tecture, an important advantage of the proposed
approach is that these vertices (GPU threads) are gen-
erated directly on the GPU without wasting the video
memory resource while remaining in the framework of
the graphics pipeline.

The proposed technology for the GPU-based
implementation of marching cubes comprises two
stages. At the first stage (loading the source data), a
floating-point 3D texture with the values S of render grid
vertices, an integer 2D texture that encodes the array T of
triangle lists, and a VBO that contains quad
patches, where , , and
(see Fig. 2), are loaded into video memory. At the sec-
ond stage (visualization), the quad patches from the
VBO are sent to the graphics pipeline, where they are
distributed among the GPU cores and are processed in
parallel using the tessellation control shader (TCS),
tessellation evaluation shader (TES), geometry shader
(GS), and fragment shader (FS). Below, we consider
the operation of these shaders in more detail.

p p pm n q
= pm m D = pn n D =pq q
PROGRAMMING A
TCS shader. At this stage, two sets of parameters
are evaluated. The first set is a triplet of indices

 for the row, column, and slice of the patch
processed by the TCS shader in the 3D array of quad
patches (see Fig. 2). These parameters are obligatory
to associate the GPU threads with the cells of the ren-
der grid. The triplet of indices is computed
based on the built-in variable gl_PrimitiveID, which is
a running number g of the patch that takes values on
the interval :

where and . The second set
includes parameters that specify the width and height
of the 2D grid of vertices (group of marching cube
threads). These width and height are determined by
the levels lw and lh of quad patch tessellation, respec-
tively, which are computed as follows:

(, ,)p p pi j k

(, ,)p p pi j k

[]−0, 1p p pm n q

− = =
= − −

, ,

.

p
p p

p p p

g Nk
k g N i

M
j g Nk Mi

= p pN m n = pM Nq
ND COMPUTER SOFTWARE Vol. 46 No. 3 2020

METHOD TO EXTRACT ISOSURFACES 247

Fig. 3. Scheme of the isosurface visualization pipeline.

1 patch

4 vertices

up to 65×65

vertices (threads)
Fragments of the

isosurface image

VRAM

TCS + TES GS FS

GPU

(0)

(0)

(0)

(0)

(1)

(1)

11 9

1

0

3

2

(0)

(0)

P23

P21

P12

P13

P11

P22
TES shader. This shader processes the vertices of
the 2D vertex grid obtained by the tessellation of the
quad patch in parallel while associating each vertex
(thread) with a render grid cell. This is done by assign-

ing the triplet of attributes , which are the

row, column, and layer indices of the corresponding
cell in the render grid, to the vertex under processing.
These attributes are computed as follows:

where i and j are the row and column indices of the
vertex in the 2D vertex grid obtained by the patch tes-
sellation:

where are the normalized f loating-point
coordinates of the vertex in the 2D vertex grid (which
are computed automatically in the process of tessella-
tion in the TES shader) and is a small constant used
to compensate for the machine error in the represen-
tation of real numbers.

GS shader. This shader receives a triplet of indices

 for the render grid cell from the TES shader

and performs parallel processing of all these cells. The
processing begins with computing the configuration

number for the th cell:

where p is the running number of a vertex in the

th cell (see Fig. 1); the f lag bp is 1 if

and is 0 otherwise (Sp is the value of the scalar field at

the pth vertex of the cell). If or = 255

(the cell lies entirely inside or outside the isosurface),
then the GS shader terminates without generating any
polygonal geometry in the cell. Otherwise, (a) based

= − −
= − −

max

max

max(min(, 1),1),

max(min(, 1),1).

w p

h p

l L n Dj
l L m Di

(), ,с с сi j k

= + = + =, , ,c p c p c pi Di i j Dj j k k

= + ε = + ε , ,h wi l v j l u

∈v(,) [0,1]u

ε

(), ,с с сi j k

, ,c c ci j kK (), ,с с сi j k

=
=

7

, ,

0

2 ,
c c c

p
i j k p

p

K b

(), ,с с сi j k < *pS S

=, , 0
c c ci j kK , ,c c ci j kK
PROGRAMMING AND COMPUTER SOFTWARE Vol.
on the configuration number , the lists of edges that

form the polygons of the isosurface in the th cell

are extracted from the texture T of triangle lists; (b)
from the 3D texture of the render grid, the values S for the
vertices of the edges are extracted and the coordinates of
the points on these edges are computed by Eq. (1); and
(c) based on the points obtained, the triangles of the

isosurface in the th cell are constructed in

accordance with the sequence order of the edges in the
extracted list. The implementation of triangle emis-
sion in the GS can be found in [29].

FS shader. The triangles constructed by the GS
shader are rasterized (fixed stage of the graphics pipeline)
to be converted into fragments of the isosurface image.
The FS shader computes the colors of the resulting frag-
ments independently and in parallel, based on the
Phong lighting model [29] with a directional light
source.

Figure 3 shows the general scheme of the visualiza-
tion pipeline developed. Once all quad patches pass
through this pipeline, the resulting image of the
extracted isosurface is synthesized in the frame buffer.

4. RESULTS

Based on the proposed technology, a software
complex was created that implements the extraction of
polygonal models of isosurfaces by means of program-
mable tessellation. To test this complex, we used 3D
scalar fields of water saturation in a porous sample of oil-
bearing rock, which were obtained by numerical model-

ing on a computational grid of 1003 cells. Figure 4 shows
the extracted surface that corresponds to 35% saturation
level. The polygonal model of the isosurface was con-
structed and visualized at a resolution of 3840 × 2160 on
GeForce GTX 1080 Ti (3584 cores, 11 GB VRAM);
the average frequency of visualization was approxi-
mately 100 frames per second. The isosurface obtained
was verified by extracting an isosurface from the same
array of scalar data in MATLAB [30].

, ,c c ci j kK
(), ,с с сi j k

(), ,с с сi j k
46 No. 3 2020

248 TIMOKHIN, MIKHAYLYUK

Fig. 4. Example of isosurface visualization.
In addition, for the proposed solution, we esti-
mated video memory footprint (in GB) and time it
takes to generate GPU threads (in milliseconds) with

increasing size of the render grid up to 20003 cells. Fig-
ure 5 shows the consumption of time (T) and video
memory (M) for (a) the proposed implementation and
(b) the implementation of the common approach
described in Section 2. As compared to the implemen-
tation (b), the proposed solution reduces the time
required for GPU thread generation by a factor of five
and video memory footprint by a factor of eight. Based
on these results, in our future works, we intend to con-
duct a research on the real-time extraction of isosur-
faces from extended 3D scalar fields (construction of a
extended terrain with negative slopes).
PROGRAMMING A

Fig. 5. Comparison between (a) proposed solution and (b) GPU
of video memory footprint (M) and GPU thread generation tim

2

3

4

5

6

7

8

1

M

400 800 1.2×103 1.6×103 2.0×1030

(b)

(a)

1

1

1

2

2
T

5. CONCLUSIONS

In this paper, we have considered the task of real-time

visualization of detailed 3D scalar fields through isosur-

faces. To overcome the revealed limitations, which hin-

der the real-time construction of polygonal models of

isosurfaces for complex objects, a new GPU-based

method for isosurface extraction using the tessellation

control shader and tessellation evaluation shader has

been proposed. An efficient technology for GPU-based

implementation of marching cubes has been pro-

posed. It is based on the developed method and allows

the time cost of GPU thread generation and video

memory footprint to be significantly reduced as com-

pared to the GPU-based implementation of marching

cubes without tessellation. The proposed solutions

have been implemented in a software complex for the

real-time construction and visualization of polygonal

models of isosurfaces. The developed complex has

been successfully tested on 3D scalar fields of water

saturation in a sample of oil-bearing rock, which were

obtained by numerical modeling. The resulting isosur-

face images have been verified using MATLAB. In the

future, we intend to further develop the proposed

technology to enable the construction and visualiza-

tion of terrain models with negative slopes.

FUNDING

The publication is made within the state task on carrying

out basic scientific researches (GP 14) on topic (project)

“34.9. Virtual environment systems: technologies, methods

and algorithms of mathematical modeling and visualiza-

tion” (0065-2019-0012).
ND COMPUTER SOFTWARE Vol. 46 No. 3 2020

-based implementation without the tessellation shaders in terms
e (T).

6

9

2

5

8

1

4

3

400 800 1.2×103 1.6×103 2.0×1030

(b)

(a)

METHOD TO EXTRACT ISOSURFACES 249
REFERENCES

1. Barladian, B.Kh., Voloboy, A.G., Galaktionov, V.A.,
Knyaz’, V.V., Koverninskii, I.V., Solodelov, Yu.A.,
Frolov, V.A., and Shapiro, L.Z., Efficient implementa-
tion of OpenGL SC for avionics embedded systems,
Program. Comput. Software, 2018, vol. 44, pp. 207–212.

2. Gavrilov, N. and Turlapov, V., General implementation
aspects of the GPU-based volume rendering algorithm,
Sci. Visualization, 2011, vol. 3, no. 1, pp. 19–31.
http://sv-journal.org/2011-1/02/index.html.

3. Timokhin, P. and Mikhaylyuk, M., Compact GPU-
based visualization method for high-resolution result-
ing data of unstable oil displacement simulation, Proc.
29th Int. Conf. Computer Graphics and Vision (Graph-
iCon), Bryansk, 2019, vol. 2485, pp. 4–6.

4. Shakaev, V., Polygonizing volumetric terrains with
sharp features, Tr. 26-i Mezhdunar. Nauchn. Konf.
GraphiCon (Proc. 26th Int. Sci. Conf. GraphiCon),
Nizhny Novgorod, 2016, pp. 364–368.

5. Timokhin, P.Yu., Mikhailyuk, M.V., Vozhegov, E.M.,
and Panteley, K.D., Technology and methods for de-
ferred synthesis of 4K stereo clips for complex dynamic
virtual scenes, Tr. Inst. Sistemnogo Program. Ross. Akad.
Nauk (Proc. Inst. Syst. Program. Russ. Acad. Sci.),
2019, vol. 31, no. 4, pp. 61–72.

6. Segal, M. and Akeley, K., The OpenGL graphics sys-
tem: A Specification, Version 4.6, Core profile, 2006–
2018.
https://www.khronos.org/registry/Open-
GL/specs/gl/glspec46.core.pdf.

7. Parker, S., Shirley, P., Livnat, Y., et al., Interactive ray
tracing for isosurface rendering, Proc. IEEE Visualiza-
tion (VIZ), 1998, pp. 233–238.

8. Hadwiger, M., Sigg, C., Scharsach, H., Buhler, K., and
Gross, M., Real-time ray-casting and advanced shad-
ing of discrete isosurfaces, Comput. Graphics Forum,
2005, vol. 24, no. 3, pp. 303–312.

9. Kim, M., GPU isosurface raycasting of FCC datasets,
Graphical Models, 2013, vol. 75, no. 2, pp. 90–101.

10. Sanzharov, V.V., Gorbonosov, A.I., Frolov, V.A., and
Voloboy, A.G., Examination of the Nvidia RTX, Proc.
29th Int. Conf. Computer Graphics and Vision (Graph-
iCon), 2019, vol. 2485, pp. 7–12.

11. Lorensen, W.E. and Cline, H.E., Marching cubes: A
high resolution 3D surface construction algorithm,
Proc. 14th Annu. Conf. Computer Graphics and Interac-
tive Techniques (SIGGRAPH), Anaheim, 1987, vol. 21,
no. 4, pp. 163–169.

12. Bourke, P., Polygonising a scalar field, 1994.
http://paul-bourke.net/geometry/polygonise.

13. Kobbelt, L., Botsch, M., Schwanecke, U., and Seidel, P.,
Feature sensitive surface extraction from volume data,
Proc. 28th Annu. Conf. Computer Graphics and Interac-
tive Techniques (SIGGRAPH), 2001, pp. 57–66.

14. Ju, T., Losasso, F., Schaefer, S., and Warren, J., Dual
contouring of Hermite data, Proc. ACM Trans. Graphics
(TOG), 2002, vol. 21, no. 3, pp. 339–346.

15. Schmitz, L., Dietrich, C., and Comba, J., Efficient and
high quality contouring of isosurfaces on uniform grids,
Comput. Graphics Image Process., 2009, pp. 64–71.

16. Nielson, G., Dual marching cubes, IEEE Visualization,
2004, pp. 489–496.

17. Schaefer, S. and Warren, J., Dual marching cubes: Pri-
mal contouring of dual grids, Comput. Graphics Forum,
2005, vol. 24, no. 2, pp. 195–201.

18. Ho, C.-C., Wu, F.-C., Chen, B.-Y., Chuang, Y.-Y., and
Ouhyoung, M., Cubical marching squares: Adaptive
feature preserving surface extraction from volume data,
Proc. Eurographics, 2005, vol. 24, no. 3, pp. 537–545.

19. Manson, J. and Schaefer, S., Isosurfaces over simplicial
partitions of multiresolution grids, Comput. Graphics
Forum (Proc. Eurographics), 2010, vol. 29, no. 2, pp.
377–385.

20. De Araújo, B.R., Lopes, D.S., Jepp, P., Jorge, J.A.,
and Wyvill, B., A survey on implicit surface polygoniza-
tion, ACM Computing Surveys, 2015, vol. 47, no. 4,
pp. 1–39.

21. Matsumura, M. and Anjo, K., Accelerated isosurface
polygonization for dynamic volume data using pro-
grammable graphics hardware, Proc. SPIE-IS&T Elec-
tronic Imaging, Visualization and Data Analysis, 2003,
vol. 9, pp. 145–152.

22. Visualization Handbook, Hansen, C. and Johnson, C.,
Eds., Elsevier, 2004.

23. Goetz, F., Junklewitz, T., and Domik, G., Real-time
marching cubes on the vertex shader, Proc. Eurograph-
ics, 2005, pp. 1–4.

24. Tatarchuk, N., Shopf, J., and DeCoro, C., Real-time
isosurface extraction using the GPU programmable ge-
ometry pipeline, Proc. ACM SIGGRAPH, 2007, pp. 122–
137.

25. Dyken, C., Ziegler, G., Theobalt, C., and Seidel, H.-P.,
High-speed marching cubes using histopyramids, Com-
put. Graphics Forum, 2008, vol. 27, no. 8, pp. 2028–2039.

26. Akayev, A.A., Kuzin, A.K., Orlov, S.G., Chetverush-
kin, B.N., Shabrov, N.N., and Iakobovski, M.V., Gen-
eration of isosurface on a large mesh, Proc. IASTED Int.
Conf. Automation, Control, and Information Technology
(ACIT), 2010, pp. 236–240.

27. Chen, J., Jin, X., and Deng, Z., GPU-based polygo-
nization and optimization for implicit surfaces, Visual
Comput., 2015, vol. 31, no. 2, pp. 119–130.

28. Mikhaylyuk, M.V., Timokhin, P.Y., and Maltsev, A.V.,
A method of Earth terrain tessellation on the GPU for
space simulators, Program. Comput. Software, 2017,
vol. 43, pp. 243–249.

29. Bailey, M. and Cunningham, S., Graphics Shaders:
Theory and Practice, CRC Press, 2011, 2nd ed.

30. MATLAB documentation, Volume visualization.
https://www.mathworks.com/help/matlab/ref/isosur-
face.html.

Translated by Yu. Kornienko
PROGRAMMING AND COMPUTER SOFTWARE Vol. 46 No. 3 2020

	1. INTRODUCTION
	2. APPROACHES TO ISOSURFACE EXTRACTION
	3. TECHNOLOGY TO IMPLEMENT MARCHING CUBES ON THE GPU USING TESSELLATION SHADERS
	4. RESULTS
	5. CONCLUSIONS
	REFERENCES

		2020-05-28T01:13:02+0300
	Preflight Ticket Signature

