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Abstract—Presently, a special attention is paid to the problem of information security when designing and
using objects of critical information infrastructure. One of the most common approaches used to secure the
information processed on these objects is the creation of an isolated program environment (sandbox).
The security of the environment is determined by its invariability. However, the evolutionary development of
data processing systems makes it necessary to implement new components and software in this environment
on the condition that the security requirements are met. In this case, the most important requirement is trust
in a new program code. This paper is devoted to developing a formal logical language to describe functional
requirements for program code that allows one to impose further constraints at the stage of static analysis, as
well as to control their fulfillment in dynamics.
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1. INTRODUCTION
During the last few years, the researches devoted to

information security problems pay a special attention
to protection of objects of critical information infra-
structure (CII). In this connection, a federal law
“On the Security of the Critical Information Infra-
structure of the Russian Federation” has been devel-
oped and introduced for consideration. This docu-
ment is focused on protection of CII objects against
computer hacking and malware [1]. In turn, this paper
addresses the problem of protecting CII objects
against malware.

In many cases, the threats mentioned above can
materialize because CII objects have access to the
Internet. Moreover, the existing information security
tools and systems often fail to provide guaranteed pro-
tection. For example, a research carried out by AV-
Comparatives showed that the mechanisms used in
modern antivirus software make it possible to reach
the heuristic detection level of 0.974 (Avast Internet
Security) but fail to detect 468 malware samples [2].

One of possible approaches to protect against mali-
cious software consists in using an isolated program
environment (sandbox), which is regarded as trusted
and safe as long as it preserves its invariability. How-
ever, the evolutionary development of data collection
and processing systems, as well as the access of CII
objects to the Internet, forces one to run new compo-
nents and software in this environment, which can
jeopardize its integrity and security. In this case, the

most important requirement is trust in a new content
and program code.

A secure environment providing confidence in the
incoming content can be constructed based on secure
code execution [3]. The system proposed in this paper
is an extended combination of two intensively devel-
oping approaches to malware detection: model check-
ing [4–7] and security automata for real-time moni-
toring of program execution [8–12].

Secure code execution is based on the assumption
that, if, under a priori known functional requirements,
the security of program code is not confirmed, then its
execution is prohibited. This research is aimed at
developing a formal language to describe functional
requirements for program code in order to ensure its
safe run in the developed secure execution system.

2. BRIEF SURVEY OF THE RESEARCHES
IN THE FIELD OF MODEL CHECKING

FOR MALICIOUS CODE DETECTION
When solving the malware detection problem,

model checking is used to construct a formal (mathe-
matical) model of a malicious program, which reflects
(models) its possible behavior in the operating system.
In this case, the admissible behavior of the program is
described by a specification. Based on this specifica-
tion and the model of the executable file, using the
model checking method, a decision is made whether
this program is safe to run.
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Kinder was the first to use this method for mali-
cious code detection [4]. A group of researchers pro-
posed to analyze the behavior of programs by means of
model checking so as to decide whether their behavior
is malicious. The approach proposed by these
researchers consisted in setting specifications, by
using temporal logic formulas, for each class of mali-
cious programs that exhibited a similar behavior but
significantly differed in their binary representations
and, for this reason, were misdetected by the signature
method. Each binary file of a program under analysis
was automatically translated into a model written in
the verifier’s language. Based on this model, the veri-
fier decided whether this program fell under any of the
given specifications describing families of malicious
software. To shorten the notation of the specifications,
the computation tree predicate logic (CTPL) was
developed as an extension of the well-known CTL.
The advantage of this approach is that it can detect
families of malicious programs. However, this
approach does not take into account the way a pro-
gram works with the stack and requires setting specifi-
cations by hand for all classes of malicious code.

In 2012, Song and Touili proposed a model check-
ing method to detect malicious programs taking into
account their behavior and interaction with the stack
[5]. To describe the behavioral model of malicious
code, they introduced the stack computation tree
predicate logic (SCTPL), which took into account
operations on the stack. This approach significantly
improved the accuracy of malware detection. The fur-
ther development of this approach led to the stack lin-

ear tree predicate logic (SLTPL), which was proposed
in [6].

3. DESCRIPTION OF THE SECURE CODE 
EXECUTION SYSTEM

A distinctive feature of the developed system is
extraction of the information about program behavior
both at the stage of storage and at the stage of execu-
tion (see Fig. 1). This information is compared with a
behavior specification taking into account given func-
tional requirements. In the case of match, the program
is regarded as safe.

To implement the proposed approach, the follow-
ing subproblems need to be solved:

• analysis (extraction of the corresponding infor-
mation from a given program and conversion thereof
into a form suitable for further processing (specifica-
tion));

• synthesis (construction of a secure code execu-
tion model in accordance with given functional
requirements);

• verification (running an algorithm that, based on
the inputted specification of the given program,
checks whether the program satisfies the secure code
execution model);

• execution control (implementing a program exe-
cution monitor to intercept all interactions between
the process and the operating system, check the ade-
quacy of a program state to a given configuration, and,
if required, terminate the target program).

An executable file to be analyzed is inputted to
block 1. In this block, the program code is checked for
the presence of self-modifying constructions (includ-
ing wrappers) and mechanisms that protect the code
against analysis. Compliance with these requirements
is mandatory for the analysis to continue; if the file
contains such constructions, then it is regarded as
unsafe and the analysis terminates. Next, the execut-
able file is converted from a binary representation into
a sequence of assembler commands and data used to
construct a control f low graph (CFG) and data f low
graph (DFG). This block also collects and classifies a
priori information about the functions of the program;
this information is inputted to block 2.

In the “Specification” block, based on the infor-
mation about the functions of the program, a set of
constraints on its functional capabilities is generated;
these constraints should be met for safe execution of
the program. This set includes functional require-
ments that can be checked in the secure code execu-
tion system. These requirements are grouped based on
the category of a program under analysis. This block
yields formalized functional constraints on the pro-
gram in the form of temporal logic formulas and secu-
rity automaton’s configuration.

In block 3, the model of the executable file, which
is constructed based on the CFG and DFG, under-

Fig. 1. Model of the secure code execution system.
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goes formal verification, i.e., it is checked for compli-
ance with the functional requirements of the static
analysis stage. Here, the behavioral requirements are
described by a specification that limits the admissible
behavior of the program. Since the system uses math-
ematical verification, the decision about the corre-
spondence between the possible behavior and the
required one is regarded as correct. Model checking
algorithms are generally based on exhaustive reach-
ability of the whole set of model states [13].

Thus, all states are checked for compliance with the
specification. In the simplest form, model checking
algorithms make it possible to answer the question
about reachability of the states. In this case, it is
required to find all forbidden (unsafe) states and to
determine whether there is a sequence of state transi-
tions that leads to a forbidden state. If such a sequence
exists, then the use of the program is prohibited. It
should be noted that the exhaustive reachability of the
set of states is guaranteed due to the finiteness of the
number of model states [14]. If the program model
does not comply with the security specification, then
the executable file is regarded as unsafe and the anal-
ysis terminates. This block yields a decision about
safety of a given program, which is based on the results
of verification at the static analysis stage.

To control the fulfillment of the functional con-
straints during program run, we use a system similar to
that for intrusion prevention at the computer level.
The execution monitor runs in parallel with an execut-
able program and intercepts all its system calls. First,
the execution monitor uploads the admissible behav-
ior model and sets the initial state. All calls of system
functions are checked for compliance with this model;
then, a transition to a new state occurs; if no transition
followed, then the process terminates. The execution
monitor is based on a security automaton [8], which,
in turn, is generally constructed based on pushdown
automata. The input symbols of the automaton are
elements of the set of process events, while the config-
uration of the automaton determines the set of opera-
tions allowed in each state.

Block 4 translates the functional requirements for
the program into the configuration of the pushdown
automaton. Block 5 carries out constant monitoring of
the program’s behavior in the framework of the given
secure execution model. This block yields a decision
whether it is safe to execute the program file.

4. FORMAL LOGICAL LANGUAGE
FOR DESCRIPTION OF FUNCTIONAL 

REQUIREMENTS

Process and resource are the basic concepts char-
acterizing the work of an operating system (OS).
According to [15], a process is a container for a set of
resources used to execute an exemplar of a program.
The main types of OS resources are [16]

• CPU time;

• random access memory;

• external memory;

• input-output devices.

The proposed secure code execution system is
based on the model that describes the behavior of a
process in the OS. In this case, subjects are processes
that act on objects. In turn, objects are OS resources
and processes the subjects act on:

• “Process” (p);

• “Random access memory” (m);

• “External memory” (e);

• “Peripheral devices” (d);

• “Network subsystem” (n).

To access a resource, a process calls the corre-
sponding OS function, i.e., requests for executing cer-
tain actions. The OS, using the resource allocation
mechanism, based on a certain security policy, makes
a decision on granting the access to the resource
requested.

When running, applied programs have full access
to their virtual address space for read and write opera-
tions. To input or output data outside a private address
space, an applied program needs to call the corre-
sponding OS functions provided that it has the corre-
sponding privileges to carry out these operations.
These OS functions are read and write operations, ini-
tiation and termination of a process, memory alloca-
tion and deallocation, etc.

The analysis of researches in the filed of formal ver-
ification shows that the existing approaches to
description of specifications for malware detection are
not universal because some of them are oriented to
assembler commands, while others are oriented to API
functions.

In this paper, we propose a formal logical language
for setting functional requirements that allows
unequivocal transition to temporal logic formulas for
further verification based on models.

According to the definition of the first-order logic
[17], the following subsets need to be defined:

In this case, a set of functional symbols includes the
following operations:

where create is the operation of creating an object,
open is the operation of opening an object, delete is the
operation of deleting (terminating) an object, read is
the operation of reading from an object, and write is
the operation of writing into an object.

A set of predicate symbols includes the basic CTL*
predicates [18] and a security check predicate:

=

× .
∪ ∪

∪ ∪

FormSpec Func Pred Var

Log Aux

= , , , ,{ },Func create open delete read write
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where IsSecure is the predicate for checking the secu-
rity of the current state with respect to the entire exe-
cution route, A is the generality quantifier indicating
that a given property holds for all paths, E is the exis-
tential quantifier indicating that a given property holds
for a certain path, X is a unary operator indicating that
a given property holds in the next state of the current
path, G is a unary operator indicating that a given
property holds in all states of the current path, F is a
unary operator indicating that a given property will
hold in a certain future state, U is a unary operator
indicating that the first property holds in all states of a
path that precede the state in which the second prop-
erty holds, R is a unary operator indicating that the
second property holds in all states preceding the state
in which the first property holds, and C is a unary
operator indicating that a given property holds in the
current state of the current path (this operator is addi-
tionally introduced by the authors).

A set of symbols for subject variables is

where p, m, n, e, d are objects exposed to certain
actions and cat is the category number of an object
(subject) (see table 1).

= , , , , ,
, , , , , , ,

{

}

Pred IsSecure AX AF AG AU
AR EX EF EG EU ER EC

= , , , , , ,{ }Var p m n e d cat

A set of logical symbols is

where ¬ represents logical negation, ∧ represents con-
junction, ∨ represents disjunction, → represents
implication, ∃ is the existential quantifier, and ∀ is the
generality quantifier.

A set of auxiliary symbols is

5. BASIS OF FUNCTIONAL REQUIREMENTS 
FOR SECURE CODE EXECUTION

Using the proposed formal logical language Form-
Spec, we formulate basic rules (formulas) of secure
code execution for all functional symbols. The symbol
* denotes an object (subject) of any category available
for a given class.

For the operation of creating an object,

• , creation of child pro-
cesses is prohibited;

• , memory is allocated only
within the private address space of a process;

• , new files (catalogs) can be
created only in the catalog of the current process;

• , creation of network con-
nections is prohibited;

• , creation of devices (driv-
ers) is prohibited.

For the operation of opening an object,

• : opening of processes is pro-
hibited;

•  ∨ : system
libraries and files contained in the current catalog of a
process are allowed to be opened;

• : opening of devices is pro-
hibited.

For the operation of deleting (terminating) an
object,

• , a process is allowed to ter-
minate itself;

•  ∧ , a

process is allowed to delete files it created.

For the operation of reading from an object,

• , reading of the information
about the processes is prohibited;

• , reading from the address
space of a private process is allowed;

•  ∧ , read-

ing from the system libraries is allowed;

•  ∨  ∧
, reading of the files opened (cre-

ated) by a process is allowed;

= ¬, ∧, ∨, →, ∃,∀ ,{ }Log

= , .{ ()}Aux

¬ ,∗, ,∗( )EF create  p p

,∗, ,( 3)EF create  p m

,∗, ,( 5)EF create  p e

¬ ,∗, ,∗( )EF create  p n

¬ ,∗, ,∗( )EF create  p d

,∗, ,∗( )EF open  p p

,∗, ,( 4)EF open  p e   ,∗, ,( 5)EF open p e

¬ ,∗, ,∗( )EF open  p d

,∗, ,∗( )i iEF delete  p p

,∗, ,( 5)jEF open  p e   ,∗,( ,5)jEF delete  p e

¬ ,∗, ,∗( )EF read p p

,∗, ,( 3)EF read p m

,∗, ,( 4)jEC open p e ,∗, ,( 4)jEF read p e

,∗, ,( ( 5)jEC open p e ,∗, ,( 5))j EC create p e
,∗, ,( 5)jEF read p e

Table 1. Categories of objects and subjects

Category Description

Subject “Process” (p)

1 system process

2 privileged process

3 user process

Object “Random access memory” (m)

1 address space of a system process

2 address space of other process

3 private address space of a process

Object “External memory” (e)

1 executable files

2 system catalogs and system configuration

3 files and catalogs of other users

4 system libraries

5 private files and catalogs

Object “Peripheral devices” (d)

1 output devices

2 input devices

Object “Network subsystem” (n)

1 services of global network nodes

2 services of local network nodes

3 local network services
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• , network operations are
prohibited;

• , operations with the devices
are prohibited.

For the operation of writing into an object,

• , writing into the address
space of a private process is allowed;

•  ∨  ∧
, reading of the files opened (cre-

ated) by a process is allowed;

• , network operations are
prohibited;

• , operations with the devices
are prohibited.

It should be noted that this basis can be regarded as
an axiomatic one because its fulfillment ensures secure
code execution (execution of the predicate IsSecure)
in terms of protection against malicious code. In addi-
tion, the constraints on interactions with the network
and file subsystems can be overcome by imposing
some constraints on the sequence of actions, as well as
by isolating possible information contours.

6. RESULTS AND DISCUSSION

The proposed formal logical language for describ-
ing functional requirements to program code can be
applied to formalization of threats from the Data
Security Threats Database (Federal Service for Tech-
nical and Export Control of Russia) [19].

“The threat of modifying system and global vari-
ables” by the malefactor can have an indirect destruc-
tive effect on certain programs or the whole system.
To neutralize this threat, we specify the following rule:
“the processes of the third category are not allowed to
modify the system and global variables;” this rule is
written as follows:

(1)

Formally, expression (1) means that the processes of
the third category cannot create or modify system cat-
alogs and configuration files. This rule can also be
used to deal with “the threat of unauthorized registry
editing.”

“The threat of unauthorized copying of protected
data” implies that the malefactor copies the protected
data belonging to another user and gets this copy out
of the system. The rule for restricting the sequence of
these actions is as follows:

(2)

Expression (2) means that the process of any category
is not allowed to, sequentially, read certain data from
files of other users and, then, write these data into the

¬ ,∗, ,∗( )EF read p n

¬ ,∗, ,∗( )EF read p d

,∗, ,( 3)EF write p m

,∗, ,( ( 5)jEC open p e ,∗, ,( 5))jEС create p e  
,∗, ,( 5)jEF write p e

¬ ,∗, ,∗( )EF write p n

¬ ,∗, ,∗( )EF write p d

¬ , , , ∨ , , ,( ( 3 2) ( 3 2))EF create p e write p e

¬ ,∗, , ∧ ,∗, ,
∨ ,∗, , ∨ ,∗, ,

∨ ,∗, , .

( ( 3) ( ( 5)

( 5) ( )

( ))

EF ECread p e EFcreate p e
EFwrite p e EFwrite p d l

EFwrite p n l

files in its private catalog, or send these data to output
devices or to the network.

For “the threat of intercepting the data inputted to
or outputted from peripheral devices,” the following
rule is specified that restricts direct interaction
between the processes of the third category and the
input devices:

(3)

Expression (3) prohibits direct data reading (bypassing
the corresponding OS mechanisms) from the input
devices.

These examples confirm the consistency and com-
pleteness of the threat descriptions made using the for-
mal logical language proposed. Taking these descrip-
tions into account in the secure code execution system
allows one to prevent these threats from being materi-
alized.

7. CONCLUSIONS

The proposed formal logical language for func-
tional requirements allows one to describe the behav-
ior of a process without concretization of operations or
elementary actions (i.e., at a high level of abstraction),
as well as to express (in a generalized mathematical
form) subject–object relationships between processes
and resources of different categories. This language
has been used to develop a secure code execution sys-
tem that allows one to confidently run new program
code without violating the integrity of the isolated pro-
gram environment.

The further researches will be focused on con-
structing a complete set of secure code execution rules
by using the proposed formal logical language in order
to remove the constraints imposed by the axiomatic
basis.
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