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Abstract—We consider the problem of testing the existence of a universal denominator for partial differential
or difference equations with polynomial coefficients and prove its algorithmic undecidability. This problem
is closely related to finding rational function solutions in that the construction of a universal denominator is
a part of the algorithms for finding solutions of such form for ordinary differential and difference equations.
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1. INTRODUCTION
We consider linear partial differential equations of

the form

(1)

as well as linear partial difference equations given by

(2)

where S is a finite subset ,  is a vector of
independent variables (further denoted as x for brev-
ity), and  are polynomial coefficients.

When , i.e., in the case of ordinary differen-
tial and difference equations, there exist algorithms
that find all polynomial solutions of a given equation
of such a type and all solutions in the form of rational
functions. These algorithms use the fact that, for a
given differential or difference equation, a polynomial

 can be found such that any rational solution of

this equation can be represented as , where  is

also a polynomial. If such a  is found, the problem
of searching solutions in the form of rational functions
reduces to that of searching polynomial solutions by
transforming the equation and replacement of the
unknown function. The function in this case is
referred to as a universal denominator.

As for partial differential or difference equations,
there are no similar algorithms even in the case of two
variables. Moreover, the problems of testing existing of

both polynomial and rational solutions turn out to be
algorithmically undecidable [1, 2]. Nevertheless, con-
struction of universal denominators for such equations
is an important problem since reduction of the prob-
lem of searching solutions in the form of rational func-
tions to searching polynomial solutions is useful by
itself.

The problem of searching for universal denomina-
tors for partial differential and difference equations
was considered by M. Kauers and C. Schneider in
[3, 4]. The authors divide all polynomials of several
variables  into periodic and aperiodic ones
according to the following rule:

1. a polynomial  is periodic if the set of
satisfying the condition

contains an infinite number of elements;
2. otherwise,  is an aperiodic polyno-

mial.
Note that any polynomial can uniquely be factored

into the product of its periodic and aperiodic parts.
При этом любой полином можно однозначно

разложить в произведение его периодической и
непериодической частей. The algorithm presented
in [4] finds a “partial” universal denominator for a dif-
ference equation with polynomial coefficients that
contains all aperiodic multipliers and covers a wide
class of periodic multipliers of denominators of all
rational solutions of the equation. With its help, one
can find universal denominators for ordinary differ-
ence equations, since all polynomials in one variable
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are aperiodic. In addition, if we have a system of sev-
eral equations (rather than one equation) in one
unknown function, then, in some cases (depending on
the equation structure), the universal denominator
can also be found by means of this algorithm. How-
ever, in the general case of , the algorithm fails to
find a universal denominator. Moreover, as shown in
[4], for some difference equations, it does not exist at all.
For example, equation  –  = 0

has an infinite set of solutions of the form ,

, which have no common denominator.

2. RELATION TO THE DIOPHANTINE 
EQUATIONS

We will use symbol δ to denote both the differential
and difference operators of the form

(3)

This will allow us to formulate assertions that are valid
for both differential and difference equations.

We will also use the notation

where , , . The
notation , , in the given case is meant to be
the so-called “increasing” power,

Note that, both in the differential and difference cases,
operator δ and monomials of the form  satisfy the
following equation:

(4)

From (4), it follows that the equation

has a monomial solution ,  if and only if n is
a solution of the Diophantine equation  = 0.
At the same time, from the Davis—Putnam—Robin-
son—Matiyasevich theorem, which solves (in the neg-
ative sense) Hilbert’s tenth problem, it is known that
there does not exists an algorithm to check whether an
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arbitrary Diophantine equation has integer solu-
tions [5].

This relationship between the equations

which are a particular case of equations (1) and (2),
and Hilbert’s tenth problem has already been used for
proving algorithmic undecidability of various prob-
lems related to partial differential and difference equa-
tions [1, 2, 6].

3. UNDECIDABILITY THEOREM

In what follows,  will denote a function that
can be represented as a sum of monomials the multi-
exponents of which are lexicographically less than n;
i.e.,

where  means that s is lexicographically less than
n (it is assumed that coefficients  are constant and
that the sum on the right-hand side is finite).

The lemma below is proved in [2].
Lemma 1. If a rational function of the form

 is a solution of the equation P(δ1, ...,

 = 0, where , then  is also
its solution.

Using this lemma and the Davis—Putnam—Rob-
inson—Matiyasevich theorem, we will prove that the
problem of testing existence of a universal denomina-
tor for the equations under consideration is algorith-
mically undecidable.

Theorem 1. Given an arbitrary linear homogeneous
partial differential or difference equation, there does not
exist an algorithm that verifies whether there exist a uni-
versal denominator for it.

Proof.
Let  and

Let the Diophantine equation  = 0 have no
integer solutions. Then, equation  = 0
has no integer solutions either. From equation (4), we
find that differential and difference equations of the
form

(5)

have no monomial solutions of the form ,
. Then, from Lemma 1, it follows that equa-

tion (5) has no rational solutions; hence, there exists a
universal denominator  for it.

δ , , δ = ,1( ) ( ) 0mP … y x

( )no x

, ∈

= , ∈ ,∑
≺ �

�( )
m

n s m
s

s n s

o c nx x

≺s n
sc

ν ν

μ μ
+
+

( )
( )

x o x
x o x
δ ) ( )m y x ∈ , ,� 1[ ]mP n … n ν−μx

, , ∈ , ,�1 1( ) [ ]m mP n … n n … n

+ + +, , = , ..., + + .2 2
1 2 1 1 2( ) ( ) ( )m m m mQ n … n P n n n n

, ,1( )mP n … n
+, ,1 2( )mQ n … n

+ +δ , , δ , , =1 2 1 2( ) ( ) 0m mQ … y x … x

=( ) ny x x
+∈ �

2mn

=( ) 1q x



128

PROGRAMMING AND COMPUTER SOFTWARE  Vol. 43  No. 2  2017

PARAMONOV

Let the Diophantine equation  = 0 have
an integer solution . Then, equation

 = 0 has an infinite number of solutions
, where k is an arbitrary integer. From

equation (4), we find that differential and difference
equations of form (5) have an infinite number of solu-
tions of the form , ,
and, hence, have no universal denominator, since there
does not exist a polynomial that is divided by  (in the
differential case) or by (xm + 2 – 1)(xm + 2 – 2)...
(in the difference case) for all possible .

Suppose that there exists an algorithm capable of
determining whether there exists a universal denomi-
nator for an arbitrary linear homogeneous partial dif-
ferential or difference equation with polynomial coef-
ficients. Then, by means of this algorithm, one can
verify whether there exists an integer solution for an
arbitrary Diophantine equation, since, as shown
above, equation

, , has a solution
 if and only if equation (5) has no universal

denominator. Since, according to the Davis—Put-
nam—Robinson—Matiyasevich theorem, the prob-
lem of testing existence of solutions of Diophantine
equations is algorithmically undecidable, the problem
of testing existence of a universal denominator is also
undecidable. □

Note that Theorem 1 does not give an answer to the
question of whether the problem of testing existence of
a universal denominator is decidable if the equation is
a priori known to have rational solutions. Let us prove
undecidability of this problem.

Theorem 2. There is no algorithm that determines
whether there exits a universal denominator for a given
linear homogeneous partial differential or difference
equation with polynomial coefficients and a nonzero
rational solution of this equation.

Proof. Suppose that such an algorithm exists.
Then, by using it, one can verify whether there exists
an integer solution of an arbitrary Diophantine equa-
tion , . To do this, it
will suffice to check existence of a universal denomi-
nator for the equation

(6)

where

In this case, rational function  is a solution
of equation (6), since , , …,  is a
solution of the Diophantine equation  = 0.
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If the Diophantine equation  = 0 has an
integer solution , then equation

 = 0 has an infinite number of solutions
, and equation (6) has an infinite

number of solutions of the form 
, , and, hence, has no uni-

versal denominator.
If the Diophantine equation  = 0 has no

integer solutions, then equation  = 0 has
only one solution ,  = 0. Then,
equation (6) has only one rational solution 
(up to a constant multiplier). Indeed, suppose that

there exists another solution ,

. Then,
• if , then equation (6) also has

solution  =  = , where

 ≠ ; by Lemma 1,  is also a
solution of equation (6) and, hence,  is a solu-
tion of the Diophantine equation  = 0,
which brings us at the contradiction;

• if , then, by Lemma 1, mono-
mial  is a solution of equation (6), and  is a
solution of equation  = 0, which brings us
at the contradiction.

Thus, equation (6) has universal denominator
 (in the differential case) or  (in

the difference case). □
Note that these theorems state impossibility of

constructing an algorithm for testing existence of a
universal denominator for equations in an arbitrary
number of variables, i.e., if m is not a priori given or
bounded somehow. At the same time, these problems
remain undecidable even if m is a fixed (sufficiently
large) number, because a similar assertion on unde-
cidability of the problem of testing existence of solu-
tions of Diophantine equations is true [5].
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