
ISSN 0361-7688, Programming and Computer Software, 2020, Vol. 46, No. 3, pp. 223–232. © Pleiades Publishing, Ltd., 2020.
Russian Text © The Author(s), 2020, published in Programmirovanie, 2020, Vol. 46, No. 3.
Visualization of Large Scenes
with Deterministic Dynamics

V. A. Semenova,b,c,*, V. N. Shutkina,**, V. A. Zolotova,***,
S. V. Morozova,d,****, and V. I. Gonakhchyana,*****

a Ivannikov Institute for System Programming, Russian Academy of Sciences,
ul. Solzhenitsyna 25, Moscow, 109004 Russia

b Moscow Institute of Physics and Technology (National Research University),
 Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141701 Russia

c National Research University Higher School of Economics,
ul. Myasnitskaya 20, Moscow, 101000 Russia

d Moscow State University, Moscow, 119991 Russia
*e-mail: sem@ispras.ru

**e-mail: v451ly@ispras.ru
***e-mail: vladislav.zolotov@ispras.ru

****e-mail: serg@ispras.ru
*****e-mail: pusheax@ispras.ru

Received December 20, 2019; revised January 9, 2020; accepted January 19, 2020

Abstract—Visualization of large dynamic scenes is a challenging computer graphics problem. There are many
approaches to solving this problem: frustum culling, occlusion culling, geometry simplification, and render-
ing optimization. One of the effective methods is the levels of detail (LOD) for scene objects. For large scenes,
the hierarchical LOD (HLOD), whereby the levels of detail are created for large groups of objects, has proven
efficient. However, this method faces certain difficulties when processing dynamic scenes. In this paper, we
propose a method for visualizing scenes with deterministic dynamics that is based on hierarchical dynamic
levels of detail (HDLOD). We also describe methods for generating HDLOD clusters and their visualization.
Results of computational experiments conducted confirm high efficiency and practical potential of the pro-
posed method.

DOI: 10.1134/S036176882003007X

1. INTRODUCTION

Visualization of large 3D scenes remains a chal-
lenging computer graphics problem. Even though the
capabilities of graphics hardware grow and new meth-
ods and algorithms are developed, the realistic or
authentic visualization of complex scenes remains an
unattainable goal for many computer graphics appli-
cations. Many industrial software packages, e.g.,
CAD/CAE/CAM, BIM, and GIS, are critical with
respect to the complexity of scenes and detalization of
individual objects, because these packages involve a
certain interactive model of human–machine interac-
tion and enable efficient scene rendering on user’s
hardware. Nowadays, scenes often include thousands
or millions of polygon models created in 3D modeling
applications or obtained by scanning real-world objects.
Moreover, scene objects can exhibit dynamic behavior
given by deterministic or random events of their appear-
ance, disappearance, or movement in a scene.

There are many approaches to solving this prob-
lem: frustum culling, occlusion culling, geometry sim-
plification, and rendering optimization. Currently,
geometry simplification is one of the most efficient
approaches. It has one goal: reducing the number of
polygons while preserving, to the extent possible, the
main features of the original model. Geometry simpli-
fication methods differ in their basic decimation oper-
ators (vertex removal, edge collapse, vertex clustering,
etc.), error metrics, and topology requirements to a
polygonal model. More information can be found in
[1]. The method described in [2] should be especially
noted. Owing to edge collapse and quadric error metric,
this method demonstrated good performance and high
quality of simplification. In addition, this method can
be employed for models that are not simply connected
2D manifolds.

One of the promising methods for visualizing com-
plex scenes is the levels of detail (LOD) for scene
objects. This line of research in computer graphics has
223

224 SEMENOV et al.
a long history, which began with the introduction of
the LOD concept by James Clark in 1976. This con-
cept implies that, for each scene object, a number of its
representations with different degrees of detail are cre-
ated. When visualizing a scene, suitable levels of detail
are selected in such a way that more accurate represen-
tations are used for the objects close to the viewer,
while more rough ones are used for distant objects.

Presently, to visualize large scenes, hierarchical levels
of detail (HLOD) are widely employed [3, 4]. In contrast
to classic LOD, HLOD provide simplified representa-
tions not only for individual objects but also for groups of
objects organized in multi-level hierarchies. Instead of
selecting a suitable level of detail for each object, it
becomes possible to process groups of objects. This
provides a higher degree of simplification and enables
a reduction in the time it takes to traverse the scene
tree, as well as reduction in the number of draw calls.

However, HLOD is difficult to use for arbitrary
dynamic scenes. Each time objects appear, disappear,
or move in the scene, their representations must be
recomputed. The time required for the recomputation
generally exceeds the time required for rendering the
scene, which makes HLOD useless for scenes with a
large number of dynamic objects. Known attempts to
optimize the recomputation process by performing
incremental updates executed in parallel were not suc-
cessful [3].

In this paper, we discuss dynamic scenes with deter-
ministic events, which determine the appearance, dis-
appearance, and movement of objects in the scene. In
this case, determinism is understood as the presence of
a priori knowledge about when and with what objects
the events occur. For effective visualization of these
scenes, we propose a new method, which is called hier-
archical dynamic levels of detail (HDLOD). This
method creates hierarchical levels of detail that do not
require recomputation when animating a dynamic
scene. Our method differs fundamentally from the
LOD methods used to render scenes with typical geo-
metric models and predefined behavior patterns, e.g.,
scenes that simulate pedestrian flows [5].

The HDLOD method does not preclude the use of
various rendering methods, including frustum culling
and occlusion culling [6]. Having loaded a simplified
representation of the scene in video memory, popular
methods for visibility checks on the GPU can be
employed [7–9]. This paper describes algorithms for the
generation of HDLOD clusters and their visualization by
using various rendering methods and presents results of
our computational experiments, which confirm the effi-
ciency and practical potential of the method proposed.

2. HIERARCHICAL DYNAMIC
LEVELS OF DETAIL

Suppose that a scene S(t) is defined in a 3D Euclidean
space E3 on a simulation time interval t ∈ [0, T] and is
PROGRAMMING A
represented as a linear list of objects s(gs, .
Each object has an invariable geometric representation

. The presence of the objects in the scene is deter-
mined by their visibility functions : in
such a way that the function is one if the object s
appears in the scene at the instant t and it is zero if it
does not. The position of the object is determined by
its position function ps(t) : , where M is a
set of 4 × 4 matrices. It should be noted that the move-
ment of objects can be defined in many different ways,
e.g., by using a set of key points at which the position
and orientation of an object are determined and the
time when the object appears at a certain key point is
specified. The position of the object at each instant
can be determined by interpolating its positions at the
nearest key points. However, for rendering, the posi-
tion of the object is typically specified using a model
transformation matrix. Moreover, any representation
of the object’s position can be expressed in terms of a
matrix. Hence, without loss of generality, it can be
assumed that, at each instant , the position of
the object can be represented by a certain matrix.

Figure 1 shows an example of a dynamic scene that
simulates the construction of a skyscraper in accordance
with a predefined design project. As simulation time
goes, its structural elements and construction machin-
ery are installed at the construction site or removed from
it. These appearances and disappearances can be ren-
dered using the visibility functions shown in Fig. 2. The
landscape elements do not change throughout the
entire simulation period. In addition, during the con-
struction, various machinery moves all over the con-
struction site (see Fig. 3).

Hereinafter, we assume that the geometric represen-
tation of the scene objects is given by a set of triangles.
We do not make any assumptions about the topology of
the objects’ boundary representations and do not
require the boundary representations to be connected
or manifolds, because, for rendering, only the so-
called polygon soup is often provided without guaran-
tees of any topological properties.

In terms of dynamic behavior, all objects in the
scene can be divided into three classes.

The class of static objects includes the objects whose
visibility and position do not change throughout the entire
simulation period, i.e., = 1, ps(t) = I,
where I is the identity matrix.

The class of pseudo-dynamic objects consists of the
objects that appear and disappear without changing
their positions: = I, but
such that .

Finally, the class of dynamic objects implies that
both the visibility function and position function of
the object vary with time: such that

, .

∈v),s sp S

⊆ 3
sg E

v ()s t →[0,] {0,1}T
v ()s t

→[0,]T M

∈ [0,]t T

∀ ∈ v[0,] ()st T t

[] ()∀ ∈ 0, st T p t []∃ ∈1 2, 0,t t T
≠v v1 2() ()s st t

∃ ∈1 2 3 4, , , [0,]t t t t T
≠v v1 2() ()s st t ≠3 4() ()s sp t p t
ND COMPUTER SOFTWARE Vol. 46 No. 3 2020

VISUALIZATION OF LARGE SCENES 225

Fig. 1. Example of a dynamic scene that simulates the construction of a skyscraper.

Fig. 2. Some typical visibility functions.

Static Absent Reappearing

Temporary Skipped

Redisappearing

Appearing Disappearing
We refer to the hierarchical dynamic levels of detail
(HDLOD) as a tree of clusters C(G, V, P) =
represented by a set of clusters with
assigned geometric representations gc, visibility func-
tions , and position functions pc(t) :

. In contrast to the visibility functions of
objects , which take values 0 or 1, the visibility
functions of clusters take values on the interval
from 0 to 1, thus using the concept of partial truth.
Indeed, since some objects in a cluster can appear in
the scene at some instant and other objects can disap-
pear at the same instant, it is impossible to make an
unambiguous decision about the appearance of the
whole cluster. For the clusters, an agglomeration rela-
tion is also defined in such a way that if and

v ≺{ (, ,), }c c cc g p
v(, ,)c c cc g p

() [] []→v : 0, 0,1c t T
→[0,]T M
v ()s t

v ()c t

≺ ≺' c c
PROGRAMMING AND COMPUTER SOFTWARE Vol.
only if the cluster is a direct descendant (in the
tree) of the cluster c ∈ C.

The first step of HDLOD generation is the classifica-
tion of the scene objects into static, pseudo-dynamic,
and dynamic. Each class uses its own cluster generation
method.

Static and pseudo-dynamic cluster trees have sim-
ilar structures: the leaves of the trees are strictly
defined individual objects. Their internal nodes are
clusters that aggregate the geometry (in the pseudo-
dynamic case, also visibility) of the corresponding
subtrees. Moreover, as the level in the tree rises, the
geometry and visibility function of the clusters become
simpler with the root of the tree being the simplest repre-
sentation of a large group of objects.

∈'c C
46 No. 3 2020

226 SEMENOV et al.

Fig. 3. Example of dynamic objects in the scene (construction machinery).
Dynamic objects can have different motion pat-
terns and different instants of appearance and disap-
pearance. This significantly complicates the analysis
and hinders their effective clustering. That is why, for
each dynamic object, an individual cluster is created.
In typical scenes, the same model can be used to rep-
resent different objects. For instance, several excavators
that have the same geometric representation, being
instances of the same general model of an excavator,
can move all over the construction site. This is taken
into account when generating clusters for dynamic
objects: they can refer to the same geometric represen-
tation. It should be noted that, for clusters of dynamic
objects, parent clusters can be additionally generated,
which contain simplified geometry, simplified visibility
function, and simplified position function.

Finally, all root nodes in the trees of static, pseudo-
dynamic, and dynamic clusters are attached to a vir-
tual node to form a single HDLOD tree. Figure 4
shows an example of this tree.

In addition to geometric and behavioral represen-
tations, each cluster c ∈ C stores the following derived
attributes: bounding box bc, size or power , as well as
spatial error and time error defined below. In fact,
these attributes are evaluated when generating hierar-
chical dynamic levels of detail and are used to display
them. Thus, each HDLOD cluster is represented as a
tuple .

The spatial error can be defined as an absolute error
that specifies the maximum permissible local deviation
of the geometric representation of the cluster c from the
aggregated representation of objects :

cw
εc γc

()ε γv, , , , , ,c c c c c c cc g p b w

εc

≺ ≺ ≺.. ' o c c
PROGRAMMING A
Here, the error is determined recursively using
the Hausdorff metric DH(A, B), which is the longest
distance from a point of one set to the nearest point of
another set:

where A and B are closed sets of points and D(x, y) is
the metric’s function in the Euclidean space.

The time error is defined for pseudo-dynamic
clusters as the maximum deviation of the cluster’s vis-
ibility function from the visibility functions of the
original objects:

where the distance is computed using a
functional metric:

These parameters are used to estimate the devia-
tion of geometry and proximity of temporal behaviors.
The spatial errors are computed when simplifying the
geometry of the cluster. The temporal errors can be
evaluated together with the cluster visibility function.
To evaluate the cluster visibility function, the follow-
ing formula is used:

()

ε = ε +

≺

≺

∪' ''
'

max , .c c H c cc c
c c

D g g

εc

() ()
∈ ∈∈ ∈

=(,) max max min , ,max min ,{ },H y B x Ax A y B
D A B D x y D x y

γc

()()γ = γ + v v
≺

' ''
max , ,c c V c cc c

D

v v(,)V A BD

() = −v v v v

0

1(), () () () .
T

V A B A BD t t t t dt
T

ND COMPUTER SOFTWARE Vol. 46 No. 3 2020

VISUALIZATION OF LARGE SCENES 227

Fig. 4. Example of the HDLOD tree.

HDLOD

Static

Pseudo-dynamic

Dynamic

c15(gс15, vс15, I)

c10(gs10, vs10, ps10)

c12(g2, vc12, pc12)

c9(g1, vs9, ps9)

c8(g1, vs8, ps8)

c11(g2, vc11, pc11)

g2

g1

c13(gс13, vс13, I)

c12(gс12, 1, I)

c11(gс11, 1, I)

c1(gs1, 1, I)

c2(gs2, 1, I)

c3(gs3, 1, I)

c4(gs4, vs4, I) c5(gs5, vs5, I)

c6(gs6, vs6, I) c7(gs7, vs7, I)

c14(gс14, vс14, I)
The use of the weighted sums allows us to better
take into account the behavior of significant objects
and adequately render the behavior of the cluster. The
function expresses the weighted number of visible
objects in the cluster at the instant t. If it takes a value
of one, then all objects of the cluster are present in the
scene at the instant t; if it takes a zero value, then they
are absent in the scene at the instant t.

For each cluster, it must be decided if to display it,
ignore it, or use its more accurate child representations.
For this purpose, a time-dependent spatial error is
computed (spatial error caused by both geometric and
temporal simplifications):

When rendering the scene, the cluster tree is tra-
versed. At each node, cluster attributes are analyzed to
determine if the further traversal of the subtree is
required. It is checked whether the cluster is present in

=

v

v
≺

≺

' '
'

'
'

()
() .

c c
c c

c

c
c c

w t
t

w

v ()c t

δ ()c t

()

()
()

()() ()

() ()

=
ε =

ε + − ≤ <δ =

ε + < <

v

v

v v

v v

≺

≺

'
'

'
'

0, for 0
, for 1

11 , for 1
2

1, for 0 .
2

c

c c

c c c cc
c c

c c c c
c c

t
t

t w tt

t w t
PROGRAMMING AND COMPUTER SOFTWARE Vol.
the scene at a given simulation instant (),
whether the bounding box bc of the cluster falls within
the visibility cone, and whether the cluster error
is adequate to provide a desired quality. If all condi-
tions are met, the representation of the cluster is
immediately selected for displaying. In this case, the
entire subtree can be excluded from the traversal. If the
third condition is not satisfied, then the traversal of the
cluster subtree continues and its child nodes also
undergo the same checks until the leaf nodes with
strictly defined scene objects are reached. The pseudo-
code of the HDLOD visualization algorithm is pre-
sented in Appendix A.

3. HDLOD GENERATION
The hierarchical dynamic levels of detail can be

generated automatically using the proposed method.
The first step of the HDLOD generation is the classifi-
cation of the scene objects into static, pseudo-dynamic,
and dynamic ones. Each class uses its own cluster gen-
eration method.

First, we consider the method for processing
pseudo-dynamic objects as the most complex ones.
This method uses hierarchical (bottom-up) clustering
and multi-level accuracy control. It begins with indi-
vidual objects and sequentially groups them into larger
clusters until a desired number of levels is reached.
The root clusters can be further simplified if the scene
needs to be displayed as part of a more complex com-
position. The clustering should be carried out with

>v () 0.5c t

δ ()c t
46 No. 3 2020

228 SEMENOV et al.

Fig. 5. Main steps of scene object rendering.

Tree
traversal

Writing
and sending
instructions

Vertex
transformation

Rasterizing
Fragment

color
computation

Displaying

Composition

Table 1. Количество объектов и треугольников в сцене

Static Pseudo-
dynamic Dynamic Total

Objects 498 40 010 15 649 56 157
Triangles 66 784 2 879 506 1 313 767 4 260 057
rigid accuracy control: the resulting tree of clusters must
satisfy many requirements, including the expected num-
ber of levels of detail, degrees of nodes, spatial density
and overlap of child clusters, their temporal proximity,
and reduction in the complexity of clusters as the level
of the tree rises.

Unfortunately, classical clustering methods cannot
be directly applied to the problems of the HDLOD
generation. The corresponding requirements are quite
complex and may contradict each other. This compli-
cates the mathematical formalization of the metric
functions and connectivity criteria required for clus-
tering methods [10]. The unacceptably high computa-
tional complexity of these methods is another factor
preventing the adaptation of the classical results. For
instance, a naive implementation of agglomerative clus-

tering has the time complexity of and memory
consumption of O(n3), which makes it inapplicable
even to fairly simple scenes. Faster hierarchical cluster-
ing with the time complexity of O(n2) and memory con-
sumption of O(n2) is also not suitable for solving the
problems under consideration [10].

Thus, we use another approach to generate the tree.
The clustering process is divided into steps, at each of
which the clusters generated must satisfy certain accuracy
requirements. As new steps are made, these requirements
are weakened in such a way as to guarantee the comple-
tion of the process after a certain number of steps equal to
the number of levels of detail .

At each step of the method l (), an attempt is
made to form new clusters with sizes and
errors and . For this purpose, the
threshold values w(l), , and are selected in such
a way that they monotonically increase with rising level.
For instance, we can suggest the following values:

3()O n

L

≤ ≤1 l L
()≤cw w l

()ε ≤ εc l ()γ ≤ γc l
()ε l ()γ l
PROGRAMMING A
where W is the size of the entire scene.
At each step, the method compiles a list of active

clusters to be used at the next step. Initially, the list of
active clusters includes all original objects. At each
step of the method, some candidates among the active
clusters are selected using Hilbert space-filling curves
[11]. This allows us, on the one hand, to select candi-
dates in the entire volume of the scene and, on the
other hand, to localize them in densely filled regions.
Next, for each candidate, its neighbors are found. The
neighbors must satisfy conditions for spatial and tem-
poral proximity and also guarantee the generation of a
parent cluster with a desired accuracy. A new cluster is
formed from the candidate and its neighbors, which
become its children. The geometric representation of the
new cluster is obtained by combining the representations
of the children. It should be simplified to achieve the
desired error , e.g., by using the algorithm men-
tioned above [2]. The visibility function of the new cluster
is determined by evaluating the weighted visibility func-
tion described above. The new cluster is added to
the list of active clusters, while its children are
removed from it. If, for the current candidate, no suit-
able neighbors are found, then it is excluded from the
analysis at the current step; however, it participates at
the following steps. The pseudocode of the algorithm
described above is presented in Appendix B.

Using spatial indexing, the clustering process can
be carried out in , where n is the number of
scene objects. As compared to the classical clustering
methods mentioned above, this result is much more
adequate for large scenes. To quickly find the neigh-
bors, various index structures can be employed [11]; in
particular, regular dynamic octrees [12] perform well
for pseudo-dynamic scenes. In our implementation,
we use ordering with respect to each coordinate.

For static objects, the same clustering method is
employed; in this case, however, only the spatial
aspect is taken into account. Thus, static objects can
be regarded as a special case of pseudo-dynamic ones.

For each dynamic object, an individual cluster is
generated. In this case, the geometric representations
of the objects are analyzed. If there are objects with the
same representation, then the representation of their

= ε = =

γ =

() , () 0.01 0.01 (),

() 0.25 ,

l lw l W l W w l
L L

ll T
L

()ε ≤ εc l

v ()c t

()logO n n
ND COMPUTER SOFTWARE Vol. 46 No. 3 2020

VISUALIZATION OF LARGE SCENES 229

Table 2. Frame rendering time (in milliseconds) when visualizing the skyscraper construction scene

1/1 of screen 1/4 of screen 1/16 of screen Without HDLOD

Beginning 3.81 3.58 3.29 16.9
1/3 of period 17.47 17.31 15.59 35.2
2/3 of period 8.5 7.87 7.53 54.22
End 3.72 3.58 3.25 61.56
Animation 9.59 8.51 7.94 47.43
clusters is set by referring to this representation. This
makes it possible to avoid data duplication.

4. RENDERING

The efficiency of the HDLOD cluster visualization
depends on the rendering methods employed. In this
paper, we propose two subsystems operating in paral-
lel. The first one determines visible clusters (visible
surface determination), while the second one uploads
polygonal representations of the clusters into video
memory and sends instructions to the GPU by using
the OpenGL programming interface.

When visualizing the HDLOD tree, it is traversed
with cluster visibility checks at the current simulation
instant from a specified camera position, taking into
account the accuracy of the cluster’s polygonal repre-
sentation. For the clusters that passed the checks,
messages about their visibility are sent to the second
subsystem. Having received the message, the second
subsystem sends a triangulated representation of the
cluster and its rendering instruction to the GPU. Once
all necessary data are buffered in the GPU memory, a
draw call is made to run the execution of the rendering
instructions. The execution of each instruction con-
sists of the following steps: transforming the vertices
(vertex shader), rasterizing the triangles, computing
the color of the fragments (fragment shader), compos-
ing, and displaying (see Fig. 5).

The HDLOD method reduces the time required to
complete the whole process described above. First, the
number of triangles in the geometric representations
of the clusters is reduced, which accelerates data trans-
fer to GPU memory and reduces the time of vertex
transformation. Second, the total number of rendering
instructions is reduced, thus reducing the cost of their
processing.

When processing a large number of instructions,
CPU resources are used to validate and store the cur-
rent state of the graphics pipeline. To reduce the over-
heads, the OpenGL extension NV_Command_List
can be employed, which makes it possible to pre-gen-
erate an array of rendering instructions together with
the current state of the pipeline [13]. This extension is
quite efficient but has limited support on modern
graphics hardware.
PROGRAMMING AND COMPUTER SOFTWARE Vol.
The software implementation of the HDLOD tree
visualization method uses the OpenGL procedure Mul-
tiDrawElementsIndirect, which allows the array of buff-
ered instructions to be executed in a single call [14].
However, this requires arrays of instructions, transfor-
mation matrices, and materials. To reduce the cost of
buffering and removing invisible surfaces, the spatial
decomposition method based on single reference octrees
is employed [15]. Each octant is associated with the cor-
responding arrays that are supported in the state consis-
tent with the HDLOD tree and are updated as clusters
appear, disappear, or move. If the cluster moves within
an octant, then its matrix is updated in the corresponding
array. If the cluster moves to another octant, then the
arrays of both the octants are updated.

5. COMPUTATIONAL EXPERIMENTS
To test the introduced concept of HDLOD and our

method for automatic HDLOD generation and visual-
ization, we carried out a series of computational exper-
iments. The times of frame rendering when navigating
the scene at fixed simulation instants and the average
times of frame rendering for animation throughout the
entire simulation period were measured. For testing, we
selected the dynamic scene of skyscraper construction
(Fig. 1). This scene is an example of a typical project
in the construction industry: it has a static environ-
ment, a pseudo-dynamic model of a skyscraper under
construction (the structural elements of which are
installed in accordance with a certain design project),
and dynamic machinery used for construction. All scene
objects are represented by polygonal meshes. Table 1
shows parameters of the scene.

To estimate the effectiveness of HDLOD, the scene
was visualized for various camera positions. In the first
position, the camera was placed at the closest range pos-
sible to make the scene fully visible. In the other posi-
tions, the camera was placed at such distances that the
scene occupied one fourth and one sixteenth of the
screen. The time stamps were selected at the begin-
ning, at the end, at one third, and at two thirds of the
simulation period. The camera positions at which the
scene was fully visible on the screen were selected so as
to exclude the effect of frustum culling. The computa-
tional experiments were conducted on a computer
with Intel Core i7-4790 (3.6 GHz), 16 GB RAM, and
GeForce GTX 750 Ti (2 GB).
46 No. 3 2020

230 SEMENOV et al.
Table 2 shows the performance measurements
taken during the experiments. The last column con-
tains results obtained when rendering the scene with-
out using simplified representations, while the first
three columns contain results obtained using the
HDLOD tree. It can be seen that the use of HDLOD
significantly improves performance. As the camera
zooms out, the desired effect grows because increas-
ingly large (and simple) clusters are selected to visual-
ize the scene. This dependence is observed both when
navigating the static scenes fixed at the selected
instants and when animating the scene. In this experi-
ment, the levels of detail for dynamic objects were not
used. However, when simplifications for dynamic
objects are applied, the growth in performance as the
distance to the scene increases becomes more signifi-
cant. With increasing complexity of the scene, by the
end of the simulation period (the skyscraper under
construction), we can observe an increase in frame-
time when visualizing the scene without HDLOD.
However, it can be seen that HDLOD shows the worst
performance for the time stamp of 1/3 of the simula-
tion period. This is due to the fact that, at this point, a
large number of changes occur in the scene and, for
many clusters, their visibility functions fc(t) are close to
0.5, while their time-dependent spatial errors δc(t) are

very large, which forces the use of child representa-
tions. However, the performance remains higher than
that without HDLOD.

A similar series of experiments were carried out for
some other problems associated with visual simulation
of construction projects, urban infrastructure pro-
grams, and engineering processes. The experimental
results also confirmed the high efficiency and practical
potential of the proposed method.

6. CONCLUSIONS
In this paper, we have proposed a method for visu-

alizing scenes with deterministic dynamics that is
based on hierarchical dynamic levels of detail
(HDLOD). In contrast to popular LOD methods and
their hierarchical extensions (HLOD), the proposed
method is applicable to a wide class of large dynamic
scenes. We have also described algorithms for the
HDLOD tree generation and visualization at a speci-
fied accuracy. The results of the computational exper-
iments have confirmed the high efficiency and practi-
cal potential of the proposed approach. Our further
research will be devoted to analyzing algorithmic vari-
ants of the proposed method, as well as its industrial
application.

APPENDIX A:
PSEUDOCODE OF THE HDLOD VISUALIZATION ALGORITHM

PROCEDURE DISPLAY_CLUSTER(CLUSTER n, VIEW v, TIME t, RESOLUTION r)
{

IF (VALUE_OF(BEHAVIOR_FUNCTION(n), t) EQUAL 0)
 RETURN

ELSE IF (IS_OUTSIDE_FRUSTUM(BOUNDING_BOX(n), v))
 RETURN

ELSE IF (VALUE_OF(DELTA_FUNCTION(n), t) / DISTANCE(n, v) < r)
{

 IF (VALUE_OF(BEHAVIOR_FUNCTION(n), t) >= 0.5)
 RENDER(GEOMETRY(n), v))
 ELSE
 RETURN

}
ELSE
{

 SET_OF_CLUSTER children = CHILDREN_NODES(n)
 FOR_EACH (CLUSTER child IN children)
 DISPLAY_CLUSTER(child, v, t, r)

}
}

PROGRAMMING AND COMPUTER SOFTWARE Vol. 46 No. 3 2020

VISUALIZATION OF LARGE SCENES 231
APPENDIX B:
PSEUDOCODE OF THE ALGORITHM FOR CLUSTERING PSEUDO-DYNAMIC OBJECTS

PROCEDURE GENERATE_HDLOD(SCENE scene, INTEGER levels, HDLOD tree)
{

SET_OF_CLUSTER active = NULL, next = NULL
FOR_EACH (OBJECT object IN OBJECTS(scene))
{

 CLUSTER cluster = FORM_CLUSTER(object)
 ADD_TO(cluster, tree)
 ADD_TO(cluster, active)
 }

FOR_EACH (INTEGER step = 1 TO levels)
 {
 REAL epsilon, gamma, w
 COMPUTE_LEVEL_THRESHOLDS(scene, levels, step, epsilon, gamma, w)
 WHILE (NOT_EMPTY(active))
 {
 CLUSTER representative = SELECT_REPRESENTATIVE(active)
 SET_OF_CLUSTER neighbors = FIND_NEIGHBORS(active,
 representative, gamma, w)
 IF (IS_EMPTY(neighbors))
 {
 ADD_TO(representative, next)
 REMOVE_FROM(representative, active)
 }
 ELSE
 {
 SET_OF_CLUSTER children
 ADD_TO(representative, children)
 FOR_EACH(CLUSTER neighbor IN neighbors)
 ADD_TO(neighbor, children)
 CLUSTER cluster = CREATE_CLUSTER(children)
 SIMPLIFY (cluster, epsilon)
 ADD_TO(cluster, tree)
 ADD_TO(cluster, next)
 REMOVE_FROM(representative, active)
 FOR_EACH (CLUSTER neighbor IN neighbors)
 REMOVE_FROM(neighbor, active)
 }

 COPY(next, active)
 EMPTY(next)

 }
}

REFERENCES
1. Luebke, D. et al., Level of Detail for 3D Graphics, San

Francisco: Morgan Kaufmann, 2003.
2. Garland, M. and Heckbert, P.S., Surface simplification

using quadric error metrics, Proc. 24th Annu. Conf.
Computer Graphics and Interactive Techniques (SIG-
GRAPH), 1997, pp. 209–216.

3. Erikson, C. et al., HLODs for faster display of large
static and dynamic environments, Proc. Symp. Interac-
tive 3D Graphics (I3D), 2001, pp. 111–120.

4. Lilley, S. and Cozzi, P., Cesium 3D tiles: Beyond 2D
tiling, 2016.
https://cesium.com/presenta-
tions/files/FOSS4GNA2016/3DTiles.pdf.
PROGRAMMING AND COMPUTER SOFTWARE Vol. 46 No. 3 2020

232 SEMENOV et al.
5. Toledo, L. et al., Hierarchical level of detail for varied
animated crowds, Visual Comput., 2014, vol. 30, nos. 6–
8, pp. 949–961.

6. Cohen-Or, D., Chrysanthou, Y.L., Silva, C.T., and
Durand, F., A survey of visibility for walkthrough appli-
cations, IEEE Trans. Visualization Comput. Graphics,
2003, vol. 9, no. 3, pp. 412–431.

7. Bittner, J. et al., Coherent hierarchical culling: Hard-
ware occlusion queries made useful, Comput. Graphics
Forum, 2004, vol. 23, no. 3, pp. 615–624.

8. Guthe, M. et al., Near optimal hierarchical culling:
Performance driven use of hardware occlusion queries,
Proc. Eurographics Symp. Rendering, 2006, pp. 207–
214.

9. Mattausch, O. et al., CHC++: Coherent hierarchical
culling revisited, Comput. Graphics Forum, 2008, vol. 27,
pp. 221–230.

10. Xu, D. and Tian, Y., A comprehensive survey of clustering
algorithms, Ann. Data Sci., 2015, vol. 2, pp. 165–193.

11. Samet, H., Foundations of Multidimensional and Metric
Data Structures, San Francisco: Morgan Kaufmann,
2006.

12. Morozov, S. et al., Indexing of hierarchically organized
spatial-temporal data using dynamic regular octrees,
Lect. Notes Comput. Sci., 2018, vol. 10742, pp. 276–290.

13. Lorach, T., OpenGL NVIDIA command-list: Ap-
proaching zero driver overhead, 2014. https://on-de-
mand.gputechconf.com/siggraph/2015/presenta-
tion/SIG1512-Tristan-Lorach.pdf.

14. Bennett, J. and Carter, M., Performance gains achieved
through modern OpenGL in the Siemens DirectModel
rendering engine, 2015. http://on-demand.gputech-
conf.com/gtc/2015/presentation/S5387-Jeremy-Ben-
nett.pdf.

15. Gonakhchyan, V., Efficient command buffer recording
for accelerated rendering of large 3D scenes, Proc. 12th
Int. Conf. Computer Graphics, Visualization, Computer
Vision, and Image Processing, 2018, pp. 397–402.

Translated by Yu. Kornienko
PROGRAMMING AND COMPUTER SOFTWARE Vol. 46 No. 3 2020

	1. INTRODUCTION
	2. HIERARCHICAL DYNAMIC LEVELS OF DETAIL
	3. HDLOD GENERATION
	4. RENDERING
	5. COMPUTATIONAL EXPERIMENTS
	6. CONCLUSIONS
	REFERENCES

		2020-05-28T01:12:27+0300
	Preflight Ticket Signature

