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Abstract—One of the main problems of mixed reality devices is the lack of universal methods and algorithms
for the visualization of virtual world objects in real space. The key point of natural perception of virtual objects
in the real world is the creation of natural lighting conditions for virtual world objects by light sources located
in the real world, i.e. the formation of natural glares on virtual objects and shadows cast by these objects in
the real world. The paper proposes a method for adequately determining the position of the main light sources
of the real world in mixed reality systems. Modern technologies that combine the capability of forming 2.5D
images created by depth cameras and their subsequent computer processing using neural networks make it
possible to identify real-world objects, recognize their shadows, and correctly restore the light sources that
create these shadows. The results of the proposed method are presented, the accuracy of restoring the posi-
tion of the light sources is estimated, and the visual difference between the image of the scene with the original
light sources and the same scene with the restored parameters of the light sources is demonstrated.
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1. INTRODUCTION
Currently, visual interactive technologies, such as

virtual reality (VR), augmented reality (AR), and
mixed reality (MR), undergo intensive development
[1–3]. A lot of VR, AR, and MR devices [4–6] are
available on the market, and many research groups
[7–9] work on improving the quality of visual percep-
tion, including the restoration of real world light
sources. There are a number of implemented pilot
projects that use these technologies not only in the
entertainment and game industries. The VR, AR, and
MR technologies are used in medicine [10], architec-
ture [11], military science [12], and in other fields.

Note that the MR technology is more complicated
than the VR and AR technologies. While in a VR sys-
tem the user is completely embedded in a virtual world
and does not see the environment and in the AR sys-
tem the user can observe auxiliary elements, such as
navigational data or information messages, in a MR
system the user sees virtual objects embedded in the
real world space. In this case, the user must perceive
the virtual objects as real world objects, and he or she
should not have the visual perception discomfort

caused, e.g., by the unnatural illumination of virtual
objects. For an object to be perceived realistically, a
number of conditions must be satisfied. First, the vir-
tual object surface must have natural optical properties
(reflection, transmission, and refraction, including
proper textures). In most cases, the properties of vir-
tual object surfaces (textures and optical properties)
can be assigned by the computer system (e.g., using a
library of materials) or by the user (on the basis of the
personal experience). For this reason, the assignment
of optical properties is a relatively simple task.

Another important condition for the realistic per-
ception of virtual objects is the physical correction of
their illumination. That is, the reflection spots, bright
and shadowed regions in the image, and virtual objects
must cast shadows corresponding to the illumination
conditions. From the viewpoint of the visual percep-
tion, the reflection spots and the shadows cast by them
must correlate with the reflection spots and shadows
cast by real objects and be not uncomfortable for
observing the mixed image.

In this paper, we propose an efficient method for
restoring the location of real world light sources (LS)
207
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given 2.5D images obtained from depth cameras that
can be integrated into MR systems.

2. ANALYSIS OF RELATED LITERATURE

Earlier, we have considered the restoration of
brightness distribution using the method of three
spheres, which is based on determining the location of
the light source in the scene [13]. In that paper, it was
shown that the proposed method for determining the
light source location on the basis of HDRI analysis
can provide fairly accurate results. However, it has a
number of drawbacks, among which are the following
ones.

1. The method is valid only under the condition
that the reflection properties of the surfaces are close
to Lambert’s law, i.e., if they are perfectly “matt” or
diffusively reflecting, and the light source radiation
pattern is close to Lambert’s law.

2. For a local region in the image, the method
makes it possible to find only one light source.

The method proposed in this paper does not have
such drawbacks. It can deal with arbitrary diffuse sur-
faces (specified by their bidirectional scattering distri-
bution function) and with several light sources.

The restoration of illumination conditions of real-
life scenes is studied by a number of research groups.
In [14], a method based on the high quality evaluation
of illuminance using a convolutional neural network
(CNN) is described. The authors train the CNN using
synthesized images and then use it for the analysis of
real-life images. To guarantee the accuracy and effec-
tiveness of the method, the illuminance evaluation
results obtained by a number of CNN instances are
combined. The experimental results show that this
method gives fairly accurate estimates in the analysis
of real-life images.

In [15], a shadow visualization method using the
lighting generated using images in AR applications is
described. To approximate the illumination results
and shading the environment. The system uses a dome
with light sources of different colors. The color of each
shadow is determined by an area of the environment
behind the light source. As a result, it is possible to
determine the influence of changes in the lighting
conditions on shadow casting by virtual objects.

In [16], a concept of real-time shadow analysis for
AR applications that use shadow volumes is proposed.
This concept was implemented in the prototype shad-
owAReality and demonstrated promising results. The
shadows significantly improve the real scene and pres-
ent a more intuitive and realistic world to the user.
As claimed in [17], the algorithm of shadow volume
analysis can be improved using portals, occlusion, and
view frustum culling techniques; all of them can
improve performance by avoiding the rendering of
unnecessary shadow volumes. Moreover, the shadow
PROGRAMMING A
volume algorithm can be improved using the nVIDIA
Cg shading language [18, 19].

In [20], a method of restoring the illumination and
surface properties from randomly scanned geometry is
proposed. This implies a fast and potentially “noisy”
procedure of scanning unmodified and unstructured
scenes using the standard RGB-D sensor. In distinc-
tion from the procedures for restoring the illumination
parameters, which require thorough preparation in
laboratory conditions, this method works with the
data that can be acquired by users in field conditions.
To obtain a reliable restoring procedure, the authors
segmented the recontructed geometry into surfaces
with uniform properties of the material and calculated
the transport of radiation on these segments. Using
these input data, the authors solved the inverse ren-
dering problem—factorization of illumination and
material properties—using optimization in the form of
spherical harmonics. This makes it possible to take
into account self-shadowing and to restore the reflec-
tive properties of objects. The results thus obtained can
be used to generate a wide range of MR applications,
including the rendering of synthesized objects with the
corresponding illumination in the given scene, and to
generate the image of a scene (or its part) under new
lighting conditions. The reliability of this approach
was demonstrated using real-life and synthesized
images under various lighting conditions, and the
results were compared with the input data.

Restoring the parameters of natural and artificial
illumination from HDRIs was studied in [21–23]. The
proposed methods can find bright light sources that
create reflection spots and shadows. However, for MR
headsets, a more natural approach for finding the
parameters of natural lighting (the Sun position) must
be based on the analysis of the parameters of the sen-
sors that determine the headset’s attitude in space,
date, and time; this approach must associate these
parameters with the sky model parameters and, corre-
spondingly, to the position of the Sun on the sky.

In [24], a method for recovering shadow contours
using the region of interest (ROI) and the analysis of adja-
cent pixels for contrast changes was proposed. As applied
to simple objects and shadows, this method is fairly simple
and reliable. In distinction from this method, convolu-
tional networks make it possible to detect complex shad-
ows in the entire image rather than in the region of
interest only.

The studies just discussed propose effective
approaches to the recovery of lighting distribution in
MR systems, which in some cases gives acceptable
results. However, these approaches perform well if the
scene contains only one light source (the Sun or an
artificial light source) or if the sources are far from the
scene (practically, at infinity). In real life, there are
multiple light sources. In this paper, we propose a
novel approach that helps recover the illumination
ND COMPUTER SOFTWARE  Vol. 46  No. 3  2020
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Fig. 1. The method of recovering the coordinates of light sources on the basis of shadows cast by objects.
parameters in complex scenes with multiple light
sources.

3. METHOD

In this paper, we propose the method that deter-
mines the scene lighting sources on the basis of its
RGBD image. This RGBD image makes it possible to
calculate the coordinates of shadow boundaries and
scene objects casting these shadows. The method is
based on forming and analyzing light rays connecting
the points on the shadow boundary with the object.
The main point on which the proposed method relies
is that, for each point on the shadow boundary, there
exists a point of the object such that the line connect-
ing it with the shadow point hits the light source.
Therefore, the region of the maximum concentration
of rays connecting the points of shadow boundaries
with points on the object boundaries contains the light
source. Moreover, the size of the ray concentration
region can be used to estimate the size of the light
source. This method is able to deal both with the
scenes in which the light source is outside of the field
of view and with the scenes containing multiple light
sources, including extended light sources. It is clear
that this method can only detects the light sources
from which scene objects cast discernible shadows.

Note that the proposed method works with images
and depth maps rather than with 3D scene models.
Such images can be obtained using special devices,
e.g. scanners or LIDARs, which are able to determine
the distance to any image point and do it much faster
than a full 3D model can be created.
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 
Figure 1 illustrates the proposed method of recov-
ering the coordinates of light sources given the coordi-
nates of objects and their shadows.

The block diagram of the algorithm implementing
the proposed method is shown in Fig. 2. It involves the
following steps

1. Getting data from the MR devices—depth map
and the corresponding image of the visible part of the
scene.

2. Using a convolutional neural network, deter-
mine all shadow regions in the image and determine
their boundaries.

3. Use the spatial filter and the Canny filtering
algorithm in the ROI to detect the shadow casting
objects and assign different colors to them. Detect the
boundaries of objects.

4. Save the coordinates of boundaries of objects
and shadows.

5. Form beams of rays. The beams of rays are emit-
ted through the coordinates of shadow boundary
points to the points on the object boundaries. The
object boundary is fired from the points on the shadow
boundary spaced five pixels apart

6. Find the region in which the rays from different
points on the shadow boundary intersect (ray caustics).
We assume that the light source can be in the region that
contains the intersection of at least three rays.

The implementation of this method is graphically
illustrated in Fig. 3; here the rays beginning at different
shadow boundary points and passing through the
same point on the object boundary have the same
color, and the dot shows the coordinates with the
46  No. 3  2020
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Fig. 2. The algorithm implementing the method of recov-
ering the coordinates of light sources.
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Fig. 3. Illustration of the method of restoring the coordi-
nates of light sources.

Source
greatest caustic density, i.e., the most probable loca-
tion of the light source.

To find the coordinates of the object points, we use
the ROI approach relative to the shadow image. If we
assume that the object touches its shadow (which is
the most widespread case), then the algorithm pro-
cesses these ROIs using the Canny filter and subtracts
the known coordinates of shadows to obtain the coor-
dinates of the object. The Canny filter also includes
the Gaussian smoother for finding the gradients and
removing the noise.

The use of the approach just described makes it
possible to separate the shadow cast by an object from
the object itself, and the use of the NumPy library
makes it possible to obtain the coordinates of all non-
zero pixels separately for the shadow and the object.

4. IMPLEMENTATION

The proposed method uses the fully convolutional
neural network, which allows to detect in the original
scene image objects and shadows cast by them, and it
also uses algorithms that can restore the light sources by
analyzing 2.5D images of objects and their shadows.
As the training data set, we used the set SBU_Shadow
[25], which consists of original images and their masks
in which the shadows are marked by white and the
unshaded regions are black.
PROGRAMMING A
We used the U-Net architecture of the fully convo-
lutional network because it is best suited for dealing
with the binary classification.

This architecture includes four blocks of downs-
ample layers for classification learning, four blocks of
upsample layers for obtaining the output array of the
same dimension as at the input, and bottleneck blocks
with 256 values of the depth map for deeper network
learning.

The U-NET architecture is shown in Fig. 4.
An example of a pair of images from this set is

shown in Fig. 5.
The training data set consists of 4085 pairs of

images, and the test set consists of 638 images. Only six
epochs were needed for the neural network to converge,
which took about 3 minutes on GeForce 1080Ti. The
speed of the learned neural network is 28 ms.

We used sigmoid as the layer activation function
because it is nonlinear in nature, and any combination
of such functions is nonlinear as well. Another advan-
tage of sigmoid is its smoothness and, in distinction
from the step function, it makes it possible to use ana-
log activation. Moreover, the sigmoid function has a
smooth gradient. Thus, sigmoid seems to be well
suited for classification problems. It tries to guide val-
ues to one of the curve sides (e.g., to the upper limit at
х = 1 and to the lower limit at х = –1). Such a behavior
helps find clear boundaries in predictions. A drawback
of this function is that, in the vicinity of the sigmoid
endpoints, the values of Y weakly respond to variations
of X. This means that the gradient in these regions is
small, which, in turn, involves difficulties with the
vanishing gradient.

Figure 6 gives a graphical representation of the his-
tory of the neural network learning, where the epochs
are plotted on the horizontal axis and the decrease of
ND COMPUTER SOFTWARE  Vol. 46  No. 3  2020
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Fig. 4. U-Net architecture of the neural network.
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losses is plotted on the vertical axis. This graph shows
both the training data (loss) and the validation data
(val_loss). The task of the neural network is to make
the error of the objective function as small as possible,
which is achieved at epoch 5 with the values of loss =
0.2093 and val_loss = 0.2179. In this work, we used
binary_crossentropy as the error function, and
RMSprop with the values lr = 1e–4 and decay = 1e–6
was used as the optimization (weight updating) function.

The accuracy of classification on validation data
was 92%, and on the test data it was 94% in the IoU
(intersection over union) metric. It is seen in Fig. 7
that the results produced by the neural network are
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 

Fig. 5. Example of a pair of images used to learn the neural
network.
close to the ground truth. The images on the left in
Fig. 7 are the original images fed to the input of the
neural network, the ground truth images are shown on
the right, and the predictions of the neural network are
shown in the middle.

After the regions containing shadows have been deter-
mined, the Canny operator is applied to the ROI of this
domain. Using the coordinates of the region containing
the shadow, all interior and exterior pixels are removed,
and only the contours of the object remain.

The result produced by the Canny operator is
shown in Fig. 8.

Given the coordinates of the object and its shadow,
we emit rays connecting the points on the shadow
contour with the points on the object contour. This
algorithm was outlined in Section 2 of this paper. The
function that stores the coordinates of all emitted rays
is implemented as a NumPy array. The library NumPy
46  No. 3  2020

Fig. 6. History of the neural network learning.
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Fig. 7. Results produced by neural network.
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was chosen because it provides convenient and effi-
cient means for dealing with arrays. Next, for the
groups of rays emitted from different shadow bound-
ary points, the regions of caustics with the maximum
concentration of rays are found. These regions contain
the light sources that illuminate the scene.

The proposed method makes it possible to deter-
mine the light sources in a specified system of coordi-
nates. In a simple case, the system of coordinates is
formed relative to the current image, i.e., one axis is
directed to the image center and the two others are
directed along the image axes. The use of this method
in combination with a 3D scanner or an MR headset
that determines its location in space makes it possible
to determine the coordinates of the light sources in the
space of the scene.
PROGRAMMING A
Figure 9 shows examples of the algorithm opera-
tion for five real-life images. From left to right, there
are the original images and intermediate results pro-
duced by the algorithms determining the coordinates
of objects and their shadows in the original images.
This figure contains the original images, the images
processed by the Canny filter, the images with shad-
ows, and the images with objects. Having all these
images at our disposal, we can determine the coordi-
nates of points on the objects and their shadows, then con-
struct rays connecting the shadow and object boundaries,
and determine the light sources. The scenes are numbered
from the first one on top to the fifth on the bottom.

Figure 10 shows the results obtained using the pro-
posed algorithm for determining the coordinates of
light sources by analyzing the ray traces.
ND COMPUTER SOFTWARE  Vol. 46  No. 3  2020
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Fig. 8. Result produced by the Canny operator for contour enhancement.

120

80

60

40

100

20

0

140120100806040200

Original Image

120

80

60

40

100

20

0

140120100806040200

Edge Image
The result of the algorithm operation for the third
scene is illustrated in Fig. 11. The original image is
shown on the left, and the result—the region of ray
intersection—is on the right. The absolute error in
determining the position of the the light source is
0.109 m (37 screen pixels), the relative error is 13.9%,
and the angular error of determining the orientation of
the light source relative to the center of the illuminated
object is 0.0606 rad.

Table 1 presents the recovered coordinates of the
light sources for the five scenes described above. The
errors of recovering the light source coordinates are
shown in absolute form as the deviation of the center
of the original light source from the center of the
recovered light source (in meters in the space of the
scene and in pixels in the screen space); the difference
between the directions from the object center to the
original light source and from this center to the recov-
ered light source is given in radians. In addition, the
relative error of recovering the light source as the dif-
ference between the centers of the original and recov-
ered light sources normalized by the distance from the
object center to the original light source is shown on a
percentage basis.
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 

Table 1. Accuracy of finding the light sources

Scene no. Absolute error
(in pixels)

Absolu
(in m

1 12 0.0

2 26 0.0

3 37 0.1

4 42 0.1

5 19 0.0
The size of the original images is 622 × 415 pixels.
The size of ROIs in the images is 224 × 224 pixels,
which enables us to feed them at the input of the neural
network and classify the shadow regions.

All operations were performed on a computer with
a Ryzen7-1700 processor and the graphics controller
GTX 1080Ti. The time taken by detecting the shadow
on the image was 32 ms, the object detection took 25 ms,
and determining the coordinates of the light source
center by finding the region of ray intersection took
875 ms.

For this study, we used Python and the libraries
OpenCV, Keras, Numpy, and Scikit-learn.

5. CONCLUSIONS

A method for determining the coordinates of the
light source centers is proposed; it is shown that it can
be suitable for augmented reality systems and that it
can determine the coordinates of light sources in the
scene-related system of coordinates. The convolu-
tional neural network with the U-Net architecture was
used. After training this network, the classification
accuracy turned out to be 94%. The architecture of
46  No. 3  2020

te error
eters) Relative error Angular error

(in radians)

36 2.58% 0.0004

77 8.1% 0.0084

09 13.9% 0.0606

24 13.6% 0.0412

56 6.7% 0.0334
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Fig. 9. Examples of determining the coordinates of boundaries of objects and shadows cast by them.
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Fig. 10. Results obtained using the proposed algorithm for determining the coordinates of light sources (scenes 1–5 from left to right).
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Fig. 11. The region of ray intersection relative to the original light source.

Region of ray intersection
this network is suitable for binary data, and it can rec-
ognize complex shadows in images. The performance
of the neural network makes it possible to use it in real-
time systems, and the speed of recovering the light
source parameters by the ray method also will allow to
use it in real-time systems after implementing it on a
GPU. The coordinates of light source centers were in
most cases determined sufficiently accurately for the
natural visual perception of the illumination of virtual
images by real world light sources. In future, we plan
to improve the accuracy of determining the coordi-
nates of light sources, especially in the case of complex
illumination, and implement the estimation of the size
and shape of extended light sources.
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