
ISSN 0361-7688, Programming and Computer Software, 2020, Vol. 46, No. 1, pp. 57–66. © Pleiades Publishing, Ltd., 2020.
Russian Text © The Author(s), 2020, published in Programmirovanie, 2020, Vol. 46, No. 1.
Intermediate Representation of Programs
with Type Specification Based on Pattern Matching

V. A. Vasenina,* and M. A. Krivchikova,**
aMoscow State University, Moscow, 119991 Russia

*e-mail: vasenin@msu.ru
**e-mail: maxim.krivchikov@gmail.com

Received May 13, 2019; revised June 8, 2019; accepted June 18, 2019

Abstract—In this paper, we present an intermediate representation (IR) language for the concise and general-
ized description of type system specification features in dynamically typed programming languages. The inter-
mediate representation is based on pattern matching and features type-level computation. It is inspired by the
intermediate representation “Assembly language” for Refal-2. In contrast to “Assembly language,” the proposed
representation is based on the control flow graph, which preserves typing information, rather than on bytecode.
In addition, we propose a modification of the Refal language that supports higher-order functions, closures, and
“associative array” data type, as well as a transpiler of programs from the language into the intermediate rep-
resentation. In terms of this language, we present two examples of type system specification: simple types and
row polymorphism. These examples are of interest for describing type systems for dynamically typed pro-
gramming languages.

DOI: 10.1134/S0361768820010077

1. INTRODUCTION
Presently, domain-specific languages are generally

implemented using dynamic type checking. As an
example, we can point to some popular domain-spe-
cific languages. Shell languages of operating systems
(Bash) and assembly systems (Make) use variable sub-
stitution in text format to describe arguments and
results of programs they call. Template description lan-
guages, e.g., Jinja2, are implemented similarly. A num-
ber of domain-specific languages for describing config-
urations of software systems (Salt and Ansible) are
based on markup languages (YAML and JSON) and do
not support static type checking. For some domain-
specific languages, e.g., the language for describing Nix
software packages, the problem of replacing dynamic
type checking with static one arises once they are
developed and put into practice [1].

Static typing is supported by the following domain-
specific languages: restricted versions of general-pur-
pose languages (GLSL shader language as a dialect of
C), languages built in general-purpose languages with
more expressive type systems and type inference (vari-
ous eDSLs in Haskell, e.g., those based on free
monads), and languages implemented using macro sys-
tems of general-purpose languages (e.g., Rust macros).

The basic approach to implement type checking in
dynamically typed programming languages is gradual
typing [2]. For a more rigorous verification of proper-
ties in these languages, gradual typing systems often

have certain features that are due to the well-estab-
lished pragmatics (practice of use) of the language.
For instance, the mypy tool, which implements grad-
ual typing for Python, has the built-in support of the
so-called structural typing protocols [3]. These proto-
cols are specifications that the value must satisfy to be
used in a particular syntactic context (e.g., as an itera-
tion argument in the for…in statement or as an argu-
ment for square bracket indexing). The TypeScript
language, which integrates gradual typing into JavaS-
cript, supports the keyof keyword in type specifica-
tions. This keyword converts an object (associative
array) into an enumeration of all known keys whose
values are specified in this object.

In the framework of type theory, the most expres-
sive approach to type description supports the calculus
of constructions (CoC), which allows one to concisely
and uniformly describe types by using type-level com-
putations. In the CoC, types are defined, in fact, as
terms of typed lambda calculus, i.e., as strictly termi-
nating programs. In this paper, we propose an inter-
mediate representation (IR) that uses type-level com-
putations for the concise and generalized description
of type system specification features in dynamically
typed languages. More specifically, we use the inter-
mediate representation based on pattern matching to
describe type systems of programming languages. The
results presented below were obtained in the work
“Methods and tools for developing verifiable software
by using domain-specific languages with a given for-
57

58 VASENIN, KRIVCHIKOV
mal semantics.” The use of this representation for the
description of domain-specific languages will be dis-
cussed in more detail in our future works.

2. LANGUAGE FOR DEVELOPING TOOLS
TO DESCRIBE DOMAIN-SPECIFIC

LANGUAGES
Currently, the most powerful (efficient) mecha-

nisms for pattern matching in dynamically typed pro-
gramming languages are implemented using languages
of the Refal family [4] (in particular, Refal-5 [5]). Thus,
as a basis for the intermediate presentation, we developed
a modification of the Refal language with some exten-
sions. This modification, which is described below, sup-
ports higher-order functions and “immutable associa-
tive array” data type. As far as we know, the latter fea-
ture is new to the languages of this family. The syntax
of the language is modified in such a way as to make it
more similar to currently-popular programming lan-
guages, which is also a new contribution. This section
describes features of the modified language developed
by the authors of this paper. The following sections
describe the development and implementation of this
language.

The basic type of constants in the language is lists,
which can include the following elements separated by
spaces.

(1) Non-negative integer constants (e.g., 0 12 12345).
The current implementation supports 32-bit signed
integers.

(2) String (multiline) constants in single or double
quotes (as in Python, quotes are interchangeable) with
the possibility to escape special symbols (e.g., “ABC”
“A BC\” “'A\nB\tC'”). String constants are inter-
preted as sequences of individual characters (code-
points in Unicode terms).

(3) Symbols, i.e., identifiers that can be associated
with a function (e.g., ABC and Fn1). From an imple-
mentation perspective, symbols can be regarded as
interned strings.

(4) Nested lists separated by pairs of parentheses.
For example, the list “A (B C) D” consists of three ele-
ments with the first element being symbol A, the sec-
ond one being the list of two symbols B and C, and the
third one being symbol D.

(5) Associative arrays written in curly brackets. The
keys and values of the associative array can be single
values. The key is separated from the value by a colon;
the key–value pairs are separated by commas. For
example, the associative array “{abc: DEF, (“12”):
(“34”), 12: 34, (1 2): (3 4)}” contains the following
four elements of the key–value type: abc symbol –
DEF symbol, string (list of letters) “12” – string “34,”
number 12 – number 34, and list of numbers (1 2) –
list of numbers (3 4). Other implementations of the
Refal family languages do not support associative
arrays and their pattern matching.
PROGRAMMING A
(6) Nested functions declared using the keyword
fn, optional name, and body of the function in curly
brackets.

Another class of expressions in the languages of the
Refal family is patterns. Patterns are lists that, in addi-
tion to single values, can include free variables. Free
variables are written as “type.name,” as is customary
in the other languages of the Refal family. The current
implementation supports the following basic types of
free variables:

• “s” is a single atomic value (number, symbol, or
character);

• atomic value of a given type (“i” is a number, “S”
is a symbol, and “c” is a character);

• “t” is a single arbitrary value (atomic value, list,
or associative array);

• “d” is an associative array;
• “e” is an arbitrary sequence of values (sublist).
Patterns for nested lists are written in parentheses,

while patterns for associative arrays are written in curly
brackets. For pattern matching of associative arrays,
the following additional syntactic constructs based on
the ellipsis operator (“…”) are introduced.

• Save the remainder of the associative array into a
new variable. For instance, the construct {a: b,
…d.rest} defines a pattern for the associative array in
which the value “b” should be under the key “a” and
the other key–value pairs included in the array are
stored in a new associative array, the variable d.rest.

• Ignore the remainder of the associative array. For
instance, the associative array {a: b, c: d} does not
match with the pattern {a: b} as it contains an extra
key–value pair; however, it matches with the pattern
{a: b, …}.

For convenient reading of programs in the lan-
guage, an empty list is denoted by the keyword
“empty” both in values and in patterns. In addition,
the dash (“_”) is used to denote an unnamed arbitrary
sequence of values.

The basic element of programs in the Refal family
languages is the function. In the proposed implemen-
tation, function declaration begins with the keyword
fn, followed by the name of the function and, then, a
sequence of sentences (in curly brackets), which are
pattern matching branches separated by semicolons
(“;”). The sentence begins with the pattern with which
the function argument is matched; then, a combina-
tion of expressions and binding operators (see below)
follows. The last expression in the combination deter-
mines the execution result of the sentence. In addition
to constants and variables, expressions can contain
calls of other functions. As in the other languages of
the Refal family, the function call is enclosed in angle
(activation) brackets. The first element in the brackets
denotes the callee function, e.g., the call of the Add func-
tion for two numbers 1 and 2 is written as <Add 1 2>.
ND COMPUTER SOFTWARE Vol. 46 No. 1 2020

INTERMEDIATE REPRESENTATION OF PROGRAMS 59

Fig. 1. Palindrome function in the proposed language.

fn Palindrome {

}

empty => True;
s.1 => True;

_ => False;
s.1 e.2 s.1 => <Palindrome e.2>;

Fig. 2. Palindrome function in Refal-5.

Palindrome {
= True;
s.1 = True;
s.1 e.2 s.1 = <Palindrome e.2>;
e.1 = False;

}

The classic example of the Palindrome function
can be represented as follows. Figure 1 shows the code
in the proposed language, while Fig. 2 depicts the cor-
responding example from the Refal-5 manual [5].

This example uses the binding operator “map”
(“ ”), which separates the expression to the left from
the result (the expression to the right). The language
supports the following binding operators.

• Operators of unconditional jump to the next step:
comma (“,”) or map (“ ”). In the other languages of
the Refal family, as a binding element, the equality
sign is generally used. If, when evaluating the expres-
sions following this operator, an unsuccessful pattern
match or unsuccessful function call occurs, then the
execution of the function fails.

• The operator of conditional jump to the next
step: ampersand (“&”). If, when evaluating the
expression immediately following this operator, an
unsuccessful pattern match or unsuccessful function
call occurs, then the next pattern matching alternative
within the active function is considered.

• The operator of simple additional pattern match-
ing: “let” (let pattern = expression). It evaluates the
expression and matches it with the pattern.

• The operator of additional pattern–function
matching: “match” (match expression with function).
It evaluates the expression and calls the function with
the argument that is the value of this expression.

• A new negation operator “except” (except {sen-
tence}). If the sentence in the initial context of variable
values is evaluated successfully, then the negation
operator returns a failure. Otherwise, the negation
operator returns an empty list.

In general, the operators of additional pattern
matching are similar to the conditions and blocks in
Refal-5, while the split of jumps to the next step into
conditional and unconditional ones is similar to that in
Refal-6 or Refal-plus. The syntactic differences between
this implementation and traditional ones are due to the
convenience of using the language, in particular, the
introduction to the language for the developers who are
not familiar with the languages of the Refal family.

The restricted propagation of the information
about an unsuccessful termination of computations
within one function allows predicates to be defined on
values as functions the evaluation of which is success-
ful for the values that satisfy the predicate and is





PROGRAMMING AND COMPUTER SOFTWARE Vol.
unsuccessful for the values that do not. In the follow-
ing example, this feature is illustrated with the PreAlph
function, which checks that the first argument (char-
acter) precedes the second one in a given alphabet. An
implementation in Refal-5 returns symbol values T
and F (true and false, respectively). Symbols T and F
are not special ones (unlike, e.g., the True and False
values in Python), and their use is entirely due to the
agreement on the designation of Boolean value. An
implementation in the proposed language regards the
successful termination of computations (possibly with
an empty result) as a true value and regards their
unsuccessful termination (which can be intercepted
using the binding operator “&”) as a false value.

Thus, in the proposed implementation, two exam-
ples from Chapter 4 of the Refal-5 manual [5] can be
written as follows, taking into account the syntactic
and semantic features mentioned above (Figs. 3 and 4
show the code in the proposed language and Refal-5,
respectively).

The negation operator is necessary for the adequate
description of nontrivial conditions in type systems,
which enables the intended use of the language. The
example in Fig. 5 illustrates the use of the negation
operator to determine the predicate “sequence of five
atomic values, the third of which is not 1.”

It should also be noted that the function declared in
the match operator can use variables from the context
of the external function’s sentence in which the match
operator was declared. In addition, this function can
be declared with a name that can be used in it for a
recursive call or return of a closure. Thus, the pro-
posed implementation supports higher-order func-
tions and closures. The example in Fig. 6 illustrates the
language features mentioned above. The Map function
is a higher-order function that applies the first func-
tion argument to each of the following arguments. The
AddOne function defines a variable s.add that stores a
certain value and an anonymous function stored in a
variable t.addOne, which adds the s.add value from the
closure to its own argument. This anonymous function
is passed as the first argument to the Map function. Its
execution yields a list the elements of which are incre-
mented by one with respect to the original list (the list
1 2 3 4 5 becomes the list 2 3 4 5 6).
46 No. 1 2020

60 VASENIN, KRIVCHIKOV

Fig. 3. Predicates based on the successful/unsuccessful termination of computations in the proposed language.

fn PreAlph {

fn Order {

s.1 s.1;

(e.1)e.2 & <Pre(e.1)(e.2)> => (e.1)(e.2);
(e.1)e.2 => (e.2)(e.1)

s.1 s.2 & let e.A s.1 e.B s.2 e.C = <Alphabet>;
}

}

3. INTERMEDIATE REPRESENTATION
FOR THE DESCRIPTION

OF DOMAIN-SPECIFIC LANGUAGES
Generally, to analyze programs, instead of their

source code, some intermediate representation with a
higher level of detail as compared to the source code
(uniqueness of identifiers and expansion of syntactic
sugar) and a higher level of hardware abstraction as
compared to machine code is used. In [6], the follow-
ing classification of intermediate representations for
the description of domain-specific languages was pro-
posed.

(1) Low-level intermediate representations used in
compilers to machine code, e.g., LLVM representa-
tions and Typed Assembly Language.

(2) Bytecode-based application virtual machines
designed for imperative programming languages, e.g.,
the JVM for Java and the CLI specification for C#.

(3) Bytecode-based application virtual machines
designed for functional programming languages, e.g.,
the ZINC machine for OCaml, WAM machine for
Prolog, BEAM machine for Erlang, and bytecode for
Python.

(4) CFG-based internal intermediate representa-
tions that preserve typing information, e.g., continua-
tion-passing style (CPS).
PROGRAMMING A

Fig. 4. Predicates based on return values in Refal-5.

PreAlph {

Order {

s.1 s.1 = T;

e.1 = F;

(e.1)e.2, <Pre (e.1)(e.2)>:
{ T = (e.1)(e.2):
F = (e.2)(e.1);

= T;
s.1 s.2, <Alphabet>: e.A s.1 e.B s.2 e.C

}

}
};
(5) High-level intermediate representations based
on canonical forms of the syntax tree that reflect the
specifics of a programming language, e.g., STG for
Haskell and Cminor for CompCert (C compiler).

Based on this classification, we developed a new
class 4 intermediate representation with a sufficiently
expressive type system. It is inspired by the intermedi-
ate representation “Assembly language” for Refal-2.

The main differences between this intermediate
representation and the assembly language can be for-
mulated as follows. The assembly language belongs to
the third class of intermediate representations, i.e., to
bytecode-based application virtual machines focused
on functional programming languages. The programs
in the assembly language are sequences of instructions
that do not have a deep internal structure. The pro-
posed intermediate representation belongs to the
fourth class, i.e., to CFG-based internal intermediate
representations that preserve typing information. The
assembly language is described for Refal-2; the pro-
posed intermediate representation supports higher-
order functions. As noted above, the language itself
and, therefore, its intermediate representation are
extended with new types and constructs for type sys-
tem description. As a sufficiently close analog, we can
point to the Refal-graph language, which is used in the
SCP-4 supercompiler [8].

The execution model of the intermediate represen-
tation is as follows. When executing a function, at each
instant, two lists of values (argument and result), a
sequence of recognized patterns (variable values), and
a set of variable values from the closure that are
indexed by a pair of integers (the serial number for the
external context of the closure and the number of the
variable in the external context) are defined. The exe-
cution context of the function also includes a stack of
ND COMPUTER SOFTWARE Vol. 46 No. 1 2020

Fig. 5. Negation operator: a predicate for a sequence of five
atomic values, the third of which is not 1.

}

ThirdOfFiveNot1 {
s.1 s.2 s.3 s.4 s.5,except {let 1 = s.3}

INTERMEDIATE REPRESENTATION OF PROGRAMS 61
handlers for unsuccessful recognitions or function
calls. The result can contain call instructions (activa-
tion brackets). Before saving it into a variable or before
analyzing the pattern, activation is performed. At the
activation stage, all call instructions in the list are
replaced by call results.

The intermediate representation is stored as a tree
in the text form of s-expressions; it should be noted
that, if necessary, the storage format can easily be
changed, e.g., to compact non-textual code or XML.
The tree contains the expression nodes of the follow-
ing main types.

(1) Function declaration (Function (Name name-
of-function) expressions…) and reference to the func-
tion (FunctionRef function name).

(2) List or structural brackets (Structural expres-
sions…).

(3) Call or activation brackets (Eval expressions…).
(4) Negation (Except expressions…).
(5) Branching (Branch (expressions of branch 1)

(expressions of branch 2)…).
(6) Associative array as a value (Dictionary

((expression-key) (expression-value))…).
(7) Constant as a value (Value value-type value).
(8) Instructions without arguments: Check (recog-

nizing an empty argument), Return (successful execu-
tion of the function), Fail (unsuccessful termination of
the computation branch), PopHandlers (clearing the
handler stack), Expand (finding an arbitrary sequence
of values), Close (recognizing the remainder), and
Push (activating and saving the current result in a
sequence of variables).

(9) Instructions for recognizing a fragment of an
argument (Recognize direction recognizer). The fol-
lowing directions are supported: the beginning and
end of the argument (Left and Right, respectively),
inclusion in the associative array at the beginning of
the argument (Dictionary), as well as key and value in
the associative array (Key and (Value number of vari-
able-key), respectively). Special directions (Dictionary
and Key) are supported only for some recognizers.
As recognizers, nested lists (Structural), arbitrary val-
ues (Term), atomic values (Literal), values of a given
primitive type (ValueLiteral), constants (Exact), and
values of previously recognized variables (OldExpres-
sion level number) are supported.

(10) Instruction for finding an arbitrary sequence
of values (Extend).

(11) Instruction for loading the variable value into
the argument to impose additional conditions (Range
variable-number).

(12) Instruction for yielding constant values (Value
type value) and values of previously recognized vari-
ables (Emit level number).
PROGRAMMING AND COMPUTER SOFTWARE Vol.
(13) Type check instructions (Typecheck IsType
function-name) and (Typecheck Correct type-precon-
dition function-name type-postcondition).

The field “level” in the OldExpression recognizer
and Emit instruction is zero when the number corre-
sponds to the variable in the context of the current
function. Otherwise, for closures, it reflects the nest-
ing level of the lexical context from which the variable
with this number is loaded.

This intermediate representation is sufficient for
the translation of programs written in the language
described in the previous section. As one of the direc-
tions for further research, we intend to achieve higher
uniformity of the IR instructions. As noted above, the
recognition directions Dictionary, Key, and Value dif-
fer significantly in terms of semantics from the direc-
tions Left and Right. In particular, they cannot effi-
ciently represent the enumeration of key–value pairs
included in the associative array to recognize associa-
tive arrays with complex structures. Currently, to solve
this problem, we use relatively less efficient functions
of the standard library that perform the conversion
between the associative array and the list of key–value
pairs constituting the array.

In addition, with the intermediate representation
being designed to describe the semantics of programs
written in domain-specific languages, the IR instruc-
tions can contain debugging information. This infor-
mation relates source code elements and IR instruc-
tions. Currently, the format of this additional informa-
tion is not yet strictly defined, which is also one of the
directions for further research.

4. IR INTERPRETER
For the execution of the programs written in the

intermediate representation, we developed an IR
interpreter. The basic requirements for the interpreter
were its extensibility and performance sufficient for
the adequate support of the development cycle in
research mode. Thus, we decided to implement the
language executor in the form of an interpreter rather
than a compiler to machine code. The interpreter is
implemented in Rust with its size being about five
thousand lines of code.

The interpreter uses an extended (executable) ver-
sion of the intermediate representation for more effi-
cient interpretation. The stored version of the inter-
mediate representation is converted into the execut-
able one at the preprocessing stage. At that stage, the
interpreter reads the IR tree from the source file and
saves it as an arena, a set of linear instructions
sequences indexed by a 32-bit unsigned integer. Thus,
in memory, the instructions such as Structural or
Function store the index of the instruction sequence in
the arena. The main purpose of the preprocessing
stage is to carry out the following two procedures.
First, the names of functions in FunctionRef instruc-
46 No. 1 2020

62 VASENIN, KRIVCHIKOV
tions are associated with the indexes of their defini-
tions in accordance with the lexical context. Second,
for closures, the numbers of the variables used by the
closure are extracted, and the Function instruction is
replaced by an interpreter-specific instruction for cap-
turing variables in the closure (CaptureClosure). In the
future, we intend to move this instruction to the stored
part of the intermediate representation. Currently,
however, the transformation mentioned above is tech-
nically easier to implement as part of preprocessing in
the interpreter rather than in the translator to the
intermediate representation. In addition, the prepro-
cessing procedure loads external modules and binds
imported functions. This aspect of the implementa-
tion is technical in nature and its description falls out-
side the scope of this paper.

The following two features of the proposed lan-
guage, which are used in the intermediate representa-
tion and have a significant effect on the structure of
the interpreter, should also be noted. The first feature
is associated with the execution of individual func-
tions. In many currently-popular programming lan-
guages, the semantics of the Branch instruction can be
adequately described by the conditional statement
“if.” More specifically, if some condition is not satis-
fied, then a jump to the next branch of the conditional
statement occurs. However, the Extend instruction has
nontrivial semantics, which is more common to logic
programming languages and is due to the semantics of
e-type variables in the languages of the Refal family.
All cases of unsuccessful pattern matching or function
calls that occur after the execution of the Extend
instruction return control to the Extend handler,
which rolls back the computations. The handler
restores the original value of the argument and
appends the next element of the argument to a vari-
able; then, it resumes the execution of the operations
following the Extend instruction with the new value of
the argument. To adequately describe this behavior in
terms of structural programming, we can use the while
statement. Finally, the semantics of the PopHandlers
instruction, which corresponds to the binding opera-
tor of unconditional jump, together with the Extend
and Branch instructions described above, can be ade-
quately described only in terms of direct jumps to
command blocks.

The second feature is associated with the semantics
of processing unsuccessful function calls. In the classic
implementations of Refal-2 and Refal-5, an unsuc-
cessful function call causes the program to crash. The
proposed implementation uses a principle similar to
software exception handling in C++, C#, and Java.
More specifically, the unsuccessful function call
returns an unsuccessful pattern matching signal at the
level of the caller function. Hence, this signal can be
processed in a standard way using the Branch and
Extend handlers. Such semantics can be compared
with rollback functions in Refal-plus [9]. The differ-
ence is that the decision about processing or not pro-
PROGRAMMING A
cessing the unsuccessful function call is made at the
level of the caller function rather than at the level of
definition. Thus, the semantics of this aspect of the
language is more similar to exception handling rather
than to rollback functions. Depending on the instruc-
tion sequence of the caller function, the result can be
activated both in the context of the caller function and
one level higher in the call stack. The latter takes place
for the return value of the function if it is specified
after the unconditional jump operator. The current
implementation of the IR interpreter supports this fea-
ture in the form of partial tail recursion.

The memory management features of the inter-
preter should also be noted. The interpreter of the
intermediate representation described in this paper
uses automatic memory management. Lists of values
are stored based on reference counting. To improve
efficiency, the list of values can be stored both as a
continuous sequence of values (or a reference to a
fragment of another list) and as a sequence of frag-
ments. When adding values of recognized variables to
the list by using the Emit instruction, the following
heuristic is employed.

(1) If the old and new values are both successive
fragments of the same list, then, instead of the pair of
these fragments, one fragment containing all neces-
sary values is written.

(2) Otherwise, if the length of a newly added frag-
ment exceeds the threshold, then the fragment is
added as a reference. The threshold is determined
experimentally for more efficient use of cache mem-
ory in modern processors.

(3) If the length of a newly added fragment does not
exceed the threshold, then its elements are copied to a
new list.

At the early stages of developing the interpreter, the
mark-and-sweep garbage collection algorithm was
employed for automatic memory management, both
for values and the IR code. However, its overhead
proved too high. Thus, the garbage collection algo-
rithm was modified to use a two-generation scheme.
This modification provided a several-fold speedup;
however, the performance of the interpreter was still
insufficient with unreasonably high memory consump-
tion. Eventually, replacing garbage collection with a
static arena for code storage and counting references for
value fragments yielded a two-order speedup (as com-
pared to the mark-and-sweep algorithm with two gen-
erations) and sufficient (for now) performance.

In its current version, the interpreter translates the
translator (see the next section) from the source lan-
guage into the intermediate representation in 1.1 sec-
onds while using 9.4 MB of memory. The latest ver-
sion of the translator, which can be executed by an
external Refal implementation used as a starting point
for developing the self-hosting implementation of the
language, is compilable into C. It performs the corre-
ND COMPUTER SOFTWARE Vol. 46 No. 1 2020

INTERMEDIATE REPRESENTATION OF PROGRAMS 63

Fig. 6. Higher-order function and closure in the proposed language.

fn Map {

fn AddOne {

let s.add = 1,
let t.addOne = fn{s.val => <Add s.add s.val>},
<Map t.addOne 1 2 3 4 5>

}

}

t.fn => emply;

_ =>

t.fn s.1 e.rest => <t.fn s.1> <Map t.fn e.rest>;
sponding translation in 1.57 seconds while using about
1 GB of memory.

With time, the efficiency of cache memory usage
(and, therefore, the performance of the interpreter)
can be further improved based on a more concise rep-
resentation of value and instruction sequences in
memory. Currently, however, we believe that the per-
formance of the interpreter is sufficient and consider it
unreasonable to complicate the code of the interpreter
to boost its performance.

Below, we mention some previous versions of the
interpreter that were developed for experimental pur-
poses. A simple recursive interpreter of instruction
trees proved inadequate due to the lack of support for
guaranteed tail recursion in popular programming
languages. As a result, for nontrivial programs, there
was always a possibility of stack overflow. A translator
into JavaScript code was developed on a consideration
that modern language implementations based on trac-
ing JIT compilers (we used a V8 implementation) pro-
vide sufficient performance for a relatively simple
translation scheme. In practice, however, this imple-
mentation proved invalid due to some specific features
of the garbage collection algorithm in the V8 machine
and high memory consumption. An interpreter in
Haskell was developed as an executable model for the
denotational semantics of the language. However, the
performance sufficient for our research and a compara-
ble volume of implementation code in Rust suggested
that there is no urgent need to refine this version.

5. DEVELOPING A TRANSLATOR
FROM THE SOURCE LANGUAGE

TO THE INTERMEDIATE REPRESENTATION

The intermediate presentation described in this
paper is designed, like any other intermediate presen-
tation, to be used by automated tools, rather than to
write programs manually. To test the interpreter and
implement the Refal modification described above,
we developed a translator from this language to the
intermediate representation.
PROGRAMMING AND COMPUTER SOFTWARE Vol.
The structure of the translator is similar to the stan-
dard one. The source code passes the stages (transfor-
mations) described below.

1. Lexical analysis: a string of characters is divided
into uniform sequences called tokens (constants, iden-
tifiers, punctuation marks, etc.).

2. Bracket extraction: in the sequence of tokens, the
structure based on nested pairs of brackets corre-
sponding to one another is extracted.

3. Parsing: the bracket-structured tree of tokens is
transformed into an abstract syntax tree of the source
language.

4. Translation to the intermediate representation:
the abstract syntax tree is transformed into a sequence
of IR instructions. The main purpose of the transla-
tion is to convert patterns into a sequence of instruc-
tions, which is similar to the algorithm of translation to
the Refal assembly language [7] with some simplifica-
tions. With the memory management method used
(counting references to fragments), which allows new
copies of list fragments to be inserted in constant time,
there is no need to use nontrivial transformations to
optimize the output at this stage.

5. Convolution of recognition branches: sequences
of instructions that are common prefixes for all recog-
nition branches in the code of a function are taken out
of the branch instruction.

6. Local optimization: a relatively simple IR trans-
lation algorithm generates code in which some pat-
terns that allow for further simplification can be
extracted. For instance, in the sequence of instruc-
tions (Close) (Check), the latter instruction always ter-
minates successfully, which is why it can be excluded
while preserving semantics. At the local optimization
stage, such patterns in the command tree are reduced
to a simpler form.

7. IR serialization to the output text format: at this
stage, line escaping is carried out and the intermediate
representation is displayed as text with the indenta-
tions that reflect the structure of the code.

The first version of the translator was developed in
Refal-5 and ran on one of its implementations freely
46 No. 1 2020

64 VASENIN, KRIVCHIKOV

Fig. 7. Code of functions over Boolean variables.

fn Bool {

fn IncompleteNot {

fn Not {

0;

0 => 1;

0 => 1;

1 => 0;

1;
}

}

}

available on the Internet. Then, the translator was put
(using the bootstrapping method) in self-hosting
mode based on the following scheme.

Step 1. The translator T0 written in Refal-5 is com-
piled by the Refal-5 compiler to the executable code E.

Step 2. Iterative refinement of the interpreter and
translator (T).

a. The intermediate representation and machine
code of the translator’s fragment (E(T') = I', Refal-
5(T') = E') are obtained. As these fragments, the code
of each translation stage is used sequentially.

b. The intermediate representation is passed as an
input to the interpreter for self-application (Inter-
preter(I')(T')). The result of its execution is compared
with the execution result of the machine code (E'(T')).

c. If any error or inconsistency occurs, then the
interpreter or translator is refined.

d. The iteration terminates once self-hosting is
achieved:
E(T) = I,
Interpreter(I, T) = I1,
Interpreter(I1, T) = I2,
Interpreter(I2, T) = I3,
I2 ≡ I3

The iterative refinement is carried out manually due
to the specifics of the problem. The self-hosting check by
scenario d is added to the automatic test suite and is car-
ried out with each modification of the interpreter or
translator. Once self-hosting is achieved, the initial
implementation of Refal-5 is no longer required to run
the modified translator, which allows us to go to the next
step.

Step 3. Iterative modification of syntax and seman-
tics.

a. Transitional syntax support is added to the inter-
preter.

b. The translator’s code T is translated to the tran-
sitional syntax.
PROGRAMMING A
c. Support for the old syntax is removed and sup-
port for the new syntax is added.

d. The translator’s code T is translated to the new
syntax.

At each stage, the preservation of the self-hosting
state is checked by directly testing the condition spec-
ified in substep d of step 2.

6. IR-BASED DESCRIPTION OF SIMPLE
TYPES AND ROW POLYMORPHISM

This section provides some examples of using the
developed intermediate representation to describe
simple types.

An example for simple types is shown in Figs. 7 and
8. The Bool function specifies a data type that can take
one of two values: 0 or 1. If the Not function is called
with an argument that satisfies the Bool specification,
then the evaluation of this function is guaranteed to
complete successfully with the evaluation result satis-
fying the Bool specification. In turn, the Incomplete-
Not function is not defined for some possible values of
the argument that satisfies the Bool specification. For
these functions, these results can be obtained auto-
matically using a partial evaluation (driving) algorithm
similar to that described in [10]. It should be noted
that, currently, the driving algorithm is implemented
only for some IR constructs. The implementation of
the driving algorithm used in this work evaluates the
function on a given initial parameterization of the
argument and returns two sets of parameterizations.
The first (positive) set contains all possible refine-
ments of the initial parameterization on which the
function is evaluated successfully, as well as the repre-
sentation of the evaluation result in each refinement.
The second (negative) set supplements the first one; i.e.,
it describes all possible refinements of the initial param-
eterization on which the evaluation process fails.

Row polymorphism is a property of the type system
that allows functions to be defined on associative
arrays for which the type system guarantees the impos-
sibility of exceptions such as “key is absent in the asso-
ciative array” and “value type does not match the
expected one” [11].

To define row polymorphism, it is sufficient to
introduce a row type and three operations—projection
(Select; to obtain the value by the key), row addition
(Add), and row removal (Remove)—as shown in Fig. 9.
To describe the row type, the associative array is used.
The behavior of the Select function is described using
axiomatic semantics in terms of Hoare triples. The
precondition SelectPreCondition and postcondition
SelectPostCondition characterize the behavior of the
Select function, namely, the fact that, for any (decid-
able) property s.predicate, if the condition SelectPre-
Condition s.predicate is satisfied for some set of values,
then the Select function with this argument is evalu-
ND COMPUTER SOFTWARE Vol. 46 No. 1 2020

INTERMEDIATE REPRESENTATION OF PROGRAMS 65

Fig. 8. Intermediate representation of functions over Bool-
ean variables.

(Function (Name Bool) (Branch

(Function (Name Not) (Branch

(Function (Name IncompleteNot) (Branch

((Recognize Left Exact Int 0)

((Recognize Left Exact Int 0)

((Recognize Left Exact Int 1)

((Recognize Left Exact Int 1)

((Recognize Left Exact Int 1)
(Check)(Return))

(Check)(Value Int 1)(Return))

(Check)(Value Int 0)(Return))

(Check)(Value Int 1)(Return))

(Check)(Return))
))

))

))
ated successfully and the condition SelectPostCondi-
tion s.predicate is satisfied for the result.

In terms of the driving algorithm, taking into
account its current limitations, the process of checking
this condition can be described as follows. Suppose
that the evaluation of the function s.predicate always
ends with a successful or unsuccessful result. Let us run a
PROGRAMMING AND COMPUTER SOFTWARE Vol.

Fig. 9. Implementation

fn Select {

fn SelectPreCondition {

fn SelectPostCondition {

fn Add {

fn Remove {

s.predicate s.label {

s.predicate t.value,

s.label{s.label: _,..

=> {...d.dict,s.lab

{...d.dict} t.value s
excepr{let {s.label

<s.predicate t.valu

}

}

}

}

}

s.label {s.label: t.v
driving for the precondition with an arbitrary argument,
<SelectPreCondition s.predicate e.argument>, and retain
only the positive set of argument parameterizations.
For all positive parameterizations P of e.argument, we
run a driving for the original function: <Select P>. The
driving should yield only positive parameterizations.
Otherwise, the precondition sets too weak constrains
under which the successful completion of the Select
function cannot be guaranteed. For all positive
parameterizations Q (results of the second driving), we
perform a driving for the postcondition <SelectPost-
Condition s.predicate Q>. As with the second one, this
driving should yield only positive parameterizations.

As a direction for further research, we plan to extend
the driving algorithm to enable the full support of the
intermediate representation. In addition, we intend to
enrich the source language with two constructs for type
checking. These constructs correspond to the type
checking instructions in the intermediate representa-
tion; below is their preliminary versions.

1. The construct “type expression” is used to verify
that the expression is a type, i.e., it runs a static termi-
nability check of the expression for any input values.

2. The construct “correct (precondition) (function)
(postcondition)” runs the check described above for
the types “precondition” and “postcondition.”

7. CONCLUSIONS
One of the most important practical aspects of the

programming language is communication between
46 No. 1 2020

 of row polymorphism.

 s.label: t.value, ...},

<s.predicate t.value>

.d.rest} => {...d.rest}

el: t.value}

.label,
: _,...}=t.dict}

e>

alue, ...} => t.value

66 VASENIN, KRIVCHIKOV
developers. The source code contains the most accu-
rate and up-to-date information about the internal
structure of the system. For new programming lan-
guages, the similarity of their syntax with other lan-
guages the developer is familiar with contributes to a
faster understanding of the code written in this lan-
guage [12]. In addition, according to [12], a language
that does not support keywords or actively uses non-
obvious special symbols (instead of keywords) seems
less intuitive than a language with keywords. This is
confirmed by our experience with students of the Fac-
ulty of Mechanics and Mathematics of the Moscow
State University.

Among the analogs of the proposed type checking
approach, we want to mention the work by V.I. Shelek-
hov on predicate programming [13]. The languages of
the Refal family and supercompilation were previously
used to verify properties that have the nature of low-
level hardware abstraction [14, 15]. In [16], supercom-
pilation was used in the framework of the Martin–Löf
type theory. In the general context of the research the
results of which are presented in this paper, we should
mention the language of executable software specifi-
cations [17], which is designed for the specification of
domain-specific languages. Function-based descrip-
tion of types was also used in the prototype verification
system (PVS) [18], which was employed in the work
mentioned above [13].

As a direction for further improvement of the syn-
tax, we consider the possibility of using a more con-
ventional notation for lists and pattern variables.
In many popular programming languages, lists are
denoted by square brackets. An exception is the lan-
guages of the LISP family, which can be considered
relatively less popular. Using square brackets for lists
allows parentheses to play their generally accepted
role, i.e., denote grouping constructs. To denote vari-
ables, we intend to use only their names with optional
type annotation in brackets. In this case, variables that
denote recognition patterns of an arbitrary sequence
are denoted by the ellipsis prefix, e.g., the pattern (s.a
e.b s.a) is written as [a … b a] or [(a: atom) … b a]. The
problem of the notation that distinguishes symbols
and pattern variables requires further research. One of
the possible solutions to this problem is the case-based
representation of the identifier (as in Haskell): the first
letter of the variable is lowercased, while that of the
symbol is uppercased.

8. FUNDING
This work was supported by the Russian Founda-

tion for Basic Research, project no. 16-07-01178a.

REFERENCES
1. Hufschmidt, T., A type-system for Nix. http://nix-

con2017.org/schedule.nixcon2017.org/sys-

tem/event_attachments/attach-
ments/000/000/003/original/main.pdf.

2. Siek, J. and Taha, W., Gradual typing for objects, Proc.
European Conf. on Object-Oriented Programming
(ECOOP), Ernst, E., Ed., Berlin: Springer, 2007,
pp. 2–27.

3. Levkivskyi, I., Lehtosalo, J., and Langa, L., PEP 544 –
Protocols: Structural subtyping (static duck typing).
http://www.python.org/dev/peps/pep-0544. Accessed
January 10, 2019.

4. Turchin, V.F., Meta-algorithmic language, Kibernetika,
1968, no. 4, pp. 45–54.

5. Turchin, V.F., REFAL-5: Programming Guide and Ref-
erence Manual, Holyoke: New England, 1989.

6. Vasenin, V.A. and Krivchikov, M.A., Methods for in-
termediate representation of programs, Program.
Inzheneriya, 2017, vol. 8, no. 8, pp. 345–353.

7. Romanenko, S.A., Machine-independent compiler
from the recursive function language, Cand. Sci. (Fiz.-
Mat.) Dissertation, Moscow: Inst. Prikl. Mat. Keldysha,
1978.

8. Nemytykh, A.P., Superkompilyator SCP-4: obshchaya
struktura (SCP-4 Supercompiler: General Structure),
Moscow: Izd-vo LKI, 2007.

9. Romanenko, S.A. and Gurin, R.F., Yazyk program-
mirovaniya Refal Plyus (Refal Plus Programming Lan-
guage), Pereslavl’-Zalesskii: Univ. Pereslavlya im.
A.K. Ailamazyana, 2006.

10. Turchin, V.F., Ekvivalentnye preobrazovaniya rekur-
sivnykh funktsii, opisannykh na yazyke REFAL (Equiva-
lent Transformations of Recursive Functions Described in
the REFAL Language), Kiev-Alushta, 1972, pp. 31–42.

11. Wand, M., Type inference for record concatenation
and multiple inheritance, Inf. Comput., 1991, vol. 93,
no. 1, pp. 1–15.

12. Stefik, A. and Siebert, S., An empirical investigation
into programming language syntax, Trans. Comput.
Educ., 2013, vol. 13, no. 4, pp. 19:1–19:40.

13. Shelekhov, V.I., Verification and synthesis of efficient
programs of standard functions in the predicate pro-
gramming technology, Program. Inzheneriya, 2011,
no. 2, pp. 14–21.

14. Lisitsa, A.P. and Nemytykh, A.P., Verification as a pa-
rameterized testing (experiments with the SCP4 super-
compiler), Program. Comput. Software, 2007, vol. 33,
no. 1, pp. 14–23.

15. Lisitsa, A.P. and Nemytykh, A.P., On one application
of computations with oracle, Program. Comput. Soft-
ware, 2010, vol. 36, no. 3, pp. 157–165.

16. Klyuchnikov, I.G. and Romanenko, S.A., Supercom-
pilation for Martin-Lof’s type theory, Program. Com-
put. Software, 2015, vol. 41, no. 3, pp. 170–182.

17. Novikov, F.A. and Novoseltsev, V.B., Interpretable
program specification language, Program. Comput.
Software, 2010, vol. 36, no. 1, pp. 48–57.

18. Shankar, N. and Owre, S., Principles and pragmatics of
subtyping in PVS, Recent Trends in Algebraic Development
Techniques, Bert, D., Choppy, C., and Mosses, P.D.,
Eds., Springer, 1999, vol. 1827, pp. 37–52.

Translated by Yu. Kornienko
PROGRAMMING AND COMPUTER SOFTWARE Vol. 46 No. 1 2020

	1. INTRODUCTION
	2. LANGUAGE FOR DEVELOPING TOOLS TO DESCRIBE DOMAIN-SPECIFIC LANGUAGES
	3. INTERMEDIATE REPRESENTATION FOR THE DESCRIPTION OF DOMAIN-SPECIFIC LANGUAGES
	4. IR INTERPRETER
	5. DEVELOPING A TRANSLATOR FROM THE SOURCE LANGUAGE TO THE INTERMEDIATE REPRESENTATION
	6. IR-BASED DESCRIPTION OF SIMPLE TYPES AND ROW POLYMORPHISM
	7. CONCLUSIONS
	8. FUNDING
	REFERENCES

		2020-02-10T16:45:03+0300
	Preflight Ticket Signature

