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Abstract—The Multi-Bulk Synchronous Parallel (Multi-BSP) model is a recently proposed parallel program-
ming model for multicore machines that extends the classic Bulk Synchronous Parallel model. Multi-BSP
aims to be a useful model to design algorithms and estimate their running time. This model heavily relies on
the right computation of parameters that characterize the hardware. Of course, the hardware utilization also
depends on the specific features of the problems and the algorithms applied to solve them. This article intro-
duces a semi-automatic approach for solving problems applying parallel algorithms using the Multi-BSP
model. First, the specific multicore computer to use is characterized by applying an automatic procedure.
After that, the hardware architecture discovered in the previous step is considered in order to design a portable
parallel algorithm. Finally, a fine tuning of parameters is performed to improve the overall efficiency. We pro-
pose a specific benchmark for measuring the parameters that characterize the communication and synchroni-
zation costs in a particular hardware. Our approach discovers the hierarchical structure of the multicore archi-
tecture and compute both parameters for each level that can share data and make synchronizations between
computing units. A second contribution of our research is a proposal for a Multi-BSP engine. It allows designing
algorithms by applying a recursive methodology over the hierarchical tree already built by the benchmark,
focusing on three atomic functions based in a divide-and-conquer strategy. The validation of the proposed
method is reported, by studying an algorithm implemented in a prototype of the Multi-BSP engine, testing
different parameter configurations that best fit to each problem and using three different high-performance
multicore computers.
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1. INTRODUCTION

The BSP model was introduced in the late 1980’s as
a programming model for distributed computers
assuming only one processing unit (i.e., core) per
computing node [9]. Although the model was very
successfully used in the 1990s, it gradually became less
used with the emergence of new multicore architec-
tures in the last decade. As the evaluation of computers
gained renewed importance, the BSP model was
extended to Multi-BSP [10]. Multi-BSP extends BSP
in two ways: i) it is a hierarchical model, with an arbi-
trary number of components, taking into account the
physical structure of multiple memory and cache lev-
els within single chips as well as in multi-chip architec-
tures; and ii) at each level, Multi-BSP incorporates
memory size as an additional parameter in the model,
which was not included in the original BSP model.

By including specific features that model nowadays
parallel architectures, Multi-BSP offers a more com-
prehensive model, which allows designing efficient
parallel algorithms. In this line of work, the research

reported in this paper is focused on developing a full-
stack approach for designing and implementing paral-
lel applications over the Multi-BSP model using state-
of-the-art tools, considering not only the performance
but also the portability of the algorithms. The full stack
development implies a characterized hardware archi-
tecture, a pattern for algorithm design, a cost prediction
function for the algorithm, and a specific methodology
for implementation over the parallel hardware.

The main contributions of the research reported in
this article are: i) the proposal of a specific methodol-
ogy for discovering the hierarchical structure of a mul-
ticore architecture and benchmarking the parameters
that characterize the communication and synchroni-
zation costs in a particular parallel hardware; ii) a
Multi-BSP engine allowing the design of algorithms
by applying a recursive Divide-and-Conquer (D&C)
pattern over the hierarchical tree already built by the
benchmark is introduced; and iii) the validation of the
proposed approach by using an algorithm imple-
mented in the Multi-BSP engine, evaluating different
parameter configurations that best fit to each problem
517
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to solve and using three different high performance
multicore computers, including a Xeon Phi coproces-
sor, which has not been focus of similar studies previ-
ously. Part of the research reported in this article was
developed within the project “Scheduling evaluation
in heterogeneous computing systems with hwloc”
(SEHLOC). The main goal of the SEHLOC project
consisted in developing runtime systems that allow
combining characteristics of the software applications
and topological information of the computational plat-
forms, in order to get scheduling suggestions to profit
from software and hardware affinities and provide a way
for efficiently executing realistic applications. This arti-
cle extends our previous conference paper “MBSP-
Discover: an automatic benchmark for Multi-BSP
performance analysis” [1], where the first ideas about
implementing a Multi-BSP benchmark was presented.

This article proposes a more comprehensive
approach and introduces an engine for Multi-BSP
that considers the whole design process for parallel
algorithms.

The article is organized as follows. Section 2 intro-
duces the BSP and Multi-BSP models, and the auto-
matic tool to discover the architecture features in order
to assure portability. Section 3 describes relevant
related work on BSP benchmarking and the design
and implementation of the proposed MBSPDiscover
benchmark. Section 4 describes the advantages of
designing algorithms using Multi-BSP and the pro-
posed engine, focusing on a recursive pattern design
for parallel applications to assure portability. A cost
function is developed using the Multi-BSP cost
model. The engine is instantiated for a simple algo-
rithm and evaluated over three parallel machines,
characterized using the proposed benchmark, in Sec-
tion 5. Finally, Section 6 presents the conclusions and
formulates the main lines for future work.

2. THE BSP AND MULTI-BSP MODELS
To set the scope of this article, this section

describes the BSP and Multi-BSP models. A brief
description of the f lat BSP model is presented, and
how the model evolved into the concept of multicore,
which emphasizes on hierarchies of components. The
analytical methods for model prediction, which are
needed to understand the foundations of both models,
are described next. After that, the Multi-BSP cost
function is described. At the end of this section, we
argue about the need of an automatic process to dis-
cover the architecture features in order to assure por-
tability, and the use of a specific software package is
described.

2.1 The Original BSP Model
The BSP model considers an abstract parallel com-

puter, which is fully modeled by a set of parameters:
PROGRAMMING A
the number of available processors (p), the processor
speed (s), the communication cost (g), and the synchro-
nization cost (l). Using these parameters, the execution
time of any BSP algorithm can be exactly computed.

In the BSP model, the computations are organized
in a sequence of global supersteps, which consist of
three phases: i) every participating processor performs
local computations, i.e., each process can only make
use of values stored in the local memory of the proces-
sor; ii) the processes exchange data between them-
selves to facilitate remote data storage capabilities, and
iii) every participating process must reach the next
synchronization barrier, i.e., each process waits until
all other processes have reached the same barrier.
Then, the next superstep can begin.

In practice, the programming model is Single Pro-
gram Multiple Data (SPMD), implemented as several
C/C++ program copies running on p processors,
wherein communication and synchronization among
copies are performed using specific libraries such as
BSPlib [5] or PUB [3]. In addition to defining an
abstract machine and imposing a structure on parallel
programs, the BSP model provides a cost function
modeled by the architecture parameters.

The total running time of a BSP program can be
computed as the cumulative sum of the cost of its
supersteps, where the cost of each superstep is the sum
of three values: i) w, the maximum number of calcula-
tions performed by each processor; ii) h × g, where h is
the maximum number of messages sent/received by
each processor, with each word costing g units of time;
and iii) l, the time cost of the barrier synchronizing the
processors. The effect of the computer architecture is
included by the parameters g and l. These values,
along with the processor speed s, can be empirically
determined for each parallel computer by executing
benchmark programs at installation time.

2.2 The Multi-BSP Model

Modern supercomputers are made of highly parallel
nodes with many cores. The efficiency of these nodes
demanded specific improvements of the memory sub-
system by adding multiple hierarchical levels of caches
as well as a distributed memory interconnect, which
lead to Non-Uniform Memory Access (NUMA).

In 2010, Valiant updated the BSP model to account
for this situation, resulting in the Multi-BSP model [10].
The same abstractions and bridge architecture used in
the original BSP were adapted to multicore machines in
Multi-BSP, which describes a model instance as a tree
structure of nested components, where the leaves are
processors and each internal node is a BSP computer
with local memory or some storage capacity.

Formally, a Multi-BSP machine is specified by a
list of levels. Each level is described by four parameters
(pi, gi, Li, mi):
ND COMPUTER SOFTWARE  Vol. 45  No. 8  2019



A SEMI-AUTOMATIC APPROACH 519

Fig. 1. Schematic view of a component on level i of the
Multi-BSP model.
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PiPUpi-1PU1PU0
pi is the number of components of the level (i – 1)
inside a component on level i. For i = 1, the compo-
nents in the first level are p1 raw processors, which can
be regarded as the components of the level 0. One
computation step of such a processor on a word in the
memory in level 1 is taken as one basic unit of time.

gi is the communication cost parameter, defined as
the ratio of the number of operations that a processor
can perform in a second and the number of words that
can be transmitted in a second between the memories
of a component at level i and its parent component at
level (i + 1). A word is defined as the amount of data
on which a processor operation is performed. The
model assumes that the memories in level 1 are located
with the processors, and hence that the data rate (cor-
responding to the value of g0) has the value one.

Li is the cost for the barrier synchronization for a
superstep in level i. This definition requires barrier
synchronization of the subcomponents of a compo-
nent, but no synchronization across above branches in
the component hierarchy.

mi is the number of words of memory inside a com-
ponent in the level i that is not inside any component
in level (i – 1).

Figure 1 shows a component of level i in the Multi-
BSP model. The superstep of level i is a set of instruc-
tions executing inside of a component located at level
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 
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i, which allows each of its pi components at level (i – 1)
to execute independently, including all level (i – 1)
supersteps. Once all the pi components finish their
computation, they can exchange information with the
memory mi of the component in level i. This operation
has a communication cost determined by gi – 1. The
cost charged will be m × gi – 1, where m is the maxi-
mum number of words communicated between the
memory of the component in level i and anyone of its
subcomponents in level (i – 1). After executing the
barrier that synchronize all the pi components, the
next superstep may begin.

As an example, Fig. 2 shows the diagram of a com-
puter, whose architecture can be specified by three
Multi-BSP components (level0, level1, and level2):
(1, 0, 0, 0), (4, g1, L1, 5118KB) and (8, g2, L2, 64 GB).
We can ignore the level0, because it represents only
one processing unit and thus it does not involve inter-
nal synchronization or communication. Therefore,
the computer has two components, which corresponds
to the two level of hierarchy in the architecture.

2.3 Cost Prediction for the Multi-BSP Model

Like other abstract computational models, one of
the main goals of Multi-BSP is to provide a precise
notion of the execution time for a computer program.
This subsection presents the mathematical formula-
tion for the execution cost model, based on the full
definition based on the operational semantics by Yzel-
man [11]. Later on this article, Section 4.3 introduces
a simplification of this general formulation and pro-
vides a detailed definition for the Multi-BSP Engine
we propose as the main contribution of our work.

The cost prediction on a specific computer is
expressed in terms of computing, data movement, and
latency, according to the expression in Equation 1,
where L corresponds to the number of levels in the
Multi-BSP tree, Nk is the number of supersteps on kth

level, hk, i is the maximum of all h-relations within the
ith superstep on level k, and wk, i the maximum of all
work within the ith superstep on level k.
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L1, 5118KB), (8, g2, L2, 64 GB).

 64GB

L3: 5MB L3: 5MB

L3: 5MB L3: 5MB



520 ALANIZ, NESMACHNOW
(1)

The formula in Equation 1 corresponds to the sum
of the costs of the supersteps for each Multi-BSP com-
ponent k. The cost of an individual superstep is split in
two independents terms: the computation costs and
the communication costs. The communication costs
include the cost for synchronization (lk, always one per
superstep) and the term hk, i × gk, which depends of
the amount of put/get operations between threads,
formally defined by the concept of h-relation. The
superstep execution is sequential within each compo-
nent, and inside a superstep each thread works in par-
allel. Thus, the values hk, i and wk, i correspond to the
maximum of all h-relations within the i-th superstep
on level and the maximum of all work within the i-th
superstep on level k, respectively.

To guarantee portability, a full-stack development
using Multi-BSP needs to use a procedure for discov-
ering the properties of the underlying computer archi-
tecture. The Multi-BSP benchmark use the portable
HardWare LOCality (hwloc) tool [4] for discovering
the underlying hardware features. hwloc allows
obtaining runtime information about a computer.
We use version 1.7.2 of hwloc, which provides a portable
abstraction (across OS, versions, architectures, etc.) of
the hierarchical topology of modern architectures,
including processors, NUMA memory nodes, sockets,
shared caches, cores and locality of I/O devices.

3. THE DISCOVERING
AND BENCHMARKING TOOL

FOR Multi-BSP

Multicore architectures are widely used for devel-
oping and executing HPC applications [6]. Both the
number of cores and the cache levels in a multicore
architecture have been steadily increasing in the last
years. Therefore, there is a real need to identify and
evaluate the different parameters that characterize the
structure of cores and memories, not only to under-
stand and compare different architectures, but also for
using them wisely for a better design of HPC applica-
tions. This characterization is motivated by the fact
that the performance improvements when using a
multi-core processor strongly depend on software
algorithms, their implementation, and the utilization
of the hardware capabilities.

In the Multi-BSP model studied in this article, the
performance of a parallel algorithm depends on
parameters that characterize a multicore machine,
such as communication and synchronization costs,
number of cores, and the size of caches. Building ana-
lytical equations to compute those parameters is a hard
task. Therefore, performing computer benchmarking
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is a viable method to evaluate performance and char-
acterize the architecture.

This section presents a review of related works
about benchmarks for the BSP and Multi-BSP mod-
els, and the design and implementation of a specific
discovering and benchmarking tool (Multi-BSP-
Disc-Bench) to estimate the g and L parameters that
characterize a Multi-BSP machine.

3.1. Related Work

The BSPbench program from the BSPEdupack
suite [3] has been the main benchmarking tool for the
BSP model. This benchmark measures a full h-rela-
tion, where every processor sends and receives exactly
h data words. The methodology tries to measure the
slowest possible communication, putting single data
words into other processors in a cyclic fashion. This
reveals whether the system software indeed combines
data for the same destination and whether it can handle
all-to-all communication efficiently. In those cases, the
resulting value of parameter g obtained by the BSP-
bench benchmarking program is called pessimistic.

The Oxford BSP toolset [5] includes another bench-
marking program for BSP, bspprobe. This benchmark
measures optimistic g values using larger packets
instead of single words. Another option for BSP bench-
marking is using the mpibench from MPIedupack [5].

The benchmarking of the Multi-BSP computa-
tional model has been recently addressed by Savadi
and Hossein [7], using a closely-related approach as
the one we apply in this article. The classic BSP
benchmarking is used as a baseline, but the specifica-
tion of a model instance is different. Unlike the bench-
marking methodology followed in our work, the
authors consider deep architecture details such as
cache coherency, for instance for propagation of val-
ues in the memory hierarchy. In their approach, the
analysis of results is made by comparing the real values
obtained by the process of benchmarking against the-
oretical values of the g and L parameters, which are
computed as optimistic lower bounds (i.e. the authors
suppose that the memory utilization is always lower
than the cache size, and that all cores work at maxi-
mum speed). Our approach differs since we do not
make any assumption about the underlying hardware
platform but rather hide its characteristic inside the
output of the benchmarks. We believe this strategy is
well suited to modern architectures that are too com-
plex for precise models depending on their advanced,
hidden and/or rarely well documented features.

From a practical point of view, the main feature of
the discovering and benchmarking tool we propose in
this article is to evaluate real Multi-BSP operations
implemented for the library MulticoreBSP for C [12].
In addition, our results are validated using a set of real
Multi-BSP programs, comparing the real execution
ND COMPUTER SOFTWARE  Vol. 45  No. 8  2019
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Fig. 3. Schematic view of the software architecture of
Multi-BSP-Disc-Bench, and the discovering and bench-
marking process.
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time against the predicted running time using the the-
oretical Multi-BSP cost function, over several HPC
platforms.

3.2. Design of the Multi-BSP-Disc-Bench Tool

We use general ideas from the existing benchmark
for the standard BSP model, BSPbench [3], and
extend the benchmark for Multi-BSP programs to
design the proposed Multi-BSP-Disc-Bench tool.
The main difference between the existing benchmark
and the new one is the need of obtaining pairs of values
for the g and L parameters for each level of compo-
nents in the Multi-BSP model. In addition, in the
Multi-BSP case, the processing is made inside of mul-
ticore nodes instead of outside nodes through the net-
work.

It is important to emphasize that the quality of a
benchmarking tool should not depend on a particular
architecture. This extra requirement is solved by auto-
matically discovering how the different cores are
related within each level of cache. Another relevant
goal for the Multi-BSP benchmark is to discover the
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 
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architecture features in run time. For this reason, we
use the hwloc tool.

The components of the proposed benchmark are
described in the following subsections.

3.2.1. Software architecture and modules. Figure 3
presents a schema of the software architecture and
modules of the proposed Multi-BSP-Disc-Bench tool.

The functionality of the modules in Multi-BSP-
Disc-Bench are as follows:

• Discovering module (Multi-BSP Discover). This
module collects data about the hardware architecture
and features using hwloc and loads the data into a tree
of resources (a memory structure defined inside the
hwloc API box).

• Interface (Multi-BSP Tree). Once the structure
containing the information about resources is gener-
ated, a set of functions in the Interface walk across the
tree, using a bottom-up process for building a new tree
named Multi-BSP Tree. This new tree contains all the
information needed to support the Multi-BSP model.

• Benchmarking module (Multi-BSP Bench). This
module retrieves the core indexes and the memory size
from the Multi-BSP Tree for each level. After that, it
measures the communication cost and the synchroni-
zation cost through a Multi-BSP submodule and using
an affinity submodule for pinning each level on the
right core. Finally, this module computes the resulting
g and L parameters.

The previously described steps of the benchmark-
ing process are applied according to the pseudocode
shown in Algorithm 1.
1: Multi-BSP-Tree ← Multi-BSP-Discover ()
2: for each level in Multi-BSP-Tree do
3:   [g, L] ← coreBenchmark(level)
4: end for

Algorithm 1 Multi-BSP Discover pseudocode.

Multi-BSP Tree acts as the interface between
Multi-BSP Discover and the benchmarking module.
As an example, Fig. 4 shows the structure correspond-
ing to a specific hardware architecture having 32 cores,
as generated by Multi-BSP Discover.
45  No. 8  2019
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3.2.2. The coreBenchmark module. The core-
Benchmark module is conceived for computing the
parameters gi and Li, according to the pseudocode
shown in Algorithm 2.
01: setPinning(level.cores indexes)
02: begin(level.cores)
03: rate ← computingRate(level)
04: sync()
05: for h = 0 to HMAX do
06:   initCommunicationPattern(h)
07: sync()
08:   t0 ← time()
09: for i = 0 to NITERS do
10:     communication()
11: sync()
12: end for
13: t ← time() − t0
14: if master then
15:     times.append(t × rate/NITERS)
16: end if
17: end for
18: level.g, level.L ← leastSquares(times)
19: return (level.g, level.L).

Algorithm 2: Corec Benchmark Function

coreBenchmark receives as parameters the informa-
tion of the corresponding level based in the Multi-BSP
Model, and the data used for thread affinity (i.e., the
core indexes and the size of cache memory) which are
stored in the Multi-BSP Tree structure. At the begin-
ning (line 1 in Algorithm 2), the setPinning function
from the affinity module is used to bind the threads
spawned by the begin function (line 2) to the cores
corresponding to the current level. The function
spawns one thread per core in that level and calculates
the computing rate of the Multi-BSP component
using the computingRate function (line 3). Each level
has a set of cores sharing one memory, then for bench-
marking a level, only those cores are considered.

The computingRate function (line 3) measures the
time required to perform 2 × n × DAXPY operations.
The DAXPY routine performs the vector operation
y = α × x + y, adding a multiple of a double precision
vector to another double precision vector. DAXPY is a
standard operation for estimating the efficiency of the
computing platform when performing memory-inten-
sive f loating-point operations, from the Basic Linear
Algebra Subprograms–Level 1 (BLAS1, as described
at http://www.netlib.org/blas). After that, a synchro-
nization for the current level is performed (line 4) in
order to guarantee that all threads have the correct
computing rate value.
PROGRAMMING A
We use the coreBenchmark function to measure a
full h-communication. This is an abstraction that we
define as the extension of a h-relation from the stan-
dard BSP model, but in this case the concept is applied
to the shared memory case within a single node. An h-
communication is implemented as a communication
where every core writes/reads exactly h data words.
We consider the worst case, measuring the slowest
communication possible by cyclically reading single
data words into other processors. In that way, the val-
ues of gi and Li computed using the benchmark are
pessimistic values, and the real values will be always
better. The variable h represents the largest number of
words read or written in the shared memory of the
level. HMAX is the maximum value for all the param-
eters (h) used in the communications patterns for each
level. HMAX may need to be different for different
levels of the hierarchy; we propose to find suitable val-
ues by empirical analysis.

The communication times using the h-communi-
cation pattern are initialized by the initCommPattern
routine (line 6). This process is repeated NITERS
times (lines 9–12), because each operation is too fast
to be measured with proper precision. After that, the
master thread in each level saves the f lops used for
each h-communication (line 15).

Finally, the parameters g and L are computed using
a traditional least squares approximation method to fit
the data to a linear model (line 18), according to the
results and approximations found in the related works
[1, 5].

This way, the method provides accurate approxi-
mations for gi and Li.

3.3. Empirical Evaluation
of h-communications

The methodology applied to measure the h-com-
munications and then estimate the parameters g and L
is based on measuring the implementation of Multi-
BSP operations. We refer to Multi-BSP operations as
the functions/procedures needed to implement an
algorithm designed with the Multi-BSP computa-
tional model. In our software design, the Multi-BSP
operations module contains the implementation of
these functions, including operations provided by the
MulticoreBSP for C library [12]. This library estab-
lishes a methodology for programming according to
the Multi-BSP computational model.

It is important to take into account the software
design for the Multi BSP-Disc-Bench tool in Fig. 3,
because when Multi-BSP algorithms are programmed
using other libraries, it is possible to reconFig. the
tool, changing the Multi-BSP operation module and
re-characterizing the architecture by running the dis-
ND COMPUTER SOFTWARE  Vol. 45  No. 8  2019
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covering and benchmarking procedure with the new
configuration. Further details on the methodology for
the empirical evaluation of h-communications are
reported in our conference article [1].

4. AN ENGINE PROPOSAL
FOR Multi-BSP ALGORITHMS

This section introduces a proposal of an engine for
designing and executing Multi-BSP algorithms. The
proposed engine will perform data partitioning,
threads management, and execution, encapsulating all
the underlying logic, which will be hidden to the pro-
grammer. Behind the scenes, the proposed engine
applies a recursive Divide-and-Conquer strategy.

4.1. Main Concepts

The proposed engine is conceived as a base layer,
hiding the implementation details needed to work with
Multi-BSP algorithms. The main goal of the proposed
engine is to provide an easy and meaning way to design
and implement Multi-BSP code, just paying attention
to the problem-solving strategy instead of focusing on
the specific details of the Multi-BSP model, such as
thread management, data partitioning, and distributed
execution.

The proposed engine uses a discovering process to
determine the underlying architecture of a multicore
computer and formulates a Divide-and-Conquer
strategy to solve the problem. The Divide-and-Con-
quer strategy is applied recursively over the different
hardware architecture levels, which is represented as a
tree. The strategy focuses on solving three main issues:
data partition, thread expansion, and thread reduction
to compute the final results.

The proposed engine is conceived to provide the
programmer several benefits, the three most relevant
are: i) the programmer will have a better specification
for its algorithms; ii) a single software layer will manage
common issues needed for every Multi-BSP imple-
mentation; and iii) the approach will provide portable
designs of Multi-BSP algorithms.

A useful feature of any Multi-BSP implementation
is that the programmer needs to guarantee that the
applied data partition will use the right cache memory
in an effective way, i.e., trying to produce the major
number of hits and minimize the misses. This is natu-
rally produced when the algorithm applies a data par-
tition strategy based in the available hardware and the
threads or processes are executed in the nearest pro-
cessing units to that memory. As a general rule, the
size of a data partition should never be bigger than the
size of the corresponding cache size.

Another challenge of Multi-BSP algorithms is the
need of designing them closely tied to the hardware
architecture. In this situation, the portability of a spe-
cifically designed algorithm cannot be assured, and
maybe it will only execute properly in the same type of
machines (i.e., depending on the size of each cache
level, the distribution of processing units, and other fea-
tures). To address this problem, the proposed engine
implements a generic method to handle all specific
hardware details and the programmer will only need to
provide general functions that can be used in different
architectures without suffering from major issues, thus
assuring portability. Next section describes the fea-
tures of the proposed Multi-BSP engine.

4.2. Multi-BSP Engine Design

As explained, the engine is a generic recursive pro-
cedure that traverses the tree that representing a specific
hardware architecture. The path followed by the engine
defines the strategy to perform the data partition, the
thread expansion, and thread reduction. In the pro-
posed implementation, a preorder traversal algorithm is
applied, but this is just a decision to take advantage of a
simple strategy. The traversal algorithm can be cus-
tomized to follow different paths in the tree.

The engine uses the same hardware autodiscover-
ing process applied in Multi-BSP-Disc-Bench to gen-
erate a Multi-BSPTree. Once having that information,
the engine processes the tree in a recursive way, where
each recursion level is mapped with a level of the
Multi-BSP computation model.

A pseudocode of the Multi-BSP engine definition
is presented in Algorithm 3. The engine has two input
parameters: i) the current tree node representing a
Multi-BSP component and ii) the data to work with.
All the information needed for thread affinity is already
available in the current Multi-BSP component. This
data structure has pointers to its subcomponents
(t.sons) and each son has the right indexes work with.

Each thread has a unique identification p ∈ [0 . . .
n − 1], where n is the number of threads obtained
using the function bsp_nprocs. The thread identifica-
tion p is determined by calling bsp pid (lines 3 and 4 in
Algorithm 3).

After that, the partition function is applied on the
current data, using as parameters the values of p and n
(line 5). Before processing the tree, a barrier synchro-
nization (using the bsp_synch() function) is needed to
guarantee that the private piece of data is available in
each one of the destination threads (line 6). Then, the
recursion starts processing nodes in the tree.
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01: bsp_set_pin(t.sons){ Affinity using sons components }
02: bsp_begin()  { Spawn threads }
03: n ← bsp_nprocs() { Amount of threads in the current level }
04: p ← bsp_pid() { thread id / component number at level n }
05: dpi ← partition(|d|, p, n) { Data for thread p and level i }
06: bsp_synch()  { Sync to guarantee all threads have their partitions }
07: if n > 1 then { is not a leaf component / it has sons }
08: foreach tson, i in t.sons do
09:     vr[i] ← mbspEngine(dpi, tson) { recursion down over sons}
10: end for
11:   bsp synch() { Waiting to receive the result of every son }
12: if master then
13:     r ← reduce(vr) { The master of the level executes reduce}
14: end if
15: else
16:   r ← work(dij) { The leaf thread executes work function }
17: end if
18: bsp_synch() { Wait for master to have r or sons running work}
19: return r

Algorithm 3 Multi-BSP Engine

Data processing in those components that are not
leaf nodes is described by the code within lines 7–16.
A recursive call of the engine is performed (lines 8–10),
using as parameters the current data partition and the
tree node for each subcomponent. Each call returns a
result, which is stored in the vector vr. A synchroniza-
tion is needed to guarantee that all results are stored in
vr (line 11). Then, the invoking thread (i.e., the master
thread) reduces the values, applying the reduce func-
tion over vector vr (lines 12–14). Finally, the actions to
execute when the recursion reaches the leaf nodes of
Multi-BSPTree is shown in lines 15–17, where the func-
tion work is executed to compute the partial results.

Fig. 5 shows a typical execution of the engine to
solve a separable problem, describing the application
of the functions defined by the user: partition, work,
and reduce. The execution is performed in a computer
whose architecture has two levels, each one having two
subcomponents. Each gray square represents a Multi-
BSP component instance and each arrow represents
communications between them.

4.3. The Cost Function for the Proposed Engine

The proposed engine has three sequential phases in
each execution step T performed over the architectural
tree: the recursion from top to bottom in the tree (CD),
the work function in the bottom (CW) and the recur-
sion return from bottom to top (CU). Each step T rep-
resents the work needed to process a piece of data D.

The cost of performing an execution of the proposed
engine is the sum of the cost functions for each one of
the three sequential steps: CT = CD + CW + CU. The
cost function for each step and component is com-
puted based on Equation 1, as is presented next.

Recursion from top to bottom. The data decomposi-
tion performed in D is made applying the partition
function only one time (i.e., one superstep) per level.
Then, the corresponding value of Nk in Equation 1 is
1, and because the partition function is sequential and
thread safe (i.e., it does not involve any parallel com-
putation), the standard big O notation can be used for
it, resulting in the expression in Equation 2.

(2)

The component working in the partition phase has
p subcomponents and consequently it needs to com-
municate to each one on its sub-partition. For this rea-
son, the value of hk is the maximum for each partition.
Therefore, Equation 3 holds.

(3)

Work. The work function it is even simpler, because
it only executes once in one specific level: the leafs of
the tree, corresponding to the processing units of each
component. Then, Nk and L are 1, and the cost is
given by Equation 4.
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Fig. 5. Schematic view of an MBSPEngine execution.
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Recursion from bottom to top. The cost of the bot-
tom-up recursion is composed by the cost of the
reduction function per level. One important fact is that
every execution of the reduction function depends on
the number of sons for that level. After called by the
reduction function, every son will return one value,
which implies one bottom-top communication per
subcomponent. Given a component at level k with pk
subcomponents that is running a reduction, the
amount of communications (hk) will be pk, one per
subcomponent. Then the cost is given by Equation 5.

(5)

The resulting equation for the execution time for a
given algorithm designed for the Multi-BSP engine is
given by Equation 6.
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(6)

Next subsection presents an example of an algorithm
designed using the proposed engine, applying specific
specification for the partition, work, and reduce func-
tions.

4.4. A sample Instance of the Proposed Engine

This subsection describes a simple example of the
proposed engine applied to solve a simple decompos-
able problem. This sample provides a baseline to
design and build more complex instances for solving
problems that only need to perform the three basic
functions included in the engine: partition, work and
reduction.
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The Partition function is executed splitting the
original data, one slice per subcomponent. The pro-
cessing is performed recursively over the MBSP-Tree
and the data slice of a component is the source for the
next partition call inside of its subcomponents. When
the recursion reaches the stop phase, in component at
level 0, processors run the Work function. Finally, the
Work function will return the result and a master pro-
cess will merge these results with the Reduce function.
The result of the Reduce function is sent to the father
component. The process of executing partition induc-
tively, working in processors and finally executing the
reduction recursively is represented in Fig. 5.

Said that, it is important to note that not every par-
allel algorithm will fit with the general scheme in the
proposed engine. The recursive divide and conquer
strategy is not usually the best fit for problems that
cannot be partitioned in an arbitrary way.

For designing portable MultiBSP algorithms
applying the engine, data should be able to be parti-
tioned recursively over the hardware architecture dis-
covered.

Furthermore, the programmer does not know a
priori the architecture of the computers for which he is
designing a specific program. A programmer may
design a specific algorithm tightly coupled to a given
computer, but in that case, it is highly probable that
the algorithm will not be able to exploit efficiently the
features of other hardware platforms (e.g., when a
larger number of computing resources/cores are avail-
able). In some cases, the algorithm will not be able to
run on a different architecture. Using the proposed
engine allows the programmer to design and imple-
ment portable algorithms. Such algorithms will dis-
cover the architecture of the computer they are execut-
ing on, and will take advantage of the available
resources and topology. According to the discovered
information, the partition tasks will execute in the
induction stage, then the work function will execute in
the available resources, and the results will be reduced
in the recursion stage. This way, for any algorithm that
fits in the general scheme proposed by the engine (i.e.,
its data can be partitioned arbitrarily), the engine pro-
vides a useful method for taking advantage of the
underlying hardware architecture in a transparent and
effectively manner.

To better illustrate the benefits of the proposed
engine, this section presents as an example a “dot
product” algorithm. It obviously fit for a recursive
divide/conquer strategy (i.e., following the data paral-
lel approach) and therefore for the proposed engine.
The algorithm is simple, but it is very instructive for
the purpose of showing how to work with the proposed
engine.

Let’s start specifying the three functions needed by
the engine. The Partition function (Algorithm 4) sets
up a specification for the engine based on the original
data, a component number, and the number of com-
PROGRAMMING A
ponents in that level. For the sample instance pre-
sented, the function implements a partition usable for
the dot product algorithm: a slice of the total data
divided by the number of components. The specific
number of each component number is used to calcu-
late the slice to be used by each component
01 Partition(interval, componentNumber, n) {
02   sliceSize = interval.length / n
02 return interval.slice [
03       sliceSize * componentNumber,
04       sliceSize * (componentNumber+1)
05   ]
06 }

Algorithm 4: Partition Function
for Dot Product Instance

The Work function (Algorithm 5) receives a slice or
interval of the original data. This function is executed,
in this case, only for the leaf components. These are
the most elemental components, i.e., processors with
their nearest memory. As it was shown in the Fig. 5,
every thread working at this level represents a direct
mapping between the number of processors and the
number of threads (i.e., one thread per processor).
The returned value will be used by the Reduce algo-
rithm as it is shown next.
01 Work (slice) {
02 for value in slice {
03        result += value*value
04 }
05 return result
06 }

Algorithm 5: Work Function for Dot Product Instance
Finally, the Reduce function (Algorithm 6)

receives an array of values. The input values are
obtained either as a result of the Work function or as a
result of another execution of the Reduce function in
son components.
01 Reduce( arrayValues ) {
02 for v in arrayValues {
03 result += arrayValues[i]
04 }
05 }

Algorithm 6: Reduce for Dot Product Instance

5. EXPERIMENTAL ANALYSIS
This section reports the values for g and L parame-

ters obtained for different architectures using the pro-
posed benchmark. These values will be used later in
result validation of the algorithm designed using the
proposed engine, contrasting the real time vs. the esti-
mated time as reported by the model.
ND COMPUTER SOFTWARE  Vol. 45  No. 8  2019
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Fig. 6. hwloc output describing the topology of the dell32 multicore computer.
5.1. Architectures Used in the Experimental Analysis

For the reported experiments, the hierarchical lev-
els of the considered architectures are especially rele-
vant. The main goals of the experimental analysis are
to verify the values reported for the Multi-BSP param-
eters computed correspond with the theoretical values.

Three real multicore infrastructures were selected
for the experimental analysis, featuring a reasonably
large number of cores and interesting cache levels:

λ Instance #1 is dell32, whose architecture is shown
in Fig. 6 (the diagram obtained by applying hwloc).
dell32 has four AMD Opteron 6128 Magny-Cours
processors with a total of 32 cores, 64 GB RAM, and
two hierarchy levels.

λ Instance #2 is jolly, whose architecture is shown
in Fig. 7 (the diagram obtained by applying hwloc).
jolly has four AMD Opteron 6272 Interlagos proces-
sors with a total of 64 cores, 128 GB RAM, and three
hierarchy levels.

λ Instance #3 is XeonPhi node in the Cluster
FING high performance computing platform from
Universidad de la República, Uruguay [6]. Xeon Phi
has 60 cores, 8G of RAM, L2 cache of 512Kb and L1
Cache of 32Kb. Each core has four process units for
hyperthreading, making a total of 240 physical threads
and its architecture is presented in Fig. 8.
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 
For each of the targeted architectures, the first
stage is to specify the corresponding instances in the
Multi-BSP model. The following description pro-
ceeds step-by-step in the process of building the spec-
ification, for a better understanding of the Multi-BSP
formulation.

In the case of instance #1, the dell32 computer, the
procedure to build the specification starts from bottom
(cores) to upper levels and builds the components in
tuples that share a memory space. The first tuple is
composed of a single core at level0. This core does not
share any memory with any other component, so its
shared memory is 0 and both parameters g and L are
zero by definition: tuple0 = p0 = 1, g0 = 0, L0 = 0, m0 = 0.
Regarding the following level, the four basic compo-
nents in level0 share the L3 cache memory with a size
of 5 MB, building a new Multi-BSP component level1.
This new component is formally described by the
tuple, tuple1 = p1 =4, g1, L1, m1 = 5 MB. Finally, all
eight components in level1 share the RAM memory,
with size of 64 GB, building the next and last level, lev-
el2, in a Multi-BSP specification. This one is formally
described by tuple2 = p2 = 8, g2, L2, m2 = 64 GB.

The final step is to join all tuples using a sequence
for a complete Multi-BSP machine specification and
discard the level0 for our benchmark proposal,
because the values of g0 and L0 are known by defini-
45  No. 8  2019
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Fig. 7. hwloc output describing the topology of the jolly.

Fig. 8. hwloc output describing the topology of the XeonPhi co-processor.
tion. The architecture of instance #1 is then described
by Eq. 16.

(16)

Using the same procedure, the Multi-BSP specifi-
cation for instance #2, jolly is built. Again, level0 is

=  = = 

 = = 

1 1 1 1 1

2 2 2 2

4, , , 5 ,
8, , , 64

[
] 

M p g L m MB
p g L m GB
PROGRAMMING A
described by tuple0 = p0 = 1, g0 = 0, L0 = 0, m0 = 0.
Level0 has the same specification in all machines,
except for cores that use the hyper threading technol-
ogy (in that case, an extra level is need to specify phys-
ical threads).

After that, there are two components sharing the
L2 cache, with a size of 2 MB. The level1 is described
ND COMPUTER SOFTWARE  Vol. 45  No. 8  2019
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Fig. 9. Time for h-communications in dell32.
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Fig. 10. Time for h-communications in jolly.
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Fig. 11. Time for h-communications in Xeon Phi.
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by tuple1 = p1 = 2, g1, L1, m1 = 2 MB. The compo-
nents at level1 are grouped by sharing four L3 cache
memories, with a size of 6 MB, building the level2, as
defined by tuple2 = p2 = 4, g2, L2, m2 = 6 MB. In the
last level, eight components from level2 are grouped.
They share the RAM memory, with a size of 128 GB,
as specified by tuple3 = p3 =8, g3, L3, m3 = 128 GB.

Finally, using the same procedure previously
applied to the dell32 architecture (i.e. joining all tuples
and discarding level0), the Multi-BSP specification is
expressed in Eq. 17.

(17)

The third architecture is the XeonPhi co-proces-
sor. Applying the same procedure, at the bottom level
the processing units are identified, and they are
included in the level0. Like in the other architectures
studied, the processing units do not share memory at
all and the definition for this level is: tuple0 = p0 = 1,
g0 = 0, L0 = 0, m0 = 0. After that, there are four com-
ponents at level0, sharing the L2 cache, which has a
size of 512Kb. Therefore, level1 is described by tuple1 =
p1 = 4, g1, L1, m1 = 512 Kb. Finally, as described in
Fig. 8, the last level is tuple2 = p2 = 60, g2, L2, m2 =
7698 Mb.

The aforementioned instances of the Multi-BSP
model are applied in this article to predict the running
time of a Multi-BSP algorithm executed in each com-
puter. The gi and Li parameters in each tuple must be
previously calculated using the benchmarking proce-
dure explained in the previous section. Next section
reports the values of g and L obtained for both archi-
tectures at each level.
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5.2. Performance Results for the Studied Architectures

The performance experiments are oriented to
determine the execution time of a simple algorithm
designed and implemented using the proposed engine.
Thus, this subsection reports the time to perform h-com-
munications in each level, increasing the number h, as
proposed in the coreBenchmark function.

The obtained results are reported in Figs. 9–11.
Figure 9 reports the h-communications in each level
for dell32 (level1 and level2). Figure 10 reports the
same results for jolly (level1, level2, and level3). Finally,
Fig. 11 reports the h-communications in each level for
Xeon Phi.
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Table 1. Results of g and L parameters per level for dell32, jolly and Xeon Phi

dell 32 jolly Xeon phi

Level 2 1 3 2 1 2 1

g 977.5 334.9 1315.9 549.9 105.3 2470.1 1947.9
L 15550.2 7792.9 16184.4 7157.9 498.2 1380955.3 1322578.2
In dell32, all level1 communications are within the
shared memory (L3 cache), so they are twice faster than
in level2, which use the RAM memory. For jolly, the
communications in level1 are within the L2 cache, thus
they are three times faster than in level2, where commu-
nications are performed through the L3 cache. In turn,
they are 1.5× faster than those in level3 of the hierarchy,
which are performed by accessing the RAM memory.

Finally, the least squares method is applied to esti-
mate the values of gi and Li over the h-communica-
tions for each level. The final values for dell32, jolly
and Xeon Phi are reported in Table 1.

5.2. Dot Product Engine Instance Analysis
For validating the results computed in the previous

subsection, an experiment was conducted using the
dot product implemented over the MultiBSP engine.
The validation process involves the following steps
(applied for different vector sizes):

1. Estimate the number of communications and syn-
chronizations at each level, by using hardware counters.

2. Compute the values of gi and Li parameters using
the proposed benchmark.

3. Compute the runtime of the algorithm using the the-
oretical cost model for Multi-BSP, as presented in [10].

4. Execute the dot product algorithm.
PROGRAMMING A

Fig. 12. Theoretical vs real cost for the dell32 computer.
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5. Compare the execution time of the dot product
with the theoretical prediction of its time.

Figures 12–14 reports the comparison of the theo-
retical costs against the real costs for communications
and synchronizations when executing the dot product
algorithm implemented in the proposed engine. Fig-
ures show the execution time of dot product algorithm
using the proposed MBSP engine vs. the estimated
time using the theoretical model, considering an
incremental size of the input data.

Results in Figs. 12–14 show the accuracy of the
estimated time when compared to the real time. Rela-
tive errors are between 0 and 7%. In dell32, the mean
error is 6% and the maximum error is 9%. In jolly, the
mean error is 7% and the maximum error for the pre-
dicted time is 17%. The best results were obtained for
Xeon Phi, for which the mean error is just 2% and the
maximum error is 5%. These results suggest that the
estimation provided for the dot product algorithm is
accurate enough with respect to the real time for each
studied architecture.

6. CONCLUSIONS AND FUTURE WORK

This article presented a proposal for a simplified
approach to design and implement algorithms using
the MultiBSP model.
ND COMPUTER SOFTWARE  Vol. 45  No. 8  2019

Fig. 13. Theoretical vs real cost for the jolly computer.
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Fig. 14. Theoretical vs real cost for the Xeon Phi co-processor.
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The proposed approach includes a methodology
for automatically discovering the hardware features of
a given computer and an engine to design and imple-
ment parallel algorithms following a general specifica-
tion procedure. By following this approach, the pro-
gramming does not need to focus on specific details of
the MultiBSP implementation and benchmarking,
which are encapsulated by the proposed engine. The
programmer is encouraged to design MultiBSP algo-
rithms using the general specification, based on a
recursive divide and conquer strategy deployed over
the architecture components (i.e., cores, cache, and
RAM memory).

An implementation of a MultiBSP benchmark to
characterize the underlying architecture is also pre-
sented. The benchmark is applied by the proposed
engine, which also uses a discovering process to exe-
cute MultiBSP algorithms, hiding all the details about
data-binding and pinning threads to the programmer.

The validation of the proposed implementations
was performed over three modern high-performance
architectures and a sample of the proposed engine was
built and studied for solving a decomposable problem,
the dot product algorithm.

The studied sample algorithm was used to analyze
the theoretical execution time estimated using the cost
model of MultiBSP against the real time of the dot
product implementation in the proposed engine.
Accurate results were obtained, accounting for mean
relative errors between 2 and 7%. The best results were
obtained for Xeon Phi, for which the mean error was
just 2% and the maximum error is 5%.

The proposed methodology provides a foundation
for developing a practical approach for a framework
that includes a set of tools for designing, implemented,
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 
and evaluating MultiBSP algorithms and accurate
predict their execution times.

The main lines for future work are related to extend
the analysis of the proposed methodology, e.g., by
studying the capabilities of the engine with new, more
complex algorithms. The engine can be extended to
solve non-decomposable problems, taking advantage
of its modular design and including specific problem
knowledge defined by the user (i.e., the engine auto-
matically handles the thread affinity, the parallel exe-
cution, and data locality for the partition function
defined by the user). The hardware discovering pro-
cess can be extended with extra levels including a net-
work discovering process using specific software
libraries and characterizing affinity and data-locality
according to network speed and bandwidth.
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