ISSN 0361-7688, Programming and Computer Software, 2017, Vol. 43, No. 2, pp. 112—118. © Pleiades Publishing, Ltd., 2017.
Original Russian Text © G.1. Malaschonok, 2017, published in Programmirovanie, 2017, Vol. 43, No. 2.

MathPartner Computer Algebra

G. 1. Malaschonok

Derzhavin State University,
ul. Internatsional’naya 33, Tambov, 392000 Russia
E-mail: malaschonok@ya.ru
Received May 28, 2016

Abstract—In this paper, we describe general characteristics of the MathPartner computer algebra system
(CAS) and Mathpar programming language thereof. MathPartner can be used for scientific and engineering
calculations, as well as in high schools and universities. It allows one to carry out both simple calculations
(acting as a scientific calculator) and complex calculations with large-scale mathematical objects. Mathpar is
a procedural language; it supports a large number of elementary and special functions, as well as matrix and
polynomial operators. This service allows one to build function images and animate them. MathPartner also
makes it possible to solve some symbolic computation problems on supercomputers with distributed memory.
We highlight main differences of MathPartner from other CASs and describe the Mathpar language along

with the user service provided.

DOI: 10.1134/50361768817020086

1. INTRODUCTION

There are several generations in the history of com-
puter algebra systems (CASs).

The first generation dates back to the 1960s—1970s.

Graphics-oriented systems, which appeared in the
early 1990s, constitute the second CAS generation; as
an example, we can point to the Mathematica and
Maple commercial systems, which are still the most
popular CAS instruments.

The third generation is associated with cloud-ori-
ented CASs, like, for example, MathPartner, Sage,
Wolfram Alpha, and Wolfram Cloud, which appeared
in the 2010s. These systems are now becoming
increasingly popular.

A CAS is a software product characterized by alge-
braic algorithms, software technologies, and applica-
tion domains.

The history of constructive algebra and algebraic
algorithms extends back over more than a century.
In turn, current investigations in this field depend
heavily on the capabilities of presently-available
CASs, as well as on the applied problems that can be
solved within a reasonable time.

It is interesting to trace how the CAS application
areas were changed. Initially, the main CAS applica-
tion area covered symbolic computations in theoreti-
cal physics and celestial mechanics.

One of the first CASs was the Schoonschip devel-
oped by Martinus J.G. Veltman, a Dutch physicist, in
the 1960s during his work at the Stanford laboratory.
This system was put into use by Gerardus’t Hooft, a

student of Veltman. Hooft proved that non-Abelian
gauge theories can be renormalized. In 1999, Veltman
and Hooft shared the Nobel Prize in Physics “for elu-
cidating the quantum structure of electroweak interac-
tions” [1]. A descendant of the Schoonschip was the
FORM system developed by Jos Vermaseren from the
Dutch National Institute for Subatomic Physics
(Nikhef) [2]. Its development began in 1984. To learn
more about the CAS history, one may refer to [3, 4].

The advent of the second CAS generation
expanded the CAS application area considerably.
These systems became popular among many teachers
and students of engineering and natural science disci-
plines, as well as among many engineers and scientists.
Wolfram Research Inc. began to adapt the Mathemat-
ica system to high schools. The documentation on the
Maple and Mathematica systems can be found at
www.maplesoft.com and www.wolfram.com, respec-
tively.

And yet, among those who study and employ
mathematics, the percentage of CAS users still
remains low, which is mainly because these systems
are difficult to master and require purchasing a license.

With cloud CASs, these obstacles can be overcome.

Let us point to their basic features.

— Cloud systems can be accessed from any com-
puter connected to the Internet.

— They provide users with advanced services,
including a workbook with a user-friendly interface.

— A fundamental difference with the new-genera-
tion CASs is the possibility of solving the problems

112

MATHPARTNER COMPUTER 113

that cannot be solved on a personal computer. This
can be done through the access to parallel software
packages installed on a computer cluster with distrib-
uted memory. The user does not need to worry about
computing resources, since the cloud system is able to
undertake the control of the computational process.

— An important feature is the support of the REST-
Ful protocol for data communication with other Inter-
net-connected devices. Computational results can be
obtained by the cloud CAS independently (without
human assistance).

— Mathematical calculations in the form of pro-
gram texts for cloud systems can be stored in generally
accessible libraries.

Any mathematical problem can be solved by
uploading such a text file from a shared library to the
cloud workbook. Mathematics textbooks and refer-
ence books can be complemented with the libraries
containing text files with the corresponding algo-
rithms designed for computations in the cloud work-
book.

— A cloud CAS can provide an educational service,
including a library of tests, automatic test checking,
and storing test results in the student’s record book.

The MathPartner system was one of the first cloud
CASs [5].

This project has been started in 2002 in Tambov by
a working group on computer algebra. The basis of the
MathPartner software package are algorithms devel-
oped at the Lvov, Kiev, and Tambov State Universities
(more details are available on the Internet [6]).

Over the years, the algorithms and programs for the
MathPartner project were developed by A.A. Betin,
I.A. Borisov, Yu.D. Valeev, E.V. Dubovitskii,
A.M. Dobychin, M.S. Zuev, D.S. Ivashov, E.A. II’che-
nko, S.A. Kireev, V.A. Korabel’nikov, V.N. Kazakov,
A.O. Lapaev, G.I. Malaschonok (head), O.N. Pere-
slavtseva, A.G. Pozdnikin, M.A. Rybakov, O.A. Sazh-
neva, R.A. Smirnov, M.V. Starov, S.M. Tararova,
S.A. Khvorov, D.I. Shlyapin, A.S. Shcherbinin, and
Yu.Yu. Yurin.

Since 2011, the project is being developed by the
Mathparca company. The MathPartner CAS is pres-
ently available on the website of the University cluster
of the ISP RAS (mathpar.cloud.unihub.ru).

In the subsequent sections, we highlight main dif-
ferences between MathPartner and other CASs.

2. GENERAL INFORMATION ABOUT
MATHPARTNER

MathPartner is a universal cloud-oriented system
for symbolic computations, which is based on some
open-source software packages. The MathPartner
kernel is a package of mathematical algorithms written
in Java.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 43

The system language is called Mathpar. Having the
syntax that maximally resembles the standard mathe-
matical notation, this language can be regarded as a
dialect of the LaTeX language, which is extended with
operators for symbolic computations, image visualiza-
tion, and environment setting.

Having entered the MathPartner website, the user
is provided with a personal workbook. This workbook
has an active window through which the user can enter
certain text (which is enclosed in double quotes) and
mathematical expressions written in the Mathpar lan-
guage.

The user can create new active windows in his or
her workbook and run programs in any of the windows
independently. In this case, all the windows use the
same space of variables.

The user can save (to his or her computer) and, if
needed, upload (to the workbook) original text files in
the Mathpar language. MathPartner allows the user to
view PDF images of these files and to save them as
original Mathpar files, standard LaTeX files, and PDF
files (for independent viewing).

In addition, MathPartner makes it possible to cre-
ate and store 2D and 3D images and to animate them.
The user can build images of tabulated functions,
select certain regions on these images, mark points,
construct approximations, make notations, and so on.

Mathpar is a procedural language and can be used
to write user programs. The MathPartner system has
quite a wide area of application. It can be used as a
simple calculator, scientific calculator, software sys-
tem for symbolic computations, and interface to a
computer cluster with distributed memory.

Moreover, MathPartner allows one to import and
export large-scale mathematical objects, such as func-
tional or numeric matrices and complex composite
functions or polynomials with a large number of
monomials. There is no need to fully upload such
objects to the workbook: they can be stored (as files)
on the user computer. To import and export large-
scale mathematical objects, the Mathpar operators
fromFile() and toFile() are used.

The Mathpar language also contains some opera-
tors that enable symbolic computations on distrib-
uted-memory supercomputers. These operators can
be used by the registered users of the University cluster
(http://unihub.ru).

3. ABOUT THE MATHPAR LANGUAGE

MathPartner allows the users to upload and run
programs written in the Mathpar language. Below is a
general description of Mathpar.

— The Mathpar language employs common LaTeX
symbols and contains, in addition, assignment opera-
tors, calculation operators, control operators, envi-
ronment operators, and plot operators. The system
uses plain text files with the text written in the Math-

No.2 2017

114 MALASCHONOK

par language, which can be created, edited, and saved
just like standard text files encoded in UTF-8.

—Mathpar defines a group of operators for solving
computational problems on a computer cluster with
distributed memory.

—Mathpar defines environment operators for set-
ting the space of mathematical objects. The environ-
ment determines the underlying set of numbers, alge-
braic operations in this set, names of variables, and
some constants.

— A Mathpar program and computational results
can be represented in the form of an editable source
text or a PDF image. The user can change the view in
the workbook.

Mathpar is a procedural language. To learn more
about Mathpar, one can visit the help page on the
project website, download the Mathpar language
guide from the website, or read [7—11]. Below, we
describe only its basic features.

4. SETTING THE COMPUTATIONAL
ENVIRONMENT

The environment defines the space wherein com-
putations are carried out. It allows one to specify the
underlying set of numbers, algebraic operations in this
set, names of variables, and some constants.

By default, the space R64|x,y,zt] is set. It is a
space of four variables (ranked as x <y < z <) over the
set of approximate real numbers, which are stored in a
64-bit machine word (type “double” for C and Java).

To change the environment, it is required to exe-
cute the command for setting a new environment, for
instance, SPACE = Q[x] or SPACE = Z|c, b, a].

The user can select one of the following number
sets: Z=2Z;Zp=Z/pZ (p > 2, where p isa MOD envi-
ronment constant); Zp32 = Z/pZ (p < 2!, where p is
a MOD32 environment constant); Z64 =

{ze Z:-2% < 7<26); Q= Q; R is a set of approxi-
mate real numbers for which the number of digits in
the mantissa is determined by the ACCURACY envi-
ronment constant, while the machine epsilon is deter-
mined by the MachineEpsilonR constant; R64 is a set
of approximate real numbers (52 bits represent the
mantissa and 11 bits represent the exponent) for which
the machine epsilon is determined by the MachineEp-
silonR64 constant; and R128 is a set of approximate
real numbers (128 bit). Another eight number sets—
CZ,CZp,CZp32,CZ64,CQ, C, C64,and C128—are
obtained by complexifying the above eight sets.

More information about these and other environ-
ment constants can be found in the user manual.

It should be noted that most CASs fix only one
environment that cannot be changed by the user.

The explicit introduction of a flexible environment
is due to the increased requirements for modern CASs.

PROGRAMMING AND COMPUTER SOFTWARE

The majority of users will be satisfied with the envi-
ronment set by default; it, however, will not be suffi-
cient for many other users.

For instance, to carry out approximate computa-
tions with a given number of precision digits in arith-
metic operations and a given value of the machine
epsilon, one can set the space R and select the corre-
sponding constants.

If it is required to carry out computations over a set
of complex numbers, then the space C should be
selected. If only rational computations without round-
ings need to be carried out, then the space Q will be an
appropriate choice.

When there is a need to prepare some tasks for
pupils who are familiar only with integers or only with
fractional numbers, the spaces Z or Q should be set,
respectively.

Without setting a proper environment, the user
cannot carry out computations, whether it be in finite
fields, tropical mathematics, etc.

When an integer has more than 300 decimal digits,
it cannot be written in an approximate form (in a vari-
able of the double data type) because of the overflow.
However, it can be written as a number of the R128
type, since this data type provides 64 extra bits for the
exponent. Moreover, if necessary, the user can execute
standard mathematical operations over such numbers.

All this extends the capabilities of the CAS, which
becomes a flexible and convenient tool.

An important feature of the MathPartner system is
the partitioning of all symbolic variables into two sets:
a set of symbols and a set of variables defined in the
space selected by the user.

By employing variables in rational operations, the
user obtains polynomials and polynomial fractions,
which are standard objects. For these objects, there are
efficient computational algorithms (see below the
example of evaluating the determinant of a polynomial
matrix).

5. BASIC CLASSES OF OPERATORS
5.1. Mathematical Symbols and Functions

The symbols oo, e, i, T, and () are defined, which
are written just like in the LaTeX language (e and i are
written with an additional symbol “\").

The functions defined in the Mathpar language are
described in the user manual (see also the help page on
the official website). For convenience, the functions
can be selected and carried over to the workbook from
the unfolding side bar.

5.2. Standard Sets of Operators
Like other universal CAS languages, Mathpar uses
the following standard sets of operators:
Operators for numbers.

Vol. 43 No.2 2017

MATHPARTNER COMPUTER 115

Operators for integer numbers.
Operators for fractions and rational functions.

Operators for function evaluation in probability
theory and mathematical statistics, which are defined
for continuous random variables, discrete random
variables, or samples.

Boolean operators for the set {true, false} = {1, 0}
and matrices over it.

Comparison operators for numbers.

Set theory operators for the algebra of subsets of real
numbers: N, U, \, A, and a complement denoted by (').

Operators for constructing random mathematical
objects: numbers, polynomials, and matrices over
numbers or polynomials.

5.3. Operators over Polynomials in Many Variables

This is a principal set of operators for any CAS.
In MathPartner, the representation of polynomials in
many variables is selected so as to ensure the efficiency
of computations with large sparse polynomials.

It should be noted that, for polynomials, an F4
algorithm is implemented to compute the Groebner

basis groebner(f,, f5,.., f.) of the ideal generated by a
finite set of polynomials (£}, f5,.., f.)-

There is also an algorithm
reduceByGB(g,| f}, f5,.., f.]) for reducing a polyno-
mial g by using polynomials f,, f5,.., f.. If these poly-
nomials constitute the Groebner basis, then the algo-

rithm evaluates the reduction modulo the ideal gener-
ated by them.

If the variety of solutions for a system of nonlinear

algebraic equations f; =0, f, =0,.., f. = 0 has a zero
dimension, then this system can be solved by the oper-

ator solveNAE(f, f5,.., f.)-

The operator solve(p(x)) calculates roots of a poly-
nomial p(x). The set wherein the roots are sought
depends on the space (SPACE) selected. If the space is
defined over real numbers, then all real roots are
sought; if it is defined over complex numbers, then all
complex roots are sought; in the other cases, the roots
containing radical signs and literal parameters are
sought (if possible).

Complexity estimates of the polynomial algorithms
can be found in [12].

The number of publications [6] concerning the
algorithms employed in the MathPartner project
exceeds two hundred papers, which is why we refer
here only to the selected ones.

5.4. Matrices and Vectors

The set of symbolic matrix operators holds a cen-
tral position in the MathPartner system.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 43

Experiments showed that, in terms of computa-
tional efficiency and functionality, these operators, in
certain cases, are superior to those used in other CASs.

Take, for example, a 12 X 12 matrix in which the
elements denoted by x are independent symbols and
the other elements are zero:

xx00

=
(=)

=
=
=

S OO K RO O R OO

S OO KR KB O KR 8 O

S OO K KO R K O

S O R KO KR R O

S O R OO KR R O R K

S O R OO R OO R O
O O R O K RO OO OO

X O R B O OO O R R

X R O R B OO OO R R

O R X OR OO K x O

X O R OO R OO R 8 O

O O R OO xR OO xR OO

()
()
()
[e)
(e

X X X X X X

The determinant of this matrix can be evaluated in
MathPartner, but not in Mathematica or Maple.

Below are the matrix operators of the Mathpar lan-
guage.

kernel() is the kernel of the operator (null space).
transpose(A) or A™{ T} is the transposition.

conjugate(A4) or A™{ast} is the conjugation.
toEchelonForm() is the echelon form.
det() is the determinant.

inverse(A) or A”{ 1} is the inverse matrix.
adjoint(A) or A"{star} is the adjoint matrix.
genlnverse(4) or A"{+} is the Moore—Penrose

pseudoinverse.
charPolynom() is the characteristic polynomial.

closure(4) or A™{times} is the closure, i.e., the

sum/+A+ A+ A% + ...

LDU() is the triangular LDU factorization of a
matrix, which yields five matrices [L, D,U, P,Q]. The
product LDU corresponds to the original matrix.
Here, L is a lower triangular matrix, U is an upper tri-
angular matrix, D is a permutation matrix multiplied
by a diagonal matrix, while P and Q are permutation

matrices. In addition, P’ LP and QTU Q are lower and

upper triangular matrices and PTDQ is a diagonal
matrix in which all zero diagonal elements are accu-
mulated in its bottom rows.

BruhatDecomposition() is the Bruhat decompo-

sition of a matrix, which yields three matrices [V, w, U],
where Vand U are upper triangular matrices and wis a

No.2 2017

116

permutation matrix multiplied by a diagonal matrix
(the product VwU corresponds to the original matrix).

It should be noted that the triangular cofactors cal-
culated in the last two operators belong to the same
commutative domain as the elements of the original
matrix, and the diagonal matrices comprise some of
the elements from the quotient field of this domain.
These matrix algorithms are described in [12—16].

SimplexMax() and SimplexMin() are used to
solve linear programming problems. For example,
SimplexMin(A4, b, c) solves the system of inequalities
Ax £ b so that the scalar product ¢’ x is minimal.

Note that here one can obtain both rational solutions
and solutions with a desired accuracy.

5.5. Systems of Linear Differential Equations
with Constant Coelfficients

This is another field in which MathPartner proves
to be superior to both Mathematica and Maple. Math-
Partner can solve some problems the latter systems
cannot.

solveLDE(S, J) solves a system of linear differen-
tial equations with constant coefficients .S under initial
conditions J. For example, the statement

S = systLDE((y,?) + d(x,?) — x = exp(?),
2d(y,1) + d(x, 1) + 2x = cos(?))

defines the system of differential equations

' ' _ ot
y,+xt—x—e,

S =
2y; + x; +2x = cos(?).
and
J = initCond(d(x,7,0,0) = 0,
d(y,7,0,0) = 0)
specifies initial conditions.
Here,

d(f,?) is the derivative fwith respect to the variable 7,

d(f,t, k) is the kth derivative f with respect to z,

d(f,1,k,t,) is the kth derivative f with respect to ¢ at
the point ¢, or f(¢,) for k = 0.

Examples of solving systems of differential equa-
tions can be found at the address

mathpar.cloud.unihub.ru/ru/help/06dequa-
tion.html.

The algorithms for solving systems of differential
equations are described in [17—19].

5.6. Noncommutative Objects

All symbolic variables are regarded as commutative
ones, except for those whose names begin with the
symbol backslash and a capital letter (for example, \A4,

PROGRAMMING AND COMPUTER SOFTWARE

MALASCHONOK

\Omega, and \Table). Hence, for a* b — b *a, the
result is zero, while, for \4 = \B —\B *\A, the result is
A*B—-B#*A.

5.7. Computations in Tropical Algebras

An important feature of the MathPartner system is
the support of symbolic computations in tropical alge-
bras.

The following idempotent semifields are defined:
ZMaxPlus, ZMinPlus (on the set Z), RMaxPlus,
RMinPlus, RMaxMult, RMinMult (on the set R),
R64MaxPlus, R64MinPlus, R64MaxMult, and
R64MinMult (on the set R64).

The following idempotent semirings are defined:
ZMaxMin, ZMinMax, ZMaxMult, ZMinMult (on
the integer set Z), RMaxMin, RMinMax (on the set
R), R64MaxMin, and R64MinMax (on the set R64).

There are, in total, 18 algebras of different types.
Below is an example of a simple problem in ZMax-
Plus:

SPACE = ZMaxPlus [x, y, z];
a=2;, b=09
d=ax*b;
The resultisc =9, d = 11.

A unary closure operator is defined as closure(a)
(where a is a number or a matrix) and evaluates the

c=a+b;
print(c,d)

. 2
expressionl +a+a” + a ..

In tropical semifields, the following operators are
available:

solveLAETropic(4, b) solves the system of equa-
tions Ax = b;

BellmanEquation(A4, b) solves the system of Bell-
man equations Ax + b = x;

BellmanInequality(A4, b) solves the system of Bell-
man inequalities Ax + b < x.

5.8. Graph Problems

Given a graph and a matrix 4 of distances between
adjacent vertices, searchLeastDistances(A4) finds
the least distances between all vertices, and

findTheShortestPath(A4,7, j)) finds the shortest
path between two vertices i and j.

6. PROCEDURES, FUNCTIONS,
AND CONTROL OPERATORS

The body text of a program can be preceded by pro-
cedures and functions. Their declaration begins with
the functional word \procedure followed by a name
and (if any) arguments enclosed in parentheses. The
function must have a return operator (\return object-
Vol. 43

No.2 2017

MATHPARTNER COMPUTER

Name), while the procedure can have an exit operator
(\return).

Procedures and functions have the following syn-
tax:

\procedure proc 1(arg 1, arg 2, ..){op 1;0p 2; .. }

All functional words, operator names, and function
names are preceded by the symbol “\.” Hereinafter,
for simplicity, we omit this symbol and write the oper-
ators in bold.

Like C and Java, Mathpar supports the following
control operators:

if(){}else{} is the branching operator;
while(){} is the pre-test loop;
for(;;){} is the for-loop.

7. VISUALIZATION CAPABILITIES

The system has a full set of standard tools for con-
structing 2D and 3D plots and animations.

7.1. 2D Plots of Functions

The operators for constructing 2D plots of func-
tions are as follows:

plot(f,|a, b]) constructs a plot for an explicit func-
tion f = f(x), x € (a,b);

paramPlot([X,Y],[a,b]) constructs a plot for a
parametric function X = X(x), Y= ¥X(x), x € (a,b);

tablePlot() constructs a plot for a function given

by a value table (all points are successively connected
by straight lines);

pointsPlot() constructs a plot for a function given
by a value table (points are not connected) and allows
a text label to be placed near any point;

plotText() creates text labels (one can specify the
position of the label, font size, and the slope of the
label);

showPlots(|pl, p2,..]) depicts several plots on one
image.

The system allows the users to select certain seg-
ments of the plots, animate them, and change many of
their parameters. See the user manual for more details.

7.2. Surface Images

Modern graphics cards make it possible to con-
struct high-quality images on the user computer. For
this purpose, they must be provided with the grid of
the surface to be visualized, along with some addi-
tional parameters. However, the user may not have
such a graphics card; in this case, the whole image is
constructed on the server.

The Mathpar language supports two types of oper-
ators for constructing 3D plots.

1. Image is constructed on the side of the server:

PROGRAMMING AND COMPUTER SOFTWARE Vol. 43

117

plot3d(f,[x,, x,,¥o,¥;]) constructs a plot for an
explicitly defined surface f = f(x,y), x€ (xy,X;),
Y€ (Vo)

paramPlot([X,Y, Z] [uy, u,, vy, v,]) constructs a
plot for a parametrically defined surface X = X(u,v),
Y=YWu,v),Z=2u,v),uc (uyu), ve (vyVv)-

2. Image is constructed on the side of the client:

explicitPlot3d(Z) constructs a plot for an explicitly
defined surface Z = Z(x,y), x € (x,x,), ¥ € (¥, 11);

parametricPlot3d(X,Y, Z) constructs a plot for a
parametrically defined surface X = X(u,v),
Y = Y(LI,V), Z = Z(U,V), ue (anul)a ve (v07v1);

implicitPlot3d(F) constructs a plot for an implic-
itly defined surface F(x,y,2)=0, xe€ (xy,X),
Y€ Vo, 1) 2 € (29, 21)-

8. CLUSTER COMPUTATIONS

MathPartner is capable of connecting to a computer
cluster and enables parallel computations with certain
operators on the cluster. The corresponding parallel
computing algorithms are described in [20, 21].

For cluster computations, the following constant
cluster parameters should be specified: TOTAL-
NODES is the total number of cluster nodes allocated
for computations, PROCPERNODE is the number of
MPI processes to be run on one node, CLUSTER-
TIME is the maximum runtime (in minutes) of a pro-
gram, and MAXCLUSTERMEMORY is the amount
of memory allocated to the Java Virtual Machine.

The following parallel operators are implemented.
For classical spaces (Z[x]),

adjointDetPar() calculates the matrix inverse
(adjoint matrix and determinant).

For tropical spaces (R64MaxPlus[x]),

BellmanEquationPar() solves a system of Bell-
man equations Ax + b = x;

BellmanInequalityPar() solves a system of Bell-
man inequalities Ax < x and Ax + b < x.

9. CONCLUSIONS

MathPartner is freely available for the users starting
from 2011. In 2015, it was installed on the technologi-
cal platform of the University Cluster program, pro-
viding access to the computational resources of the
computer cluster located at the Institute for System
Programming of the Russian Academy of Sciences.

We expect that, with the advent of freely-available
cloud-oriented CASs, the total number of CAS users
will increase considerably.

No.2 2017

118

his

MALASCHONOK

ACKNOWLEDGMENTS

The author would like to thank A.I. Avetisyan and
science team from the Institute for System Pro-

gramming of the Russian Academy of Sciences for

the

ir long-term fruitful participation in the develop-

ment of a parallel software package for the MathPart-
ner project.

ful

The author is also grateful to the reviewer for care-
reading of the manuscript and helpful remarks.

This work was supported in part by the Russian

Foundation for Basic Research, project no. 16-07-
00420.

10.

REFERENCES

. Hooft, G. and Veltman, M.J.G., Elucidation of the

quantum structure of electroweak interactions, Usp.
Fiz. Nauk, 2000, vol. 170, no. 11, pp. 118—1224.

Blumlein, J., Broadhurst, D.J., and Vermaseren, J.A.M.,
The multiple zeta value data mine, Comput. Phys. Com-
mun., 2010, vol. 181, pp. 582—625.

Computer Algebra: Symbolic and Algebraic Computation,
Buchberger, B., Collins, G.E., and Loos, R., Eds.,
New York: Springer, 1983, 2nd ed.

Gathen, J. von zur and Gerhard, J., Modern Computer
Algebra, Cambridge Univ. Press, 2013.

Malaschonok, G.I., Way to parallel symbolic computa-
tions, Proc. Int. Conf. Cloud Computing, Education,
Research, Development, Moscow, 2011. www.uniclus-
ter.ru/conf/2011/docs.

. Publications of MathPartner Project. http://math-

par.com/downloads/publications2015.pdf.

. Malaschonok, G.1., Language Guide “Mathpar”, Tam-

bov: Publishing House of TSU, 2013.

Malashonok, G.I., On the project of parallel computer
algebra, Vestn. Tambov. Univ. Ser. Estestv. Tekh. Nauki,
2009, vol. 14, no. 4, pp. 744—748.

Malashonok, G.I., Project of parallel computer alge-
bra, Vestn. Tambov. Univ. Ser. Estestv. Tekh. Nauki,
2010, vol. 15, no. 6, pp. 1724—1729.

Malaschonok, G.I., Pereslavtseva, O.N., and Ivashov, D.S.,
Parallel Symbolic Computation: Supercomputer Technologies
in Science, Education, and Industry, Sadovnichiy, V.A., Sav-
ina, G.I., Voevodin, V.V.,, Eds, Moscow State Univ.
Press, 2013.

PROGRAMMING AND COMPUTER SOFTWARE

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Kireev, S.A. and Malaschonok, G.I., Tropical comput-
ing with the web service MathPartner, Tambov Univ.
Rep. Ser. Nat. Tech. Sci., 2014, vol. 19, no. 2, pp. 539—
550.

Malaschonok, G.I., Valeev, Yu.D., and Lapaev, A.O.,
On the choice of multiplication algorithm for polyno-
mials and polynomial matrices, Zap. Nauchn. Semin.
POMI, 2009, vol. 373, pp. 157—188.

Malaschonok, G.I., Effective matrix methods in com-
mutative domains, Formal Power Series and Algebraic
Combinatorics, Krob, D., Mikhalev, A.A., and Mikha-
lev, A.V., Eds., Berlin: Springer, 2000, pp. 506—517.

Akritas, A.G. and Malaschonok, G.I., Computations
in modules over commutative domain, Proc. Int. Work-
shop on Computer Algebra in Scientific Computing, Ber-
lin: Springer, 2007, pp. 11—-23.

Malaschonok, G.I., Generalized Bruhat decomposi-
tion in commutative domains, Proc. Int. Workshop on
Computer Algebra in Scientific Computing, Berlin:
Springer, 2013, pp. 231—-242.

Malaschonok, G. and Scherbinin, A., Triangular
decomposition of matrices in a domain, Proc. Int.
Workshop on Computer Algebra in Scientific Computing,
Switzerland: Springer, 2015, pp. 290—304.

Malaschonok, N.A., Parallel Laplace method with
assured accuracy by symbolic computations, Proc. Int.
Workshop on Computer Algebra in Scientific Computing,
Berlin: Springer, 2006, pp. 251—-260.

Malaschonok, N.A., An algorithm for symbolic solving
of differential equations and estimation of accuracy,
Proc. Int. Workshop on Computer Algebra in Scientific
Computing, Berlin: Springer, 2009, pp. 213—225.

Malashonok, N.A. and Rybakov, M.A., Symbolic—
numerical solution of systems of linear ordinary differ-
ential equations with required accuracy, Program. Com-
put. Software, 2013, vol. 39, no. 3, pp. 150—157.

Malaschonok, G.I. and Valeev, Y.D., Recursive paral-
lelization of symbolic-number algorithms, 7Zambov
Univ. Rep. Ser. Nat. Tech. Sci., 2006, vol. 11, no. 4,
pp. 536—549.

Malaschonok, G.I., Avetisan, A.l., Valeev, Yu.D., and
Zuev, M.S., Parallel algorithms of computer algebra,
Proc. Inst. Syst. Program. Rus. Acad. Sci., Ivannikov, V.P.,
Ed., Moscow: TSP RAS, 2004, vol. 8, no. 2, pp. 169—
180.

Translated by Yu. Kornienko

Vol. 43 No.2 2017

		2017-03-17T13:05:35+0300
	Preflight Ticket Signature

