
ISSN 0361-7688, Programming and Computer Software, 2019, Vol. 45, No. 7, pp. 365–371. © Pleiades Publishing, Ltd., 2019.
Dynamic Detection of Use-After-Free Bugs
S. A. Asryanb,*, S. S. Gaissaryana,c,e,f,** , Sh. F. Kurmangaleeva,***, A. M. Aghabalyand,****,

N. G. Hovsepyand,*****, and S. S. Sargsyand,******
a Ivannikov Institute for System Programming, Russian Academy of Sciences, Moscow, 109004 Russia

b Institute of Problems in Informatics and Automation, Armenia National Academy of Sciences,
Erevan, 0014 Armenia

c Faculty of Computational Mathematics and Cybernetics, Moscow State University,
Moscow, 119991 Russia

d Erevan State University, Erevan, 0025 Armenia
e Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, 141700 Russia

f State University—Higher School of Economics, Moscow, 101000 Russia
*e-mail: asryan@ispras.ru

**e-mail: ssg@ispras.ru
***e-mail: kursh@ispras.ru

****e-mail: anna.aghabalyan@ispras.ru
*****e-mail: narekhnh@ispras.ru

******e-mail: sevaksargsyan@ispras.ru
Received February 15, 2019; revised February 15, 2019; accepted February 15, 2019

Abstract—A novel method for detecting use-after-free bugs based on the program dynamic analysis is
described. In memory unsafe programming languages, such as C or C++, this class of bugs mainly occurs
when the program tries to access an area of dynamically allocated memory that has been already freed.
For each program execution path, the method checks the correction of the allocation, deallocation, and
access operations. Since the dynamic analysis is used, bugs can be found only in the parts of the code that was
actually executed. The symbolic program execution with the help of SMT (Satisfiability Modulo Theories)
solvers is used. This allows us to generate data the processing of which produces new execution paths.
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1. INTRODUCTION
Software often contains bugs of the type
• use-after-free (UAF) and
• buffer or heap overflow.
Since a large part of software is used in critically

important applications, bugs can cause serious conse-
quences. There are a number of tools that help resolve
this problem using static [1, 2] and dynamic [3–7]
analysis.

Static analysis examines the code without execut-
ing it. A drawback of this method is that no informa-
tion about the state of the program during execution
(registers, program execution trace, input data, etc.) is
available, which results in a large number of false pos-
itives. For this reason, static analysis is mostly used
prior to the dynamic analysis to reveal fragments of the
program that can potentially contain bugs.

The tool described in [1] designed for detecting
UAF bugs performs the analysis similar to the analysis
of available expressions (the expression x + y is avail-

able at the point p if this expression is computed on
any path from the entry point to p and x and y remain
invariable after the last such computation until p [8]).
All paths in the program are examined and the condi-
tion object is defined before its use is checked. If this
condition is not satisfied, the memory use is consid-
ered erroneous, and a message is generated.

GUEB [2] is based on the examination of the pro-
gram binary code. The process of analysis is divided
into two main phases. In the first phase, the heap
access and address assignment operations are traced
(the correspondence between pointers and heap ele-
ments). The pairs {address, size} are stored in the sets
alloc_set and free_set when memory is allocated and
freed, respectively.

In the second phase, UAF bugs are detected. Using
the data collected in the first phase for each point in
the program, the tool constructs the set access_heap
that contains all pairs {address, size} available at this
point. If the intersection of the sets access_heap and
free_set is nonempty, then a UAF bug is registered.
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Fig. 1. An example of program from [10].

void top(char input[4]) {
int cnt=0;
if (input[0] == ’b’) cnt++;
if (input[1] == ’a’) cnt++;
if (input[2] == ’d’) cnt++;
if (input[3] == ’!’) cnt++;
if (cnt >= 3) abort(); // error

}

A reason for the popularity of dynamic analysis is
its capability to examine programs at run time, which
gives access to registers and memory contents. The
tool Avalanche [3] iteratively analyzes the program’s
execution code based on dynamic binary translation.
In the process of analysis, the tool computes the input
data of the program in order to automatically traverse
all attainable paths in the program and detect its
abnormal termination.

In DangNull [4] and FreeSentry [5], the focus is on
detecting and nullifying pointers to the dynamically
allocated memory after this memory is freed, thus pre-
venting UAF bugs. Both tools use static instrumenta-
tion of programs.

Undangle [6] also prevents UAF bugs. This tool
labels the return value of each memory allocation
function and uses the analysis of tainted data for trac-
ing these labels. When memory is freed, the tool
checks which memory locations are associated with
the corresponding label and detects dangling pointers
(i.e., the pointers that reference an already freed mem-
ory location).

The tool Mayhem [7] is based on the method of
bug detection in the binary code that combines offline
and online approaches to the symbolic execution of
programs. The offline approach sequentially examines
the program execution paths. During each run, the
tool covers only one execution path. A drawback is
that the common initial fragment of several paths is
repeatedly executed at each run of the program. The
online approach examines all possible execution paths
simultaneously, which can lead to low memory situa-
tions.

The combination of these two approaches works as
follows. When the limiting value of the memory con-
sumption is achieved, control points are created, and
the examination of some paths is suspended, and data
about the current state of the execution, symbolic exe-
cution context, and specific input data are saved.
When resources become available (the examination of
certain paths has completed), one of the control points
is recovered (i.e. the execution up to this point is
reproduced using the saved data). Next, the symbolic
execution context is loaded, and the analysis of a new
path begins. This approach makes it possible to avoid
the repeated symbolic execution of the program up to
the control point.
PROGRAMMING A
In this paper, we consider the approach based on
the dynamic analysis and dynamic instrumentation
[9, 10]. We describe a method for detecting UAF bugs
that checks the correctness of using pointers for all
possible execution paths of the program. The method
is based on the code coverage algorithm used in SAGE
[11], and it uses the infrastructure of the dynamic ana-
lyzer Triton [10].

In this work, we modified the code coverage algo-
rithm used in Triton, which significantly improved its
performance, and we added the support of the analysis
of programs that work with input data read from files;
this feature was not supported in the implementation
of Triton.

In the second section of this paper, we describe the
code coverage algorithm used in Triton and in the pro-
posed modification. In the third section, we discuss
the initial implementation of UAF bug detection and
its combination with the dynamic code coverage. The
results are presented in the fourth section.

2. THE CODE COVERAGE ALGORITHM
2.1. Code Coverage in Triton

In this paper, we use the algorithm for maximizing
code coverage developed in Microsoft and used in
SAGE [11]. This algorithm is partially implemented in
Triton. It consists of two phases:

• the choice of initial input data and gathering
constraints for each program execution path;

• generating new input data by solving logic
expressions consisting of constraints gathered in the
first phase.

Consider the example of a program shown in Fig. 1.
In order to examine all paths of this program, it

must be provided with the input string bad!. To produce
the required data, the algorithm starts by running the
program with the initial input string, which is placed in
the list of input data. After the first run, the set of con-
straints < i0 ≠ b, i1 ≠ a, i2 ≠ d, i3 ≠ ! >, where i0, i1,
i2, and i3 are the memory locations input [0], input [1],
input [2], and input [3], respectively, is obtained.

In the course of the algorithm execution, these
constraints are solved to generate, for each element in
the list of input data, descendant data satisfying these
constraints; the generated data are placed in the list of
input data. The program is again run on each element
of this list, and the work of the algorithm is resumed.

This process continues until all elements in the list
of input data are examined (the pseudocode of the
algorithm is shown in Fig. 3). By applying this algo-
rithm to the program shown in Fig. 1 with the initial
input string good, we obtain the list of solutions shown
in Fig. 2.

Since the work of this algorithm requires the pro-
gram to be run many times, Triton implements the
option of saving the program state. This significantly
ND COMPUTER SOFTWARE  Vol. 45  No. 7  2019
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Fig. 2. Input data after each iteration of the algorithm.
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Fig. 3. Pseudocode of the program code coverage algorithm.

1. runCodeCoverage(inputSeed):
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.

1. computeNewInputs(input):
2. // solve constraints using SMT solver

childInputs = {}

for i in range(input.bound, pc.length):
if (pc[0..(i-1)]) and not(pc[i]):
I is solution for pc :
newIn=updateWithoutOverwrite(input,I)
newIn.bound = i
childInputs.append(newIn)

pc = ComputePathConstraint(input)
3.
4.
5.
6.
7.
8.
9.

10.
11.

12.

takeSnapshot()
inputSeed.bound = 0
inputList = {inputSeed}

input = getInputFromList(inputList)
convertMemoryToSymbolic(input)
childInputs = computeNewInputs(input)
while input childInputs is not empty:
inputList.append(input)

if len(inputList)>0 and snapshotEnabled()
restoreSnapshot()

return childInputs

while inputList is not empty:
improves the performance of the algorithm. Note that
a part of the SAGE algorithm [11] designed to
decrease the set of input data was not implemented in
Triton. For this reason, the tool multiply runs the pro-
gram under analysis on the input data that do not open
new execution paths. In this work, we added new fea-
tures to the code coverage algorithm that considerably
improve the performance.

2.2. Modification of the Coverage Algorithm
In the initial implementation of the SAGE algo-

rithm [11] in Triton, the program always obtained the
last element from the list of input data after every iter-
ation without taking into account that the number of
program’s basic blocks opened using this element.
As a result, together with the input data affecting the
code coverage, the input data that did not open any
new paths were processed.

Since the algorithm generates descendant data of
each input element, the length of the list of input data
significantly increases. Therefore, in order to execute
the algorithm efficiently, the generated input data
should be prioritized.
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 
In the algorithm modification proposed in this
paper, each element in the list of input data is assigned
a weight equal to the number of basic blocks opened by
this element. At the start of the algorithm, the input
data are assigned a zero weight. During the first itera-
tion of the algorithm, the weights of the initial input
data are calculated.

After each iteration, the weights are updated as fol-
lows: the weights of the examined elements are passed
to the descendant elements (obtained by solving the
logic equations). Thus, the hierarchical traversal of
input data is used. Before each run of the program, the
element with the maximum weight is chosen from the
list of input data. This significantly simplifies the list
of solutions as is shown in Fig. 4.

It is seen in this figure that after adding weights the
amount of input data to be examined decreased almost
by a factor of two. This significantly improves the per-
formance of the algorithm (in some tests, the perfor-
mance increased almost by 90%).

Another drawback of Triton is the support of only
the programs that accept only command-line argu-
ments at the input. To extend the range of programs
45  No. 7  2019
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Fig. 4. Input data after each iteration of the algorithm after adding weight.

good

godd

bood

boo!

bad!

baod

bad d

god!

goo!

Fig. 5. An example of UAF.

1. char* ptr = (char*) malloc (SIZE);

malloc

ptr

3. if (run_status)

2. // check status and free ptr

5. // run program

11. // double-free: free previously freed memory

6. if (err)

7. goto exit;

8. return;

13. return;

12. free(ptr);

4. free(ptr);

9. 

10. exit; 

free

ptr

return

malloc

ptr

free

ptr ptr

Double return
that can be analyzed, we added the support of pro-

grams that use files as the source of input data. We also

added the capability of determining the ranges of input

data that will be marked as symbolic ones in the course

of the analysis.

The approach to calculating weights described

above is not the only possible one, and in future

research other techniques for determining weights will

be considered.

3. BUG DETECTION

The dynamic analysis of programs is based on the

analysis of programs in the course of their execution.

This makes it possible to analyze programs taking into

account specific execution conditions and use specific

values of pointers. A drawback of dynamic analysis is

the requirement to have a good code coverage. How-

ever, for the detected bugs, input data on which the
PROGRAMMING A
bug is reproduced can in many cases be generated. The

UAF bug is caused by two successive events:

• creation of a dangling pointer;

• memory access using a dangling pointer.

An example of UAF is shown in Fig. 5. After check-

ing the condition in line 3, the memory referenced by

the pointer ptr is freed (line 4), and then the control is

transferred to line 12, where the same memory loca-

tion is freed again.

3.1. Triton’s Bug Detection Algorithm

Using the program instrumentation, the algorithm

traces the memory allocation (malloc) and freeing

(free) functions. At the start of the algorithm, two sets

(allocSET and freeSET) are created. They are used to

trace the memory locations that were allocated and

then freed during the program execution. The ele-

ments of these sets are pairs (address, size).
ND COMPUTER SOFTWARE  Vol. 45  No. 7  2019
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Fig. 6. An example of the algorithm operation.

1. malloc(A)

1. malloc (A)

allocSET = {A}

freeSET = {}

2. malloc (B)

allocSET = {A,B}

freeSET = {}

3. use (B)

allocSET = {A,B}

A ∈ allocSET

freeSET = {}

4. free (B)

B ∈ freeSET

allocSET = {A}

B ∈ allocSET

allocSET = {A}

freeSET = {B}

5. free (B)

freeSET = {B}

allocSET = {A}

B ∈ freeSET

Предупреждение

[1] use after free

2. malloc(B)
3. use(A)
4. free(B)
5. free(B)

allocSET = {}

freeSET = {}

Table 1. Comparison results

Proposed 

approach
Mayhem

Triton 

UAF

Use of code coverage + + –

Offline approach to 

symbolic execution

+ + +

Online approach to 

symbolic execution

– + –

Priorities of input data 

to be processed

+ + –

Support of files as 

sources of input data

+ + –
Each time when malloc or free are called, the sets

allocSET and freeSET are updated by adding or

removing elements with the corresponding address

and size of allocated memory. When malloc is called, a

new element (address_2, size_2) is created and added

to the set allocSET and removed from the second set if

it is included in freeSET (i.e., both the address and size

coincide).

If only the address of an element matches, then the

address and size are additionally processed before

updating the sets (if size_2 < size_1, then the element

(address_2 + size_2, size_1 – size_2) is added to free-
SET. When the function free is called, the correspond-

ing element is moved from the set allocSET to freeSET.

When memory access instructions are executed, it

is checked whether the pointer is in both sets. A UAF

bug is registered in two cases: the element is found in

freeSET but is not included in allocSet; one and the

same element occurs in freeSET more than once. The

work of the algorithm is illustrated in Fig. 6.

3.2. The Proposed Method

To improve the efficiency of bug detection, we pro-
pose to combine both algorithms described above. The
combined method allows one to find UAF bugs on
various execution paths that occur due to checks in
deeper and nontrivial parts of the program. Figure 7
shows examples of programs in which double deallo-
cation bugs cannot be found without using informa-
tion about the code coverage (due to the presence of
conditional control transfers that will be executed only
if the program is run on specific input data).

For the examples shown in Fig. 7, the UAF bug
occurs if the program execution reaches lines 21 and
23 in the first and the second program, respectively.
The proposed method makes it possible to find the
input data that guarantee that the desired block in the
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 
code (lines 20–21 and 22–23 in Fig. 7) is reached and
then check this part of the code for UAF bugs.

3.3. Comparison of Dynamic Analysis Approaches
Table 1 compares the approach described in this

paper with the approach used in Mayhem and Triton.

4. RESULTS

The proposed method was tested on manually gen-
erated benchmarks including those shown in Figs. 1
and 7; the testing results are presented in Fig. 8. These
results show that the performance on manually gener-
ated benchmarks increased by about 80% compared
with the Triton implementation. The trial runs of the
analyzer on real-life programs showed that in the
majority of cases the number of symbolic equations is
so large that the Triton’s code coverage algorithm can-
not resolve these equations for all paths.

To test the proposed approach, we intentionally
injected UAF bugs into the code of real-life projects.
We analyzed the projects gvgen from the package
45  No. 7  2019
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Fig. 7. Double deallocation bugs. The first example is based on on the UAF bug in the program libssh. In the first example, the
bug can occur in line 26, and in the second example in line 27.
graphviz, jasper from the package libjasper-runtime,

and gif2rgb from the package gif lib. In these projects,

bugs were found at different injection levels. In the

case of gvgen, bugs were injected in a number of func-

tions that call each other (the maximum injection

depth was three levels (functions)). The injected code

was a conditional expression depending on the input
PROGRAMMING A

Fig. 8. Comparison results in terms of the analysis execu-
tion time.
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data and the code of the bug itself. The satisfaction of

this condition resulted in the occurrence of the bug.

In the projects jasper and gif2rgb, injection was

done only in one function due to the complexity of the

symbolic equations. The injected code was exactly the

bug code. We also selected specific code fragments in

real-life programs that contained UAF bugs on which

the proposed approach was able to find bugs.

5. CONCLUSIONS

A method for detecting the use-after-free (UAF)

bugs occurring due to incorrect processing of dynamic

memory pointers is described. The method was imple-

mented using the Triton infrastructure [10] based on

the algorithm described in [11] and the UAF bug

detection algorithm. The modification and improve-

ment of the existing implementation allowed us to sig-

nificantly improve the performance of the analysis.
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