ISSN 0361-7688, Programming and Computer Software, 2016, Vol. 42, No. 4, pp. 198—205. © Pleiades Publishing, Ltd., 2016.
Original Russian Text © P.N. Devyanin, V.V. Kulyamin, A.K. Petrenko, A.V. Khoroshilov, 1.V. Shchepetkov, 2016, published in Programmirovanie, 2016, Vol. 42, No. 4.

Comparison of Specification Decomposition Methods in Event-B

P. N. Devyanin!, V. V. Kulyamin?34, A. K. Petrenko?3+,
A. V. Khoroshilov?3, and I. V. Shchepetkov?

!Educational Information Security Community, Moscow, Russia,
2 Institute for System Programming, Russian Academy of Sciences, ul. Solzhenitsyna 25, Moscow, 109004 Russia,
3Moscow State University, Moscow, 119991 Russia GSP-1, Leninskie Gory, Moscow, 119991 Russia,
YNational Research University Higher School of Economics 1-nd Kozhukhovsky proezd 1/7, Moscow, 101000 Russia,
S Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141700 Russia,
e-mail: peter_devyanin @hotmail.com, khoroshilov@ispras.ru, kuliamin@ispras.ru, petrenko@ispras.ru, shchepetkov@ispras.ru
Received February 12, 2016

Abstract—Decomposition is an important phase in the design of medium and large-scale systems. Various
architectures of software systems and decomposition methods are studied in numerous publications. Pres-
ently, formal specifications of software systems are mainly used for experimental purposes; for this reason,
their size and complexity are relatively low. As a result, in the development of a nontrivial specification, dif-
ferent approaches to the decomposition should be compared and the most suitable approach should be cho-
sen. In this paper, the experience gained in the deductive verification of the formal specification of the man-
datory entity-role model of access and information flows control in Linux (MROSL DP-model) using the
formal Event-B method and stepwise refinement technique is analyzed. Two approaches to the refinement-
based decomposition of specifications are compared and the sources and features of the complexity of the

architecture of the model are investigated.

DOI: 10.1134/S0361768816040022

1. INTRODUCTION

Practically all software systems and complex soft-
ware models consist of parts, which are often called
modules. In concrete programming languages, mod-
ules are represented differently; they can be translation
units in C and C++, classes in Java, etc. A module
includes the description of data types, constants, vari-
ables, operations (e.g., functions and methods), and
other software entities. The decomposition of a soft-
ware system assumes its subdivision into modules and
the assignment of software entities to modules.
The result of decomposition is not only the division of
the system into modules but also the organization of
the set of relationships between modules. Well-devel-
oped programming languages include a rich set of
such relationships, such as type definition—type use or
function definition—function use. Object-oriented lan-
guages have class—subclass inheritance relationships.
In formal specification languages, the definition—
refinement relationship plays a special role.

The software decomposition pursues several pur-
poses, and there are different aspects of its estimation.
The main purposes of the decomposition are:

* Reduce the complexity of analysis and system
understanding by subdividing it onto parts of which
each is simpler than the whole system.

198

» Ease the requirements for the analysis, compila-
tion, loading, etc. tools by reducing the size of mod-
ules to be processed.

» Divide the work on the project by distributing
modules between the team members.

* Increase the level of reuse and optimize the
development of product lines.

+ Simplify the development and maintenance of
the system.

By the present time, as a result of studies of soft-
ware architectures and design patterns, well-devel-
oped methods and practices of software decomposi-
tion are available. The techniques of software decom-
position and capabilities of programming languages
and software development platforms have been
steadily improved, and they take into account the
needs and capabilities of each side of the development
process.

However, there is not enough experience in formal
specification languages; furthermore, the tools for the
analysis of such specifications have significant restric-
tions with respect to the size and complexity of speci-
fications to be analyzed. The level of maturity of the
specification design and analysis methods are also
inferior to those available for the software develop-
ment. For the specifications containing more than

COMPARISON OF SPECIFICATION

several thousands of code lines, the typical situation is
that there is need for decomposition, but no ready to
use decomposition methods and criteria for their eval-
uation that could help select the most appropriate or at
least acceptable ones are available.

In this paper, we study formal specification decom-
position techniques. We consider various approaches
to decomposition and formulate the problem of com-
paring these approaches with respect to different esti-
mation aspects. The work is based on the experience
gained in the formal analysis of the mandatory entity-
role model of access and information flows control in
Linux (MROSL DP-model [1, 2]). The access control
system based on this model was implemented in Astra
Linux Special Edition operating system [3] by the
research and production association RPA RusBITech
in 2014. For the specification and verification of the
MROSL DP-model, we chose (see [4, 5]) the formal
Event-B method and the Rodin platform [6, 7]. The
decomposition was performed using the stepwise
refinement technique supported by Event-B and
Rodin. On the whole, this work can be classified as a
medium size medium complexity project—the work
took about two man-years.

We consider only the decomposition of Event-B
specifications; moreover, we consider only the meth-
ods supported by the Rodin platform, which are vari-
ous stepwise refinement techniques. For this reason,
the conclusions drawn in this paper are not universal.
However, they can be useful for those who start the
adoption of formal methods in the development of
software for critical systems.

In the next section, we describe features of the
MROSL DP-model. In Sections 3 and 4, we give a
brief description of Event-B and the stepwise refine-
ment technique used for the decomposition of specifi-
cations. The difficulties arising in decomposition are
discussed in Section 5. Section 6 describes the devel-
opment of three formal specifications of the model
using different refinement techniques and gives their
evaluation.

2. MROSL DP-MODEL

The MROSL DP-model deals with the following
concepts: entities, sessions, roles, and user accounts.
The entities are the elements of the operating system
for which access rights must be assigned and con-
trolled; for example, these are files, folders, or sockets.
Roles can be considered as containers of access rights
to entities and other roles. Sessions are the operating
system processes of which each operates under a user
account. If a session has an access right to a role that
has an access right to an entity, then it can get the read
or write access for this entity.

The MROSL DP-model describes restrictions on
the access to entities and roles using three data protec-
tion mechanisms. Due to the mandatory integrity con-

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42

199

trol, each entity, session, role, and user account has an
integrity level that can take two values—Ilow or high.
The aim of this protection mechanism is to prevent the
modification of trusted (with the high integrity level)
entities by untrusted (with the low integrity level) ses-
sions.

The mandatory access control is based on partially
ordered confidentiality labels of various entities and
subjects of the system; the access to entities and roles
is granted or denied based on these labels. To be
granted access, the label of a subject (session) must be
at least comparable with the label of the corresponding
entity or role.

The role-based access control makes it possible to
group access rights by certain criteria. As a result, the
access rights used by each specific session are deter-
mined exclusively by the set of roles to which it has
access; in turn, this set is easier to maintain and mod-
ify if required.

The MROSL DP-model defines 44 operations in
the form of contracts [8]. Each contract includes a
precondition—a set of obligations that must be ful-
filled before the operation is called—and a postcondi-
tion—a set properties that must be fulfilled after the
operation execution. Thirty four of these operations
determine the order of creation or deletion of entities,
sessions, user accounts, roles, and modifications of
the integrity and confidentiality labels. The other ten
operations are used for a more precise analysis of the
security model in terms of information flows by mem-
ory and time and de facto ownership.

3. EVENT-B AND THE RODIN PLATFORM

The formal Event-B method allows one to carry
out interactive proofs and use various automatic prov-
ers. It has a simple notation and has been successfully
used in a number of projects. In this paper, we design
and verify specifications using Event-B and the Rodin
platform.

In Event-B, each specification consists of contexts
and machines. The contexts contain static (invariable)
part of the specification—definitions of constants and
axioms. The machines contain the dynamic part—
variables, invariants, and events. The variables and
constants can be sets, relations, functions, numbers,
or take Boolean values. The values of variables form
the current state of the specification and invariants
restrict this state.

Events are used for the modification of the current
state in a certain way under certain constraints. Each
event consists of parameters, guard conditions, and
actions. The guard conditions restrict the values of
parameters of the operation and variables of the
machine thus decreasing the number of states in which
the event can happen. Actions modify the current state
by assigning new values to the variables.

No.4 2016

200

For each case that requires a proof — one-valued-
ness of expressions, conservation of invariants under
state changes, and the correctness of stepwise refine-
ment — Rodin generates corresponding statements to
be proved. In order to completely verify the model, all
the generated statements must be proved.

4. STEPWISE REFINEMENT

A typical monolithic specification in Event-B con-
sists of one context and one machine; however, in the
case of large and nontrivial specifications, such a
structure complicates the specification understand-
ing, development, and maintenance. In this case, it is
reasonable to decompose the specification. Event-B
proposes to do this using the stepwise refinement
technique.

This technique makes it possible to refine the exist-
ing machines and contexts. If the machine B refines
the machine A, then it can extend the state of the
machine A by adding new variables and events that will
modify these variables. The events included in the
machine A can be refined by strengthening their pre-

conditions and adding new postconditions'. As a
result, a chain of machines beginning from the first
(abstract) version and ending with the last most spe-
cific version is obtained. The refinement of contexts is
done similarly. The chains of contexts and machines
together form a hierarchical decomposed specification
ofthe system. Basically, the correctness of each refine-
ment step must be proved; however, it can be correct
by construction if it is performed using special trans-
formation rules.

There are two basic kinds of stepwise refinement
[9]. The first one is called horizontal refinement. It is
used for extending the specification state by adding
new variables and invariants, for strengthening guard
conditions of events or for adding new actions to them,
and for creating new events. The second kind is the
vertical refinement. It is used after all possible hori-
zontal refinement steps have been made. It allows one
to transform data structures to simplify the implemen-
tation of the specification in the source code. The con-
cepts defined in the MROSL DP-model have a too
high level and the majority of them have no simple
analogues in the implementation code. In this paper,
we consider only the horizontal refinement.

5. FEATURES OF THE TASK
OF DECOMPOSITION OF FORMAL
SPECIFICATIONS

The conventional aims of decomposition and the
aspects of the evaluation of a decomposition scheme
using refinement are also important for the choice of
the method for constructing the Event-B specifica-

' The concept of refinement used in Event-B differs from the
classical version used in VDM and RAISE.

PROGRAMMING AND COMPUTER SOFTWARE

DEVYANIN et al.

tion. However, the development of specifications dif-
fers from the typical software development process;
therefore some difficulties can arise that can be easier
overcome by choosing an appropriate decomposition
method. We consider three of these difficulties:

» The initial unclearness of the nature of the sys-
tem to be specified and of the specification itself
(because the task of specification arises when the
developers do not have obvious and conventional
solutions.

» Nontriviality of predicting the complexity of ver-
ification (deductive proof).

* Discrepancy between the structures of the spec-
ification and implementation and, in particular, dif-
ferences between the set of entities of the specification
and the set of entities of the target system (there is no
clear correspondence between them).

The main consequence of these difficulties is that
the specification should be designed by gradually
extending the code base with a considerable number of
experimental improvements with rollbacks to find an
acceptable solution.

In the next section, we consider two versions of
decomposition of the MROSL DP-model and evalu-
ate these versions with account for various aspects of
the development of the corresponding specifications.

6. THE DEVELOPMENT AND EVALUATION
OF SPECIFICATIONS OF THE MROSL
DP-MODEL

‘We proposed two different methods for the decom-
position of the MROSL DP-model specification
using stepwise refinement. The first method is the

decomposition based on the data types? of the system to
be specified. The aim of this method is to produce a
detailed decomposition to maximally facilitate the
operation of the verification tools. Under this
approach, one data type is added at each refinement
level; for example, sessions and operations of their cre-
ation, deletion, and modification are first described;
then user accounts are described; etc. The second
method—the feature-based decomposition—uses
high-level features of the system as decomposition
units. For the MROSL DP-model, we chose as such
features the data protection mechanisms described in
the system.

To examine the specific features of the domain, we
decided to first develop a simpler monolithic specifi-
cation without decomposition. This specification
turned out to be very useful even though it had certain
drawbacks. The experience gained in the course of
its development helped create and evaluate two speci-
fications obtained using different decomposition
methods.

2 Data types are considered together with the corresponding oper-
ations.

Vol. 42 No.4 2016

COMPARISON OF SPECIFICATION

6. 1. Monolithic Specification

For the development of the monolithic specifica-
tion, we used the approach that requires the periodic
proof of the correctness of the next formalized part of
the model. This approach enabled us to promptly
detect and correct bugs appearing due to the incorrect
interpretation of the model details. The specification
was completed and proved approximately within a
year, and a number of errors in the initial textual
description of the MROSL DP-model were detected
and eliminated.

Since there was no need in planning the stepwise
refinement, the specification was developed faster, but
its monolithic structure caused a number of difficul-
ties. First, the specification turned out to be difficult
to maintain and improve because changes in its code
required its partial reproof. Furthermore, due to the
size and complexity of the specification concentrated
within a single machine, the automatic provers could
hardly do the job, and the proofs had to be done inter-
actively. The size and complexity also negatively
affected the readability of the specification code.
This can be demonstrated by an example.

Figure 1 shows a part of the event create_session
from the monolithic specification. This event is an
analog of the corresponding operation in the MROSL
DP-model; it models the creation of a new session. As
all the other events in Event-B, it has a set of parame-
ters, a block of guard conditions (the event precondi-
tions), and a block of actions (postconditions). The
guard conditions and actions are implemented in the
rows beginning with the labels @grd and @act, respec-
tively, and the parameters are defined in the block any.

The actions and conditions are connected by
arrows in Fig. 1; the arrows also show to which part of
the model the actions and conditions belong to. It is
seen that the connections are fairly complicated—
many interdependent entities are distributed across
the event code. For example, @grd2—@grd4, @grd7—
@grd9, @grd25, @act6, and @act7 are responsible for
the executable files and session profiles. Moreover,
parts of the same event can be connected not only to
each other but also to invariants included in the spec-
ification and to parts of other events. Event-B does not
provide tools for revealing such relationships without
stepwise refinement; therefore, these relations are not
visible in the monolithic model.

6.2. Decomposition Based on Data Types

The experience gained in the development of the
monolithic specification helped us develop and verify
a specification using the decomposition based on data
types. Even though the MROSL DP-model has
already been well studied by that time, insufficiently
thorough planning of the refinement steps has several
times required the specification to be completely
rewritten. All such cases were caused by the fact that

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42

201

an event that simultaneously modified not only the
state of the current machine but also the state of a
machine preceding the current machine in the
sequence, which contradicts the stepwise refinement
technique, was added. It is difficult to predict such
cases in a nontrivial system due to a large number of
relationships between its data types.

As a result, we were able to decompose the model
into 15 closely related parts and establish the order in
which they should be added to the specification in the
form of a chain of machines of which each refines the
preceding machine. The stepwise refinement method
was correct by construction; therefore, no additional
statements to be proved were generated.

Compared with the monolithic version, the
decomposed specification has a simple and clear
structure. New details are easy to add, and if the model
changes, the stepwise refinement makes it possible to
naturally reflect those changes in the specification
because the decomposition plan takes such situations
into account. Such changes affect a less number of
proofs, which facilitates the maintenance and devel-
opment of the specification.

Figure 2 illustrates one of the 15 refinement steps—
the machine that describes a small part of the model
(more precisely, the executable files and profiles).
Itisseen how this part affects the existing events
create_user, set_user labels, and create session, and
which conditions it must satisfy. The other machines
look similarly.

Despite the advantages described above, the
majority of decisions (such as which data structures
should be used, how to describe invariants, etc.) are
the same in the monolithic and decomposed specifi-
cations based on data types. Even the complexity of
proofs of correctness is comparable in both cases—the
refinement did not significantly facilitate the work for
the automatic provers. This implies that even though
we were able to facilitate the maintenance and devel-
opment of the specification and simplify its code, the
principle underlying this method of decomposition
did not pay off.

6.3. Feature-Based Decomposition

The plan of the feature-based decomposition relies
on the modified hierarchical version of the MROSL
DP-model .

The original textual description of the MROSL
DP-model is fairly large and monolithic; i.e., the ele-
ments of the model are presented in the order that is
convenient for the description of the model as a whole.
First, the elements of states of the abstract system
specified within the model are described; then the
requirements for the implementation of the manda-
tory and role control and the mandatory integrity con-
trol are presented; then the rules of transforming the
system states are given; and finally the system security

No.4 2016

202

event create_session
any currentSession newSession profile exefileA exefileE
cnfLevel cnfCats integrity user newAdmaAccesses ...
where

DEVYANIN et al.

@grd1 currentSessioneCurrentSessions
@grd2 profileeP1(CurrentObjects)
@grd3 exefileEeCurrentObjects

Creation of a new session «——
Integrity and security labels 4

@grd4 exefileAeP(CurrentContainers)
@grd5 newSessioneSessions \CurrentSessions
@grd6 3r-reCurrentRoles A exefileE |->ExecuteeRoleRights(r)

A r|->ReadAeSessionAdmAccesses(currentSession) ™ ——]
@grd7 SessionCnfLevel(currentSession)zEntityCnfLevel{exefileE)
@grd8 EntityCnfCats(exefileE)CSessionCnfCats(currentSession)
@grd9 EntityIntegrity(exefileE)2Sessionlintegrity(currentSession)

@grd10 cnfLevel=SessionCnfLevel(currentSession)
@grd11 cnfCats=SessionCnfCats(currentSession)

are added
Each session has a user ¢
on behalf of which it works

b ovs

Profiles and exefiles are added

Tll A

A J

I~

@grd12 integrity=Sessionintegrity(currentSession)
@grd13 user=SessionUser(currentSession)

@grd14 integrityelntegrity A cnfleveleCnflLevels

e

@grd21 vm-medom(UserUsRoles(user))

= (UserUsRoles(user)(m)—WriteAenewAdmAccesses

+ Mandatelntegrity(m)=integrity

A MandateCnfLevel(m)=cnfLevel
A MandateCnfCats(m)=cnfCats)

@grd22 vcr-creCommonRoles = (cr—ReadAe newAdmAccesses
& Rolelntegrity(cr) sintegrity A RoleCnfLevel(cr)scnflLevel

A RoleCnfCats(cr)CcnfCats)

@grd23 vcr-creCommonRoles = (cr—=WriteAenewAdmAccesses
< Rolelntegrity(cr)=integrity A RoleCnfLevel(cr)=cnfLevel

A RoleCnfCats(cr)=cnfCats)

@grd24 vr-re(CurrentRoles \ran(UserAsRoles(user))) s ran{UserUsRoles(user))
A rgCommonRoles = rgdom(newAdmAccesses)

@grd25 ve-ee{exefileE JuexefileA

= Sessionintegrity(currentSession)<Entitylntegrity(e)
A ((SessionCnfLevel{currentSession)=EntityCnfLevel(e)
A SessionCnfCats(currentSession)=EntityCnfCats(e))

v Sessionintegrity(currentSession)=Highl)

then
@actl CurrentSessions := CurrentSessions u {newSession}
@act2 Sessionintegrity(newSession) = integrity

Yy v ‘;
Accesses and access rights are
added A

@act3 SessionCnfLevel(newSession) = cnfLevel
@act4 SessionCnfCats(newSession) = cnfCats
@act5 SessionUser(newSession) = user

@act6 SessionProfiles(newSession) = profile
@act7 SessionExefiles(newSession) = {exefileE}uexefileA
@act8 SessionAccesses(newSession) = @

@act9 SessionAdmAccesses(newSession) == newAdmAccesses

end

Fig. 1. A part of the event create_session from the monolithic specification.

conditions are formulated and justified and
approaches to the model application in a special pur-
pose operating system (SPOS) are considered (an
example of such an operating system is Astra Linux
Special Edition). As a result, the model becomes more
and more difficult to modify because each change in
any of its elements requires appropriate modifications
in all the related elements of the model; furthermore,
the validity of the majority of proved statements must

PROGRAMMING AND COMPUTER SOFTWARE

be checked again. In addition, due to the large size, the
monolithic nature of the model, and the impossibility
to implement it step by step in this form, the model is
difficult to use by the SPOS developers, and it is diffi-
cult to use this model as a basis for other models (e.g.,
the model of a hypervisor for the SPOS).

For this reason, we are now proceeding from the
monolithic description of the model to the hierarchi-
cal one that makes it possible to represent the model
Vol. 42

No. 4 2016

COMPARISON OF SPECIFICATION 203

machine N11 refines N10 sees C3

invariants

@UserProfiles_type UserProfilese CurrentUserAccounts— P1(CurrentEntities)
@SessionProfiles_type SessionProfileseCurrentSessions—>P(Entities)
@SessionExefiles_type SessionExefileseCurrentSessions—> P(Entities)
@ UserProfilesintlsCorrect

Vvu,p-ueCurrentUserAccounts A peUserProfiles(u) = Userintegrity(u)=EntityIntegrity(p)
@UserProfilesCnflsCorrect

Vu,p-ueCurrentUserAccounts A peUserProfiles(u) = UserCnfLevel(u)=EntityCnfLevel(p)

events

event create_user extends create_user
any profiles
where
@grd33 profileseP1(CurrentEntities)
@grd34 vp-peprofiles = EntityIntegrity(p)=integrity
@grd35 vp-peprofiles = EntityCnfLevel(p)=cnfLevel
then
@actl6 UserProfiles(user) = profiles
end

event set_user_labels extends set_user_labels
any profiles
where
@grd58 profileseP1(CurrentEntities)
@grd59 vp-peprofiles = EntityIntegrity(p)=integrity
@grd60 vp-peprofiles = EntityCnfLevel(p)=cnflLevel
then
@act16 UserProfiles(user) = profiles
end

event create_session extends create_session
any exefileA exefileE profile
where
@grd12 profileeP1(CurrentObjects)
@grd13 exefileEeCurrentObjects
@grd14 exefileAeP(CurrentContainers)
@grd15 EntityCnfLevel (exefileE)CSessionCnflLevel(currentSession)
@grd16 EntityCnflLevel (exefileE)cUserCnfLevel(user)
@grd17 EntitylntLevel(exefileE)zintegrity
then
@act7 SessionProfiles(newSession) = profile
@act8 SessionExefiles(newSession) = {exefileE }JuexefileA
end
end

Fig. 2. The part of the decomposed specification describing the executable files and profiles.

PROGRAMMING AND COMPUTER SOFTWARE Vol.42 No.4 2016

204

DEVYANIN et al.

0 -Role-based access control

e -Mandatory integrity control

Hypervisor model- 9 e -Mandatory access control

Fig. 3. Layers of the hierarchical representation of the MROSL DP-model of the hypervisor for the SPOS.

layer by layer. Each lower layer of the model should be
an abstract system whose elements are independent of
the new elements belonging to the higher layer; the
higher layer inherits and modifies or (if required) aug-
ments the elements of the lower layer. For example,
one can define the first layer as a model of the role-
based access control, the second layer as a model of
the role-based access control and mandatory integrity
control, the third layer as a model of the role-based
access control, mandatory integrity control, and man-
datory access control with only information flows by
memory, etc. In such a hierarchical description, the
model of hypervisor for the SPOS can be considered
as an alternative (additional) third layer (the model of
the role-based access control, mandatory integrity
control, and hypervisor) because it may be assumed
that the hypervisor for the SPOS must ensure the cor-
rect operation of its mandatory integrity control and
the mandatory access control must not be imple-
mented by the hypervisor. This idea is illustrated in
Fig. 3.

The three presently available layers of the hierar-
chical representation of the MROSL DP-model were
formalized in an Event-B specification using the step-
wise refinement technique. Even though the formal-
ization was completed quickly and without significant
problems, we found out that the stepwise refinement
does not make it possible to describe the abstraction
method used in the hierarchical representation in a
natural way. Consider this situation using an example.

In the MROSL DP-model, each user account has
a set of individual roles, and their number and proper-
ties directly depend on the integrity and confidential-
ity labels of the user account. The individual roles are
created simultaneously with the creation of the user
account itself. The problem is that neither mandatory
integrity control nor mandatory access control exist
on the base abstract layer; therefore, user accounts
have no corresponding labels; hence, it is sufficient to
create two individual roles for each user account.
As new access control mechanisms are added on the
next two layers, the number of created roles will grow,
which contradicts the stepwise refinement technique
because it requires that each event modifies the vari-
ables defined on the abstract layer in the same way as
they were modified by the corresponding abstract

PROGRAMMING AND COMPUTER SOFTWARE

event. In the case under consideration, this means that
the number of created individual roles must coincide
with the number of the originally created roles on the
base layer; only a more detailed description of their
properties may be made.

A natural solution would be to create a greater
number of roles in advance than are necessary on the
base layer and then refine their number and properties.
However, one cannot simply create extra roles—one
must check that they satisfy the invariants included in
the model. Since we know nothing about these addi-
tional roles on the base layer, a great number of pre-
conditions describing them must be added, and a part
of them will be surely redundant on the next layers as
they will be replaced by preconditions based on the
integrity and confidentiality labels of these roles.

We tried this approach, and it complicated the
proof of the conservation of invariants and increased
the specification size. Then, we developed another
solution. The MROSL DP-model was modified in
such a way that the individual user roles were not cre-
ated together with the creation of the corresponding
user account but were taken from a set of roles that are
already available in the model. Since no new roles are
created in this case, there are no problems with the
stepwise refinement when going from the base layer of
the model to the other layers. In addition, the number
of statements to be proved that are generated for the
creation of the user account decreases, and the size of
the final specification is also decreased because the
number of preconditions describing the created roles
is decreased.

6.4. Comparison of the Decomposition Methods

Consider the following criteria for the evaluation of
the specification decomposition methods described
above: simplification of the analysis and understand-
ing of the system, weakening of requirements for the
verification tools, increasing the reuse level, and sim-
plification of maintenance and development. Both
decomposition methods when applied to specifica-
tions of the MROSL DP-model using the stepwise
refinement technique could not significantly improve
the operation of the automatic provers. At the same
time, the decomposition based on data types and the
Vol. 42

No. 4 2016

COMPARISON OF SPECIFICATION 205

feature-based decomposition helped simplify the
specification code and improved its structure; they
also made it possible to modify the specification and
add new details in a natural way. Finally, the feature-
based decomposition outperforms the decomposition
based on data types in terms of reuse: it allows one to
develop specifications of similar systems on the basis
of existing systems (e.g., to develop the specification of
the access control model for the hypervisor based on
the existing model for the operating system).

7. CONCLUSIONS

Two different decomposition methods of formal
specifications based on the experience gained in the
formal analysis of the mandatory entity-role model of
access and information flows control in Linux
(MROSL DP-model) are evaluated. The decomposi-
tion was performed using the formal Event-B method
and the stepwise refinement technique supported by
it. The stepwise refinement was used to decompose
specifications of the model in two different ways—
with the focus on the data types of the system being
specified and on the higher level features of this system
or, more precisely, on the data protection mechanisms
described in the system.

Both decomposition methods have similar advan-
tages and disadvantages; however, the feature-based
decomposition outperforms the decomposition based
on data types in terms of reuse because it makes it pos-
sible to develop specifications of similar systems on the
basis of the existing specifications.

ACKNOWLEDGMENTS

This study was supported by the Ministry for Sci-
ence and Education of the Russian Federation, project
no. RFMEFI160414X0051.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 42

REFERENCES

. Devyanin, P.N., Models of Security of Computer Sys-

tems: Access control and Data Flows, Moscow: Hot line
Telecom, Moscow, 2013.

. Devyanin, P.N., Security Conditions for Information

Flows by Memory in the MROSL DP-model, Prikl.
Diskr. Mat, Appendix, 2014, vol. 7, pp. 82—85.

. Astra Linux. http://www.astra-linux.com
. Devyanin, P., Khoroshilov, A., Kuliamin, V., et al.,

Formal Verification of OS Security Model with Alloy
and Event-B, Proc. of the Fourth Int. Conf. on Abstract
State Machines, Alloy, B, TLA, VDM, and Z (ABZ-
2014), Toulouse 2014, pp. 309—313. https://www.
springer.com/us/book/9783662436516

. Devyanin, P.N., Kulyamin V.V., Petrenko, A.K., et al.,

On the Representation of the MROSL DP-model in
the Formalized Event-B Notation (Rodin Platform),
Konf. RusKripto-2014 (Proc. of the Conf, RusKripto-
2014), Moscow, 2014. http://www.ruscrypto.ru/
resource/ summary,/rc2014/05_devyanin.pdf

. Abrial, J.-R., Modeling in Event-B: System and Software

Engineering, Cambridge: Cambridge University Press,
2010.

. Abrial, J.-R., M. Butler, S. Hallerstede, et al., Rodin:

An Open Toolset for Modelling and Reasoning in
Event-B, Int. J. on Software Tools for Technol. Trans-
fer, 2010, vol. 12, no. 6, pp. 447—466.

. Kulyamin V.V., Methods of Software Verification,

Competition of Reviews on Information and Telecom-
munication Systems, 2008.

. Damchoom, K., An Incremental Refinement

Approach to a Development of a Flash-Based File Sys-
tem in Event-B, Ph. D. thesis, University of South-
ampton, School of Electronics and Computer Science,
2010.

Translated by A.V. Klimontovich

No.4 2016

		2016-07-15T15:35:40+0300
	Preflight Ticket Signature

