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Abstract—Computer algebra methods are used to investigate properties of a nonlinear algebraic system that
determines the equilibrium orientations for a system of two bodies connected by a spherical hinge that moves
along a circular orbit under the action of gravitational torque. To determine the equilibrium orientations for
the system of two bodies, the system of 12 stationary algebraic equations is decomposed using linear algebra
methods and algorithms for Gröbner basis construction. Depending on the parameters of the problem, the
number of equilibria is found by analyzing the real roots of the algebraic equations from the Gröbner basis
constructed. Evolution of the conditions for equilibria existence in the dimensionless parameter space of the
problem is investigated. The effectiveness of the algorithms for Gröbner basis construction is analyzed
depending on the number of parameters for the problem under consideration.
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1. INTRODUCTION
In this work, we apply computer algebra methods

to investigate the dynamics of a system of two bodies
(satellite and stabilizer) connected by a spherical hinge
that moves in a central Newtonian force field along a
circular orbit. Determining the equilibria for the sys-
tem of bodies on a circular orbit is of practical interest
for designing composite gravitational orientation sys-
tems of satellites that can stay on the orbit for a long
time without energy consumption. The dynamics of
various composite schemes for satellite–stabilizer
gravitational orientation systems was discussed in
detail in [1].

In this paper, we analyze the spatial equilibria
(equilibrium orientations) of the satellite–stabilizer
system in the orbital coordinate system for certain val-
ues of the principal central moments of inertia of the
bodies. The action of the stabilizer on the satellite pro-
vides new equilibrium orientations for the two-body
system, as well as introduces dissipation into the system.

Equilibrium orientations of the satellite–stabilizer
system are determined by real roots of a system of alge-
braic equations. To find equilibrium solutions, the

system of algebraic equations is decomposed using lin-
ear algebra methods and algorithms for Gröbner basis
construction. Some classes of equilibrium solutions
are obtained explicitly from algebraic equations
included in the Gröbner basis. The parameter values
that cause the change in the number of equilibrium
orientations for the satellite–stabilizer system are
found. Symbolic-numerical analysis of the evolution
of conditions for equilibria existence in the space of
dimensionless parameters is carried out.

The effectiveness of Gröbner basis construction
algorithms is analyzed depending on the number of
parameters for the problem under consideration. The
investigation is carried out using the Maple computer
algebra system [9].

The algebraic methods for determining the equilib-
rium orientations of the two-body system described in
this work were successfully used to analyze the dynam-
ics of a satellite–gyrostat system [2, 3], as well as the
dynamics of a satellite with an aerodynamic orienta-
tion system [4]. In mechanics, computer algebra is
widely employed to analyze polynomial systems with
the use of symbolic computations. Some computer
51
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Fig. 1. Basic coordinate systems.
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algebra algorithms for solving these problems were
described in [13, 15].

2. EQUATIONS OF MOTION

Let us consider the system of two bodies connected by
a spherical hinge that moves along a circular orbit [5].

To write equations of motion for two bodies, we
introduce the following right-handed Cartesian coor-
dinate systems (see Fig. 1):  is the absolute
coordinate system with the origin at the Earth’s center
of mass C (the plane  coincides with the equato-
rial plane and the -axis coincides with the Earth’s
axis of rotation) and  is the orbital coordinate
system. The OZ-axis is directed along the radius vector
that connects the Earth’s center of mass  with the
center of mass of the two-body system , the OX-axis
is directed along the linear velocity vector of the center
of mass O, and the OY-axis is directed along the nor-
mal to the orbital plane. The coordinate system for the
ith body ( ) is , where , , and 
are principal central axes of inertia for the ith body.
The orientation of the coordinate system  with
respect to the orbital coordinate system is determined
using the pitch , yaw , and roll  angles [1]:
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Suppose that  are the coordinates of the
spherical hinge P in the body coordinate system

;  are principal central moments of
inertia; M = ; Mi is the mass of the
ith body; , , and  are the projections of the abso-
lute angular velocity of the ith body onto the axes ,

, and ; and  is the angular velocity for the cen-
ter of mass of the two-body system moving along a cir-
cular orbit. Then, using expressions for kinetic energy
and force function, which determines the effect of the
Earth’s gravitational field on the system of two bodies
connected by a hinge [1], the equations of motion for
this system can be written as Lagrange equations of the
second kind by symbolic differentiation in the Maple
system:

(2)

Here,

(3)

= − α β ,
= α γ + α β γ ,
= α β − α β γ .

( )
31

( )
32
( )
33

sin cos

cos sin sin sin cos

cos cos sin sin sin

i
i i

i
i i i i i

i
i i i i i

a

a

a

, ,( 0 0)ia

i i i iO x y z , ,i i iA B C
+1 2 1 2/( )M M M M

ip iq ir
iOx

iOy iOz ω0

+ − − ω − = ,�

2 ( ) ( )
0 32 33( ) 3 ( ) 0i i

i i i i i i iiA C B q r C B a ap

+ − + +

+ + +
+ −

− −
+ − −

� �

�

2 ( ) ( ) ( ) ( ) ( ) ( )
13 13 23 23 33 33

( ) ( ) ( ) ( ) ( ) ( )
13 12 23 22 33 32

( ) ( ) ( )
13 13 11

( ) ( )
11 12

( ) ( ) ( )
23 23 21

( ) ( )

( )

( ( ( )

( ))

( ( )

i j i j i j
i i i ji j

i j i j i j
i j j

i j j
i j j j j

j j
j j j

i j j
j j j j

B Ma Ma a a a a a a aq q

Ma a a a a a a a r
Ma a a r p a r a

q q a p a

a r p a r a q −
+ − − −

+ ω + +
+ −

+ − − − ω − = ,

( ) ( )
21 22

( ) ( ) ( ) ( ) ( )
33 33 31 31 32

2 ( ) ( ) ( ) ( ) ( ) ( )
0 13 11 23 21 33 31

( ) ( ) ( )
33 31 31
2 2 ( ) ( )

0 33 31

( ))

( ( ) ( )))

( ( )

3 ( ))

(( ) ) 3 ( ) 0

j j
j j

i j j j j
j j j j j j

i j i j i j
i j

i i j
i j

i i
i i i i i i i

q a p a

a r p a r a q q a p a

Ma a a a a a a a

a a a a a

A C Ma r p A C a a

+ + + +

− + +
− −

− −
+ − −

�
�

�

2 ( ) ( ) ( ) ( ) ( ) ( )
12 13 22 23 32 33

( ) ( ) ( ) ( ) ( ) ( )
12 12 22 22 32 32

( ) ( ) ( )
12 13 11

( ) ( )
11 12

( ) ( ) ( )
22 23 21

( ) ( )

( )

( ( ( )

( ))

( ( )

i j i j i j
i i i i j j

i j i j i j
i j j

i j j
i j j j j

j j
j j j

i j j
j j j j

C Ma Ma a a a a a a a qr

Ma a a a a a a a r
Ma a a r p a r a

q q a p a

a r p a r a q −
+ − − −

− ω + +
+ −

+ − + − ω − = .

( ) ( )
21 22

( ) ( ) ( ) ( ) ( )
32 33 31 31 32

2 ( ) ( ) ( ) ( ) ( ) ( )
0 12 11 22 21 32 31

( ) ( ) ( )
32 31 31
2 2 ( ) ( )

0 31 32

( ))

( ( ) ( )))

( ( )

3 ( ))

(( ) ) 3 ( ) 0

j j
j j

i j j j j
j j j j j j

i j i j i j
i j

i i j
i j

i i
i i i i i i i

q a p a

a r p a r a q q a p a

Ma a a a a a a a

a a a a a

B A Ma p q B A a a

= α + ω + γ ,
= α + ω + β γ ,
= α + ω + β γ .

� �

�

� �

�

� �

( )
0 21
( )

0 22
( )

0 23

( )

( ) sin

( ) cos

i
i i i

i
i i i i

i
i i i i

p a

q a

r a
ND COMPUTER SOFTWARE  Vol. 45  No. 2  2019



APPLICATION OF COMPUTER ALGEBRA METHODS TO INVESTIGATE 53
In the first three equations of (2),  and ;
in the next three equations of (2),  and .
In (3), . In (2) and (3), the dot denotes time ( )
differentiation.

3. EQUILIBRIUM ORIENTATIONS

By assuming , ,
and  in (2) and (3), as well as by intro-
ducing the designations  and , for

, we obtain the equations

(4)

which allow us to determine the equilibrium orienta-
tion for the system of two bodies connected by a spher-
ical hinge in the orbital coordinate system. In (4), we
introduce the following designations: m1 = ((A1 – C1) –

, , n1 =

((B1 – A1) – , and n2 = ((B2 – A2) –

. Taking into account the expressions for
the direction cosines from (1), system (4) can be
regarded as a system of six equations in six unknowns

, , and  ( ).
Another (more convenient) way of closing equa-

tions (4) is to add six orthogonality conditions for the
direction cosines:

(5)

Equations (4) and (5) form a closed algebraic sys-
tem of equations in 12 unknown direction cosines that
determine the equilibrium orientations of the two-
body system. For this system, the following problem is
formulated: for given , , , and , determine all
twelve direction cosines. The other six direction
cosines ( , ,  and , , ) can be obtained
from the orthogonality conditions.

In this work, we focus on symbolic methods for
analyzing equilibrium solutions given by algebraic
equations (4) and (5).
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4. ANALYZING THE EQUILIBRIUM 
ORIENTATIONS OF THE TWO-BODY SYSTEM 

BY COMPUTER ALGEBRA METHODS
Let us analyze solutions Change to “of” the system

of algebraic equations (4) and (5) in detail.
To solve the algebraic system (4) and (5), various

algorithms for Gröbner basis construction are used
[8]. Construction of the Gröbner basis is an algorith-
mic procedure that completely reduces the problem
with a system of polynomials in many variables to the
consideration of a polynomial in one variable.

The investigation is carried out using the Groeb-
ner[Вasis] package for Maple 17 [9, 10]. This package
uses a set of five algorithms to compute Gröbner bases
for monomials of various orders and various codomains
of polynomial coefficients. The type of the algorithm is
specified by the option method=meth. This option
executes the fastest universal direct method available.

Construction of the Gröbner basis for the system
(4) and (5) of 12 second-order algebraic equations,
whose coefficients depend on four parameters, is a
very complicated algorithmic problem.

To analyze the system (4) and (5), the following three
algorithms were applied. First, method=mapleF4 exe-
cutes the F4 algorithm developed by D.S. Faugere and
written in the Maple language. The F4 algorithm sup-
ports all orders of monomials and types of polynomial
coefficients from any field, as well as computations in
Ore noncommutative algebras. Second, method=fglm
executes the FGLM algorithm for Gröbner basis con-
struction, developed by Faugere, Gianni, Lazard, and
Mora [11]. Third, method=walk executes the Walk
algorithm developed by Collart, Kalkbrener, and Mall,
which supports all commutative fields and orders of
monomials; it converts the Gröbner basis from one
monomial order to another [12].

Using the plex option (lexicographic ordering by
variables), it is generally impossible to construct the
Gröbner basis for 12 polynomials  
that are the left-hand sides of the equations in the sys-
tem (4) and (5) in 12 variable direction cosines  and

 .
Below, we present results of Gröbner basis con-

struction for the system (4) and (5) in some special
cases.

The instruction Maple–infolevel[Groeb-
nerBasis] := 2 gives information on the type of
the algorithm used and its run time. All computations
were carried out on a computer with Intel Core i7 2.4
GHz and 8 GB RAM.

Case 1: . In this case, the F4
algorithm with the  option (ordering by powers)
was used to construct the Gröbner basis. The time for
computing the Gröbner basis with the F4 algorithm
and  order was approximately two hours (7124.35 s)
for a 3.668-Kb file containing the polynomials of the
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basis. We failed to recompute the resulting basis for the
 order with the FGLM algorithm because of a

program interruption caused by exceeding the allow-
able memory limit for the Maple system. The error
message was as follows: Error, (in Groebner:-Basis)
object too large.

Case 2: . This case is sim-
pler than case 1. Here, the Gröbner basis was also con-
structed using the F4 algorithm with the  option.
The time for computing the Gröbner basis with the F4
algorithm and  order was 5503.5 s for a 3375-Kb
file containing the polynomials of the basis. We also
failed to recompute the resulting basis for the 
order with the FGLM algorithm because of a program
interruption caused by exceeding the allowable mem-
ory limit. The Maple system terminated after 5952 s.

Case 3: . This case is even
simpler than cases 1 and 2. The Gröbner basis was
constructed using the Walk algorithm with the 
option for 12 polynomials  , which
were the left-hand sides of the equations in the system
(4) and (5) in 12 variables  and  :

G:=map(factor,Groebner[Basis]([f1,
… f12], plex(b21, …, a33))).

The procedure for Gröbner basis construction
involved two steps. First, the F4 algorithm was used
(its run time was 3017.5 s). Then, the Walk algorithm
was executed. The total computation time was 12 324
s. The number of polynomials in the resulting Gröbner
basis was 170, and the number of rows in the basis
exceeded one million. Nevertheless, in this basis, we
selected the following polynomial that depends only
on one variable :

(6)
Here,

To find equilibrium solutions, we had to consider
six individual cases with zero quadratic polynomials,

. As a result, we obtained the val-
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ues of  that depend only on the parameter . The
value of the direction cosine  can be found from the
second polynomial in the Gröbner basis, while  is
obtained from orthogonality conditions (5). The val-
ues of the other direction cosines can be found from
the system of equations (4).

It should be noted that, in case 3, the two-step
algorithm for computing the Gröbner basis with the
lexicographical ordering option (first, it uses the 
order and, then, recomputes the resulting basis for the

 order by using the FGLM algorithm) proved to
be more efficient. The computation time with the F4
algorithm and  order was 630.125 s for 490 poly-
nomials in the basis. The recomputation of this basis
for the  order by using the FGLM algorithm took
1823.4 s for 170 polynomials in the basis. The total run
time of the two-step algorithm was 2453.525 s, which
is five times faster than that of the Walk algorithm for
the same case. Among all methods described above,
the elimination block ordering  with explicit
specification of the method (method=walk) showed
the maximum computation time.

Equilibrium solutions for the system of two bodies
in the orbital plane for , , and  were
considered in [6, 7]. In the planar case, the system (4)
and (5) has simple solutions of four types:

(7)

In [7], planar oscillations of the two-body system were
analyzed, all equilibrium orientations (7) were deter-
mined, and sufficient conditions for the stability of the
equilibrium orientations were obtained using the
energy integral as a Lyapunov function.

The results presented above suggest that, in the
general case, the system of algebraic equations (4) and
(5) cannot be solved by direct application of the Gröb-
ner basis construction methods. Below, we consider a
combined approach to this problem.

5. COMBINED APPROACH TO THE PROBLEM

Let us consider the second, third, fifth, and sixth
equations of system (4) with respect to the variables

, , , and . These equations form a homoge-
neous subsystem
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If , then  and system (8)
is divided into two subsystems:

(9)

System (9) can be solved using Gröbner basis con-
struction methods. Let us construct the Gröbner basis
by using the FGLM algorithm with the  option for
eight polynomials  , which are the left-
hand sides of the equations in system (9) in eight vari-
ables  and  . The total computa-
tion time is 0.05 s. The resulting Gröbner basis
includes 18 polynomials. Let us write out some poly-
nomials that depend on the variables  and  from
this basis: , , and . From
the Gröbner basis constructed, we can find the solu-
tions of system (9):

(10)

(11)

In total, we have eight different solutions: four solu-
tions for  and  (solutions (10)) and four
solutions for  and  (solutions (11)). The
condition , e.g., for the solution with a22 =

 = b33 = 1, holds for the following constraints
on the system parameters: m1m2(n1n2 – 1) +

. For , we have the case of
parametric solutions to system (8) [14].

Let us now consider the first and second equations
in system (4). They form a homogeneous subsystem
with respect to the variables  and :
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If the determinant of system (12) is  = a22b31 –
 then  and a33 = 0.

Equations 4 and 5 of system (4) also form a homo-
geneous subsystem with respect to  and :
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If the determinant of system (13) is  = b22a31 –
 then  and  = 0.

If  and , then , , ,
, and system (4) takes the form

(14)

System (14) can be solved using Gröbner basis con-
struction methods. Let us construct the Gröbner basis
by using the FGLM algorithm with the lexicographic
ordering option for eight polynomials  ,
which are the left-hand sides of the equations in sys-
tem (14) in eight variables  and  :
G:=map(factor,Groebner[Basis]([f1, …
f8], plex(b21,…,a32))).

The total computation time is 0.125 s. The resulting
Gröbner basis includes 27 polynomials. From this
basis, we write out the polynomial that depends only
on one variable :

(15)

Here,

In addition, this Gröbner basis implies the following
relationships:

(16)

Taking into account relationships (16), system (14)
can be rewritten as follows:

(17)

The solution of system (17) reduces to the solution of
the biquadratic equation from (15).

Using relationships (15) and (16), we can write all
solutions of system (14).
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Solutions (18) exist if  =  and  =
 .

2. The solutions obtained under the condition
  are

(19)

Solutions (19) exist if  =  
and  =  .

3. In the third case , system (14)
has the following solutions at  and :

(20)

Solutions (20) exist if  and .
Next, as in the previous case, we consider the first

and third equations of system (4) with respect to 
and , as well as the fourth and sixth equations of (4)
with respect to  and . If  = a33b21 –

 is the determinant of the
first subsystem with respect to  and , then 
and . If  = a21b33 – b23a31 +

 is the determinant of the second
subsystem with respect to  and , then  and

. If  and , then , ,
, , and system (4) takes the form

(21)

As in the previous case, system (21) is solved by con-
structing the Gröbner basis for the system of polyno-
mials (22) with the FGLM algorithm and  option
for eight polynomials  , which are the
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PROGRAMMING A
left-hand sides of the equations in system (21) in eight
variables  and  . The total compu-
tation time is 0.172 s. The resulting Gröbner basis
includes 27 polynomials.

From this basis, we write out the polynomial that
depends only on one variable :

(22)
Here,

In addition, this Gröbner basis implies the following
relationships:

(23)

Using relationships (22) and (23), we can write all
solutions of system (21).

4. The solutions obtained under the condition
 ( ) are

(24)

These solutions exist if  =  
and  =  .

5. The solutions obtained under the condition
 are

(25)

These solutions exist if  =  
and  =  .

6. For , system (21) has the fol-
lowing solutions at  and :

(26)
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The expression  is non-negative
for any .

Thus, in the general case, we have obtained the
families of equilibrium solutions (10), (11), (18), (19),
(20), (24), (25), and (26) to the original system of 12
algebraic equations (4) and (5) under the constraints

, , , , and . The con-
ditions for satisfying these constraints can be verified
numerically for each set of system parameters.

In conclusion, it should be noted that the combi-
nation of the computer algebra and linear algebra
methods makes it possible to investigate a wide class of
equilibrium orientations for the system of two bodies
connected by a spherical hinge on a circular orbit
under certain constraints imposed on the parameters
of the problem. Based on the results presented in this
paper, using symbolic computation methods, it has
been shown that, on a circular orbit, the two-body sys-
tem can have both planar and spatial configurations in
equilibrium orientation.

Traditionally, to find steady-state configurations,
numerical methods for finding roots of systems of
nonlinear algebraic equations are employed, e.g., iter-
ation methods (simple iteration method and Seidel
method), Newton method, descent method, secant
method, and Steffensen’s method [16–20]. Disadvan-
tages of this approach are well known. Localizing the
solution that guarantees the convergence of the
method and finding all real roots are the most difficult
problems that arise when solving systems of nonlinear
equations numerically. When the coefficients of alge-
braic equations depend on the parameters of the prob-
lem, as in our case, numerical methods fail to deter-
mine the behavior of the roots in the parameter space.

In this work, we have used another approach based
on symbolic computation methods to solve the system
of nonlinear algebraic equations. It has allowed us to
reduce the system of 12 second-order algebraic equa-
tions to a polynomial in one variable, find its analytical
solution, and investigate the conditions for the exis-
tence of the solutions in the parameter space of the
problem.
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