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1 1. INTRODUCTION

Equality saturation [1] is a method of program
transformation that uses a compact representation of
multiple equivalent programs based on E�graphs.
E�graphs are graphs whose nodes are joined into
equivalence classes [2, 3]. They allow us to represent a
set of equivalent programs, consuming exponentially
less memory than representing it as a plain set by shar�
ing their common parts. Equality saturation consists in
enlarging this set of programs by applying certain
transformations to the E�graph until there’s no trans�
formation to apply or the limit of transformation
applications is reached. The transformations are usu�
ally applied non�destructively, i.e. they only add infor�
mation to the E�graph (by adding nodes, edges and
equivalences).

Equality saturation has several applications. It can
be used for program optimization—in this case after
the process of equality saturation is finished, a single
program should be extracted from the E�graph. It can
also be used for proving program equivalence (e.g. for
translation validation [4])—in this case program
extraction is not needed.

In the original papers by Tate et al. [1] equality sat�
uration is applied to imperative languages, namely
Java bytecode and LLVM (although the E�graph�
based intermediate representation used there, called
E�PEG, is essentially functional). In this paper we
describe how equality saturation can be applied to the
task of proving equivalence of functions written in a
non�strict functional language. We do this mainly by
borrowing transformations from supercompilation [5,
6]. Since many properties require proof by induction,
we introduce a special transformation called merging

1 The article was translated by the authors.

by bisimilarity which essentially proves by induction
that two terms are equivalent. This transformation
may be applied repeatedly, which gives an effect of dis�
covering and proving lemmas needed for the main
goal.

Unlike tools such as HipSpec [7] and Zeno [8] we
don’t instantiate the induction scheme, but instead
check the correctness of the proof graph similarly to
Agda and Foetus [9, 10]. We also fully support infinite
data structures and partial values, and we don’t assume
totality. As we’ll show, proving properties that hold
only in total setting is still possible with our tool by
enabling some additional transformations but it’s not
very efficient.

The paper is organized as follows. In Section 2 we
briefly describe equality saturation and how functional
programs and their sets can be represented by
E�graphs. Then in Section 3 we discuss basic transfor�
mations that we apply to the E�graph. Section 4 deals
with the merging by bisimilarity transformation. Sec�
tion 5 discusses the order of transformation applica�
tion. In Section 6 we present experimental evaluation
of our prover. Section 7 discusses related work and
Section 8 concludes the paper.

The source code of our experimental prover can be
found on GitHub [11].

2. PROGRAMS AND E�GRAPHS

An E�graph is a graph enriched with information
about equivalence of its nodes by means of splitting
them into equivalence classes. In our case, an E�graph
essentially represents a set of (possibly recursive) terms
and a set of equalities on them, closed under reflexiv�
ity, transitivity and symmetry. If we use the congruence
closure algorithm [3], then the set of equalities will
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also be closed under congruence. The E�graph repre�
sentation is very efficient and often used for solving the
problem of term equivalence.

If we have some axioms or transformations describ�
ing some properties of our terms, we can also apply
them to the E�graph, thus deducing new equalities
from the ones already present in E�graph (which in its
turn may lead to more transformation application
opportunities). This is what equality saturation basi�
cally is. So, to solve a problem of function/program
equivalence using equality saturation one should first
convert both function definitions to E�graphs and put
both of them into a single E�graph and then transform
the E�graph using some transformations until the tar�
get terms are in the same equivalence class or some
limit of transformation application is reached—this
process is called saturation. In pure equality saturation
approach transformations are applied non�destruc�
tively and result only in adding new nodes and edges,
and merging of equivalence classes. But in practice
this is not very efficient, and in our prover we apply
some transformations destructively, removing some
nodes and edges.

In this paper we will use a first�order untyped sub�
set of Haskell (in our implementation higher�order
functions are dealt with by defunctionalization).
To illustrate how programs are mapped into graphs,
let’s consider the following program:

not b = case b of {T  F; F  T}
even n = case n of {Z  T; S m  odd m}
odd n = not (even n)
This program can be naturally represented as a

graph, as shown in Fig. 1. Each node represents a basic
language construct (pattern matching, constructor,
variable, or explicit substitution—we’ll explain them
in Section 2.1). If a node corresponds to some named
function, its name is written in the top part of it. Some
nodes are introduced to split complex expressions into
basic constructs and don’t correspond to any named
functions. Recursion is simply represented by cycles.

Some nodes are shared (in this example these are the
variable x and the constructor Τ). Sharing is very
important since it is one of the things that enable com�
pactness of the representation.

All edges of an E�graph are labeled with renamings,
but identity renamings are not drawn. These renamings
are very important—without them we would need a
separate node for each variable, and we couldn’t put
nodes representing the same function modulo renam�
ing into the same equivalence class, which would
increase space consumption. Merging up to renaming
will be discussed in Section 2.2.

Note also that we use two methods of representing
function calls. If all the arguments are distinct variables
then we can simply use a renaming (the function odd
is called this way). If the arguments are more complex
then we use explicit substitution which is very similar
to function call but has more fine�grained reduction
rules. We can use explicit substitutions even if the argu�
ments are distinct variables, but it’s more expensive
than using renamings (and actually we have a transfor�
mation which destructively replaces such explicit sub�
stitutions with renamings). Note that we require an
explicit substitution to bind all variables of the expres�
sion being substituted—this simplifies the formula�
tion of some transformations.

The same way graphs naturally correspond to pro�
grams E�graphs naturally correspond to programs
with multiple function definitions. Consider the fol�
lowing “nondeterministic” program:

not b = case b of {T  F; F  T}
even n = case n of {Z  T; S m  odd m}
odd n = case n of {Z  F; S m  even m}
odd n = not (even n)
even n = not (odd n)
This program contains multiple definitions of the

functions even and odd, but all the definitions are
actually equivalent. This program can also be repre�
sented as a graph, but there will be multiple nodes cor�
responding to functions even and odd. If we add the
information that nodes corresponding to the same
function are in the same equivalence class, we get an
E�graph (Fig. 2). Nodes of equivalent functions are
connected with dashed lines, meaning that these
nodes are in the same class of equivalence. As can be
seen, the drawing is messy and it’s hard to understand
what’s going on there, so we’ll mostly use textual form
to describe E�graphs (as “nondeterministic” pro�
grams).

E�graphs are also useful for representing compactly
sets of equivalent programs. Indeed, we can extract
individual programs from an E�graph or a nondeter�
ministic program by choosing a single node for each
equivalent class, or in other words, a single definition
for each function. However, we cannot pick the defini�
tions arbitrarily. For example, the following program
isn’t equivalent to the one above:

not b = case b of {T  F; F  T}

Fig. 1. Graph representation of a program.
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odd n = not (even n)
even n = not (odd n)
This problem should be taken into account not

only when performing program extraction, but also
during certain complex transformations like merging
by bisimilarity which we will discuss in Section 4.

2.1. Node Labels

In this section we’ll describe kinds of node labels
and how they correspond to language constructs.

First of all, each node of an E�graph is a member of
some equivalence class (which in the simplest case
contains only this node). We will use symbols f, g, h, …
to denote nodes as well as corresponding functions.
Each node has a label L( f ) and a set of input variables
V( f ) (in the implementation variables are numbered,
but in this paper we treat them as named). V( f ) may
decrease with graph evolution, and it should be kept
up to date because we need V( f ) to perform some
transformations (keeping it up to date is beyond the
scope of this paper). Each edge from f to g of an
E�graph is labeled with a bijective renaming V(g) 
V( f ) (if in the process of transformation it stops being
bijective then one of the sets V( f ) or V(g) should be
automatically decreased).

We will use the notation f = L  θ1g1, …, θngn to
denote a node f with a label L and edges with labels θi

from f to gi. We will write f ≅ g to denote that f and g are
from the same equivalence class.

There are only four kinds of node labels:
• f = x. (Variable/identity function). We use the

convention that the identity function always takes the
variable x, and if we need some other variable, we
adjust it with a renaming. Code example: fx = x

• f = subst(x1, …, xn)  ξh, θ1g1, …, θngn.
(Explicit substitution/function call/let expression).

An explicit substitution substitutes values θigi for the
variables xi in ξh. We require it to bind all the variables
of ξh. Explicit substitution nodes usually correspond
to function calls:

f x y = h(g1 x) (g2 y) (g3 x y).
They may also correspond to non�recursive let

expressions, or lambda abstractions immediately
applied to the required number of arguments:

f x y = let {u = g1 x; v = g2 x y} in h u v
= (λ u v . h u v) (g1 x) (g2 x y).

But to describe E�graph transformations we will
use the following non�standard (but hopefully more
readable) postfix notation:

f x y = h u v {u = g1 x, v = g2 x y}
• f = C  θ1g1, …, θngn. (Constructor). Code

example:
f x y = C (g1 x) (g2 y) (g3 x y)

• f = caseof(C1 , …, Cn )  ξh, θ1g1, …, θngn.
(Pattern matching). This label is parametrized with a
list of patterns, each pattern is a constructor name and
a list of variables. The corresponding case bodies (θigi)
don’t have to use all the variables from the pattern. ξh
represents the expression being scrutinized. Code
example:

f x y = case h x of
S n  g1 y n
Z  g2 x

We will also need an operation of adjusting a node
with a renaming. Consider a node f = L  θ1g1, …, θngn

and a renaming ξ. Suppose, we want to create a func�
tion f ' = ξ f( f ' is f with parameters renamed). We can
do this by adjusting outgoing edges of f with (unless f = x
in which case it doesn’t have outgoing edges). We will
use the following notation for this operation:

f ' = ξ(L  θ1g1, …, θngn).

x1 xn

Fig. 2. E�graph representing functions even and odd.
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Formally the operation is defined as follows:
ξ(C  θ1g1, …, θngn) 

= C  (ξ � θ1)g1, …, (ξ � θn)gn,
ξ(subst(…)  ζh, θ1g1, …, θngn)

= subst(…)  ζh, (ξ � θ1)g1, …, (ξ � θn)gn,
ξ(caseof(…)  ζh, θ1g1, …, θngn)

= caseof(…)  (ξ � ζ)h, ( ξ � θ1)g1, …,  � θn)gn.

In the last case each  maps the variables bound by
ith pattern to themselves and works as ξ on all the other
variables.

2.2. Merging 

One of the basic operations of the E�graph is merg�
ing of equivalence classes. Initially new nodes are cre�
ated in their own separate equivalence classes, and
then these classes may be merged as a result of apply�
ing some transformations, which corresponds to add�
ing new equalities. In the case of simple equalities like
f = g we should simply merge the corresponding equiv�
alence classes. But we also want to merge functions
which are equal only up to some renaming, so should
take into account equalities of the form f = θg where θ
is some non�identity renaming. In this case we should
first adjust renamings on edges so that the equation
becomes of the form f = g and then proceed as usual.

Consider the equation f = θg. Let’s assume that g is
not a variable node (x) and it’s not in the same equiv�
alence class with a variable node (otherwise we can
rewrite the equation as g = x, and if they both were
equal to a variable node then our E�graph would be
self�contradictory which would indicate a bug in the
transformation system). Now for each node h in the
same equivalence class with g (including g) we should
perform the following:

(1) Adjust the outgoing edges of h with θ using pre�
viously described node adjustment operation.

(2) For each edge incoming into h replace its
renaming, say, ξ, with a renaming ξ � θ–1.

After the adjustment the equation becomes f = g
and we can merge the equivalence classes.

Note that this procedure doesn’t work if f and g are
in the same equivalence class. In this case the equation
actually looks like f = θf and should be modelled with
an explicit substitution. In practice this case is very
rare and corresponds to function commutativity.

3. TRANSFORMATIONS

3.1. Congruence

The most common cause of equivalence class
merging is equivalence by congruence, that is if we
know that a = b, then we can infer that f(a) = f(b).
Note that usually this kind of merging is not explicitly
formulated as a transformation because it is applied to
the E�graph automatically, but we prefer to do it

ξ1' ξn'

ξi'

explicitly for uniformity. Also, in our case the transfor�
mation should take into account that we want to detect
equivalences up to some renaming. Here is the trans�
formation written as an inference rule, we will later
refer to it as (cong):

f = L  θ1h1, …, θnhn

∃ξ : g = ξ(L  θ1k1, …, θnkn)
∀i hi ≅ ki

g = ξf
It says that if we have a node f and a node g that is
equivalent to f adjusted with some renaming ξ, then we
can add the equality g = ξf to the E�graph. This trans�
formation is advantageous to apply as early as possible
since it results in merging of equivalence classes,
which reduces duplication and gives more opportuni�
ties for applying other transformations.

Also note that to make the search for the appropri�
ate faster, it is beneficial to represent nodes in normal
form:

f = ζ(L  θ1g1, …, θngn),
where θi are as close to identity renamings as possible,
so to find ζ we should just compare the @’s.

3.2. Injectivity

This transformation may be seen as something like
“inverse congruence.” If we know that f(a) = f(b), and
f is injective then a = b. Of course, we could achieve
the same effect by adding the equalities a = f–1(f(a))
and b = f–1(f(b)), to the E�graph and then using con�
gruence, but we prefer a separate transformation for
performance reasons. We will call it (inj):

f = L  θ1h1, …, θnhn

g = L  ζ1k1, …, ζnkn

f ≅ g
L is injective

∀i . hi = 

“L is injective” means that L is either a constructor, or
a case�of that scrutinizes a variable (i.e. θ1 = ζ1 and
h1 = k1 = x) such that none of the θ2h2, …, θnhn, ζ2k2,
…, ζnkn uses this variable (in other words, positive
information is propagated). This transformation is
also advantageous to apply as early as possible.

3.3. Semantics of Explicit Substitutions

In this and the next sections we will write transfor�
mations in a less strict but more human�readable
form. A rewriting rule E1 � E2 means that if we have a
node f1 representing the expression E1, then we can
add an equality f1 = f2 to the E�graph where f2 is the
node representing E2 (which should also be added to
the E�graph unless it’s already there).

 

 

θi
1–
ζiki
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We use the compact postfix notation to express
explicit substitutions. We use letters e, f, g, h, … to rep�
resent nodes whose structure doesn’t matter. We some�
times write them applied to variables they use (f x y), but
if variables don’t really matter, we omit them. Note
that the presented rules can be generalized to the case
when pattern matchings have arbitrary number of
branches and functions take arbitrary number of argu�
ments, we just use minimal illustrative examples for
the sake of readability.

In Fig. 3 four transformations of explicit substitu�
tions are shown. All of them basically describe how to
evaluate a node if it is an explicit substitution. The
answer is to push the substitution down (the last three
rules) until we reach a variable where we can just per�
form the actual substitution (the first rule, (subst�id)).

Usually in program transformation systems substi�
tution in the body of a function is performed as an
indivisible operation, but this kind of transformation

would be too global for an E�graph, so we use explicit
substitutions to break it down.

There are two more rather technical but nonethe�
less important transformations concerning substitu�
tion. The first one is elimination of unused variable
bindings, (subst�unused):

f x y {x = g, y = h, z = k}
� f x y {x = g, y = h}

When this transformation is applied destructively
(i.e. the original node is removed), it considerably sim�
plifies the E�graph. This transformation is the reason
why we need the information about used variables in
every node.

The second transformation is conversion from a
substitution that substitutes variables for variables to a
renaming:

f x y {x = y, y = z} � f y z.
Note though that application of this transforma�

tion results in merging of the equivalence classes cor�

Fig. 3. Transformations of explicit substitutions.

Fig. 4. Transformations of pattern matching.

(case�of�constr)
(case Ce of C y → fxy) �

   fxy{x = x, y = e}
(case�of�case�of)

(case (case e of C1y → g) of C2z → h) �
case e of C1y → (case g of C2z → h)

(case�of�id)
(case e of Cyz → fxyz) �

case x of Cyz →
    fxyz{x = (Cyz), y = y, z = z}

(case�of�transpose)
case h of {

C1x → case z of Dv → fvx;
C2y → case z of Dv → gvy;

} �
case z of  Dv →

case h of {
C1x → fvx;
C2y → gvy;

}
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responding to the node representing the substitution
and the node f, so if they are already in the same class,
this transformation is inapplicable. We also apply this
transformation destructively.

3.4. Semantics of Pattern Matching

The transformations concerning pattern matching
are shown in Fig. 4. The first of them, (case�of�con�
str), is essentially a reduction rule: if the scrutinee is an
expression starting with a constructor, then we just
substitute appropriate subexpressions into the corre�
sponding case branch.

The next two transformations came from super�
compilation [5, 6]. They tell us what to do when we get
stuck during computation because of missing informa�
tion (i.e. a variable in place of a scrutinized expres�
sion). The transformation (case�of�case�of) says that
if we have a pattern matching that scrutinizes the result
of another pattern matching, then we can pull the
inner pattern matching out. The transformation (case�
of�id) is responsible for positive information propaga�
tion: if a case branch uses the variable being scruti�
nized, then it can be replaced with its reconstruction
in terms of the pattern variables.

The last transformation, (case�of�transpose), says
that we can swap two consecutive pattern matchings.
This transformation is not performed by supercompil�
ers and is actually rarely useful in a non�total language.

3.5. Destructive Transformations

We apply some transformations destructively, i.e.
remove the original nodes and edges that triggered the
transformation. It is essentially a heuristic, which is a
deviation from pure equality saturation approach, but
without it proving even simple equalities takes too
long. Note that in theory if we don’t care about perfor�
mance, deleting information from the E�graph leads
to decrease in proving power.

Currently the transformations we apply destructively
are (subst�id), (subst�unused), (subst�to�renaming), and
(case�of�constr). We have tried to switch on and off
their destructivity. Turned out that non�destructive
(case�of�constr) leads to a lot of failures on our test
suite (due to timeouts), but helps to pass one of the
tests that cannot be passed when it’s destructive
(which is expected: non�destructive transformations
are strictly more powerful when there is no time limit).
Non�destructive (subst�unused) has a similar effect: it
helps to pass two different tests, but at the price of fail�
ing several other tests. At last, non�destructivity of
(subst�id) and (subst�to�renaming) doesn’t impede
the ability of our tool to pass tests from our test suite
but when either of them is applied non�destructively,
our tool becomes about 15% slower. We also tried to
make all the mentioned transformations non�destruc�
tive which rendered our tool completely unusable
because of combinatorial explosion of the E�graph,

which substantiates the importance of at least some
destructivity.

4. MERGING BY BISIMILARITY

The congruence transformation can merge two
functions into one equivalence class if they have the
same tree representation. But if their definitions
involve cycles, then the congruence transformation
becomes useless. Consider the following two func�
tions: 

f = S f
g = S g

If they aren’t in the same equivalence class in the first
place, none of the already mentioned transformations
can help us equate them. Here we need some transfor�
mation that is aware of recursion. Note that in the
original implementation of equality saturation called
Peggy [1] there is such a transformation that merges θ�
nodes.

The general idea of this kind of transformation,
which we will call merging by bisimilarity, is to find two
bisimilar subgraphs growing from two different equiv�
alence classes and merge these equivalence classes if
the subgraphs have been found. Note though that not
every subgraph is suitable. Consider the following
nondeterministic program:

f x = C; g x = D
f x = f (f x); g x = g (g x)

The functions f and g are different but they both are
idempotent, which is stated by the additional defini�
tions, which can be seen as two equal closed subgraphs
“defining” the functions:

f x = f (f x)
g x = g (g x)

Of course, we cannot use subgraphs like these to
decide whether functions f and g are equal, because
they don’t really define the functions, they just state
that they have the property of idempotence. So we
need a condition that guarantees that there is (seman�
tically) only one function satisfying the subgraph.

In our implementation we employ the algorithm
used in Agda and Foetus to check if a recursive func�
tion definition is structural or guarded [10]. These
conditions are usually used in total languages to ensure
termination and productivity, but they can also be used
to guarantee uniqueness of the function satisfying a
definition in a non�total language with infinite and
partial values (a proof of this claim is left for future
work). Informally speaking, in this case guarded
recursion guarantees that there is data output between
two consecutive recursive function calls, and struc�
tural recursion guarantees that there is data input
between them (i.e. a pattern matching on a variable
that hasn’t been scrutinized before). It’s not enough
for function totality since the input data may be infi�
nite, but it defines the behaviour of the function on
each input, thus guaranteeing it to be unique.
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Note that we have refused to interpret functions as
least fixed points of their definitions because in the
E�graph there often appear definitions that are not
equivalent to the original one in this interpretation
(like in the indempotence example above). Thus there
is a subtle difference between subgraphs that may have
multiple fixed points and subgraphs that have a single
fixed point equal to ⊥. Consider the following function
“definition”:

f x = f x
The least fixed point interpretation of this function is
⊥. But there are other fixed points (actually, any one�
argument function is suitable). Now consider the fol�
lowing definition:

f x = eat infinity
infinity = S infinit
eat x = case x of { S y  eat y}
The definition of infinity is guardedly recursive, and

the definition of eat is structurally recursive, so both of
them have unique fixed points, and consequently the
function f also have a unique fixed point as their com�
position. This fixed point is equal to ⊥.

Of course, this method of ensuring uniqueness may
reject some subgraphs having a single fixed point,
because the problem is undecidable in general. Note
also that this is not the only possible method of ensur�
ing uniqueness. For example, we could use ticks [12]
as in two�level supercompilation [13].

4.1. Algorithm Description

In this subsection we’ll describe the algorithm that
we use to figure out if two equivalence classes have two
bisimilar subgraphs growing from them and meeting
the uniqueness condition. First of all, the problem of
finding two bisimilar subgraphs is a variation of the

subgraph bisimulation problem which is NP�complete
[14]. In certain places we trade completeness for per�
formance, so sometimes our algorithm fails to find the
subgraphs when they exist. Nevertheless, merging by
bisimilarity is still one of the biggest performance
issues in our experimental implementation.

The algorithm we use is outlined in Fig. 5. It takes
two equivalence classes and a history of visited classes
(initially empty) and returns true if they are bisimilar
(i.e. there are two bisimilar subgraphs growing from
them) or false if it cannot find a bisimulation. The
algorithm consists in simultaneous depth�first tra�
versal of the E�graph from the given classes. If two
classes are the same then we consider them to be
bisimilar by definition and return true. If we encounter
a previously visited pair of classes, we check if the
uniqueness condition holds, and if it does, we return
true (this case corresponds to folding in supercompila�
tion) and otherwise we stop trying and return false
(this case doesn’t guarantee that there’s no bisimula�
tion, because if we check the uniqueness condition on
the second encounter it may hold even if it doesn’t on
the first one, but for efficiency we stop searching).
Note that some kinds of uniqueness conditions have to
be checked after the whole bisimilation is known (and
the guardedness and structurality checker is of this
kind since it needs to know all the recursive call sites).
In this case it is still advantageous to check some pre�
requisite condition while folding, which may be not
enough to guarantee correctness, but enough to filter
out obviously incorrect graphs.

If none of the previous cases is applicable, we try to
disprove equivalence of the given classes (the algo�
rithm will work without this but very inefficiently).
To do this we check if there are incompatible nodes in
the classes, like different constructors or a constructor
and a pattern matching on a variable or two pattern

Fig. 5. Algorithm for searching for two bisimilar subgraphs.

and c2 contain incompatible nodes 

uniqueness conditions hold
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matchings on different variables (this check may be
performed to a certain depth). If there are incompati�
ble nodes then their equivalence classes cannot be
bisimilar, and we return false. Otherwise we go on and
check all pairs of nodes from the given classes to find a
pair of nodes such that all their child nodes’ classes are
bisimilar. If there is such a pair then the original equiv�
alence classes are bisimilar.

Note that the described algorithm can be easily
modified to return a lazy list of bisimulations, which is
necessary to do in reality because we need them for
checking the uniqueness condition. We have also
ignored the question of renamings here. Since in prac�
tice we want to merge classes up to renamings, we
should also search for bisimulations up to renamings,
which complicates the real implementation a little bit.

5. ON ORDER OF TRANSFORMATION

In our implementation we deviate from pure equal�
ity saturation for practical reasons. Pure equality satu�
ration approach requires all transformations to be
monotone with respect to the ordering  on E�graphs
where g1  g2 means that the set of equalities encoded
by g1 is a subset of the corresponding set for g2. More�
over, it requires them to be applied non�destructively,
i.e. g  t(g) for each transformation t (in other words,
we cannot remove nodes and edges, and split equiva�
lence classes). But in return we are granted with a nice
property: if we reach the fully saturated state (no trans�
formation can change the E�graph further) then the
resulting E�graph will be the same no matter in what
order we have applied the transformations.

Unfortunately, in reality this is not very practical.
First of all, saturation can never be reached if our
transformations are complex enough (or at least it will
take too long). In particular, the transformations we
described above can be applied indefinitely in most
cases. To solve this problem we can add monotone pre�
conditions to transformations, similar to whistles in
supercompilers, which forbid applying transforma�
tions indefinitely (e.g. we can limit the depth of the
nodes to which transformations may be applied).

Second, as we have said in Section 3.5, some trans�
formations should be applied destructively, otherwise
there will be too many useless nodes and edges in the
E�graph. But when we apply transformations destruc�
tively, we lose the independence of the result from trans�
formation order (or at least it becomes harder to prove).

Moreover, sometimes it is useful to stop somewhere
in the middle, the state in this stop point being deter�
ministic instead of changing from run to run. Such
points can be organized using the mentioned precon�
ditions: when we reach fully saturated state, we relax
them and run the saturation process again (in this case
whistles essentially become heuristic functions). The
main problem is to gain sufficiently small time inter�

vals between these points of intermediate saturated
states.

Currently we use the following order of transfor�
mation, which is mainly based on the breadth�first
approach and on partitioning transformations into
subsets (inside a subset transformations can be rear�
ranged but the order of applying different subsets is
strictly fixed):

(1) Transform the programs and the goal into an
E�graph.

(2) Apply all possible non�destructive transforma�
tions except merging by bisimilarity, congruence and
injectivity to the equations that are already in E�graph
but not to the equations that are added by the transfor�
mations performed in this step. This can be done by
postponing the effects of transformations: first, we col�
lect the effects of applicable transformations (nodes
and edges to add, and classes to merge), then we apply
all these effects at once.

(3) Perform E�graph simplification: apply congru�
ence, injectivity and destructive transformations to the
E�graph until the saturation w.r.t. these transforma�
tions is reached. It is quite safe since all these transfor�
mations are normalizing in nature (i.e. they simplify
the E�graph).

(4) Perform merging by bisimilarity over each pair of
equivalence classes. Pairs of equivalence classes are sorted
according to resemblance of their components, and then
the merging by bisimilarity algorithm is applied to them
sequentially. After each successful merge perform
E�graph simplification exactly as in the previous step.

(5) Repeat steps 2–4 until the goal is reached.
This way E�graph is being built in a breadth�first

manner, generation by generation, each generation of
nodes and edges results from applying transformations
to the nodes and edges of the previous generations.
An exception from this general rule is a set of small
auxiliary (but very important) transformations con�
sisting of congruence, injectivity and all the destruc�
tive transformations, which are applied until the satu�
ration because they always simplify the E�graph. Note
that inductive provers and supercompilers usually
employ the depth�first approach, which can be used in
equality saturation too, which may have some advan�
tages. It is also may be advantageous to use some heuristic
functions, but this question is not well�researched yet.

6. EXPERIMENTAL EVALUATION

To evaluate our prover and compare it to similar
tools we’ve used our own set of simple equalities. The
main reason of using our own suite was the fact that we
work with a non�total language with partial and infi�
nite data. Our suite is not representative, so we don’t
compare the tools by the number of tests they pass.
Moreover, the tools seem to fall into different niches.

We’ve split this set into two groups: a main group of
relatively simple equalities (Table 1) and a group of
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Table 1. Comparison of the tools on the main test set

Name Description graphsc hosc hosc
(hl)

zeno
(p)

zeno
(t)

hipspec
(p)

hipspec
(t)

add�assoc x + (y + z) = (x + y) + z 1.6 0.5 0.6 0.3 0.3 8.8 0.9

double�add double (x + y)
= double x + double y

2.2 0.6 0.6 0.3 0.3 21.5 2.0

even�double even (double x) = true 1.7 0.6 0.6 0.3 0.3 82.5 97.9

ho/concat�concat concat (concat xs)
= concat (map concat xs)

3.2 0.6 0.7 0.4 0.4 80.0 47.0

ho/map�append map f (xs ++ ys)
= map f xs ++ map f ys

2.1 0.6 0.7 0.3 0.3 9.8 4.5

ho/map�comp map (f . g) xs
= (map f . map g) xs

3.4 0.6 0.6 0.3 0.3 4.7 4.7

ho/map�concat map f (concat x)
= concat (map (map f) x)

2.8 0.6 0.7 0.3 0.3 91.4 47.9

ho/map�filter filter p (map f xs)
= map f (filter (p . f) xs)

3.6 0.7 0.7 0.3 0.3 6.3 5.8

take�drop drop n (take n x) = [] 2.4 0.6 0.7 0.3 0.3 47.8 9.6

take�length take (length x) x = x 2.3 0.6 0.6 0.3 0.3 6.8 7.9

length�concat length (concat x)
= sum (map length x)

2.8 0.7 0.8 0.3 0.3 fail 8.5

append�take�drop take n x ++ drop n x = x 3.6 fail 1.1 0.5 0.3 113.0 11.9

deepseq�idemp deepseq x (deepseq x y)
= deepseq x y

1.8 fail 0.9 0.3 0.3 4.7 1.6

deepseq�s deepseq x (S y)
= deepseq x (S (deepseq x y))

2.1 fail 0.7 0.3 0.3 10.1 0.7

mul�assoc (x ∗ y) ∗ z = x ∗ (y ∗ z) 11.6 0.8 fail 0.3 0.4 176.2 30.4

mul�distrib (x ∗ y) + (z ∗ y) = (x + z) ∗ y 3.9 0.7 fail 0.3 0.3 151.8 92.1

mul�double x ∗ double y = double (x ∗ y) 5.1 0.6 fail 0.3 0.3 165.6 142.1

ho/fold�append foldr f (foldr f a ys) xs
= foldr f a (xs ++ ys)

2.1 0.6 0.7 fail 0.3 176.8 4.6

ho/church�id unchurch (church x) = x 6.1 0.6 0.6 0.3 0.3 fail fail

ho/church�pred fail 0.7 0.8 fail fail fail fail

ho/church�add fail 0.7 0.7 0.3 0.3 fail fail

idle�simple idle x = idle (idle x) 1.4 fail fail 0.3 0.3 0.8 0.7

bool�eq 1.3 fail fail 0.3 0.3 1.1 0.8

sadd�comm 2.1 fail fail 0.3 0.3 3.3 16.7

ho/filter�idemp filter p (filter p xs)
= filter p xs

fail fail fail 0.3 0.3 1.3 0.9

even�slow�fast even x = evenSlow x 1.8 fail fail fail fail 2.6 1.1

or�even�odd even x || odd x = true 3.9 fail fail fail 0.3 128.9 1.0

dummy 1.6 fail fail 0.3 0.3 2.4 0.8

idle idle x = deepseq x 0 1.5 fail fail 0.3 0.3 1.8 0.7

quad�idle 1.9 fail fail 0.3 0.3 fail 0.7

exp�idle 3.4 fail fail 0.3 fail fail 1.7
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equalities that require some special features (Table 2),
namely complex generalizations, strong induction,
and coinduction. The tests can be found in our repos�
itory [11] under the directory samples. For some of the
tests we gave human�readable equations in the second
column—note though that real equations are often a
bit more complex because we had to make sure that
they held in a non�total untyped language.

The tables show average wall�clock time in seconds
that the tools we’ve tested spent on the tests. We used a
time limit of 5 minutes, runs exceeding the time limit
counted as failures. The tools we used in our bench�
marking were:

• graphsc. Graphsc (Graphical SuperCompiler, ini�
tially our tool was intended to be a supercompiler) is our
experimental prover based on the methods described in
this paper. Note that although it internally works only
with first�order functions and there are many equalities
in our sets involving higher�order functions, it can still
prove them, because we perform defunctionalization
before conversion to E�graph. Our prover is written in
Scala and can be found on GitHub [11].

• hosc. HOSC is a supercompiler designed for pro�
gram analysis, including the problem of function
equivalence [15] (but it’s not perfectly specialized for
this task). It uses the following technique: first super�
compile left hand side and right hand side separately
and then syntactically compare the residual programs
[16, 17]. The column labeled hosc (hl) corresponds to

the higher�level version of HOSC [13, 18]. It can come
up with lemmas necessary to prove the main goal and
prove them using a single�level HOSC.

• zeno. Zeno [8] is an inductive prover for Haskell.
Internally it is quite similar to supercompilers. Zeno
assumes totality, so it is not fair to compare tools that
don’t (our tool and HOSC) to pure Zeno, so we used a
trick to encode programs operating on data with bot�
toms as total programs by adding additional bottom
constructor to each data type. The results of Zeno on
the adjusted samples are shown in the column zeno
(p). The results of pure Zeno (assuming totality) are
shown for reference in the column zeno (t).

• hipspec. HipSpec [7] is an inductive prover for
Haskell, which can generate conjectures by testing (using
QuickSpec [19]), prove them using an SMT�solver, and
then use them as lemmas to prove the goal and other con�
jectures. Like Zeno, HipSpec assumes totality, so we use
the same transformation to model partiality.

The results are shown in columns hipspec (p) and
hipspec (t). Note also that the results of HipSpec are
sensitive to the Arbitrary type class instances for
data types. We generated these instances automatically
and ran HipSpec with --quick-check-size =
10 to maximize the number of tests passed given these
instances. We also used the maximal induction depth
of 2 �d2 to make HipSpec pass two tests requiring
strong induction.

Table 2. Comparison of the tools on the additional set of tests

Name Description graphsc hosc hosc
(hl)

zeno
(p)

zeno
(t)

hipspec
(p)

hipspec
(t)

Tests requiring nontrivial generalizations

even�dbl�acclemma even (doubleAcc x (S y))
= odd (doubleAcc x y)

fail 0.7 0.6 0.3 0.3 38.8 37.4

nrev�idemp�nat fail fail fail 0.3 0.3 21.9 2.0

deepseq�add�comm fail fail fail fail 0.3 fail 2.1

even�double�acc even (doubleAcc x 0) = true fail fail 0.8 fail fail fail 38.4

nrev�list naiveReverse = reverse fail fail fail fail fail 185.5 19.7

nrev�nat fail fail fail fail fail fail 1.1

Tests requiring strong induction

add�assoc�bot 2.1 0.6 0.6 fail fail fail fail

double�half double (half x) + mod2 x = x 4.6 fail 1.2 fail fail 81.7 6.6

length�intersperse length (intersperse x xs)
= length (intersperse y xs)

fail 0.6 0.7 fail fail 1.6 0.9

kmp�eq fail 1.2 1.7 fail fail fail fail

Tests requiring coinduction

inf fix S = fix S 1.2 0.4 0.5 fail fail fail fail

shuffled�let 1.5 0.5 0.5 fail fail fail fail

shifted�cycle cycle [A,B] = A : cycle [B,A] 3.6 fail fail fail fail fail fail

ho/map�iterate map f (iterate f a)
= iterate f (f a)

fail 0.6 0.6 fail fail fail fail
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Although the test set is not representative, and it is
useless to compare the tools by the number of test they
pass, some conclusions may be drawn from the results.

First of all, HipSpec is a very powerful tool, in total
mode it proves most of the equalities from the main set
(Table 1) and all of the equalities that require complex
generalizations. However, it is very slow on some tests. It
is also much less powerful on tests adjusted with bottoms.

Zeno and HOSC are very fast which seems to be
due to their depth�first nature. Zeno is also quite pow�
erful and can successfully compete with the slower
HipSpec, especially in the partial case. HOSC fails
many tests from the main set presumably due to the
fact that it is not specialized enough for the task of
proving equivalences. For example, the equivalence
idle-simple is much easier to prove when trans�
forming both sides simultaneously. Also HOSC can’t
prove bool-eq and sadd-comm because they need
the transformation (case�of�transpose) which super�
compilers usually lack. Interestingly, higher�level
HOSC does prove some additional equalities, but not
in the case of tests that really need lemmas, which are
the last four tests in the main set (they need lemmas in
a sense that neither Graphsc, nor HipSpec can prove
them without lemmas).

Our tool, Graphsc, seems to be in the middle: it’s
slower than HOSC and Zeno (and it should be since
it’s breadth�first in nature) but rarely needs more than
10 seconds. It’s interesting to analyze the failures of
our tool. It fails three tests from the main set. The tests
ho/church-pred and ho/church-add need
deeper driving, our tool can pass them in the experi�
mental supercompilation mode which change the
order of transformation to resemble that of traditional
supercompilers. Unfortunately, this mode is quite slow
and lead to many other failures when enabled by
default. The test ho/filter-idemp is interesting:
it needs more information to be propagated, namely
that the expression p x evaluates to True. Since this
expression is not a variable, we don’t propagate this
information (and neither does HOSC, however there
is an experimental mode for HOSC that does this and
helps pass this test).

Now let’s look at the additional set of tests (Table 2).
We’ll start with tests requiring nontrivial generaliza�
tions. We call a generalization trivial if it’s just peeling
of the outer function call, e.g. f (g a) (h b c) trivially
generalizes to f x y with x = g a and y = h b c. Our tool
supports only trivial generalizations, and they are
enough for a large number of examples. But in some
cases more complex generalizations are needed, e.g. to
prove the equality even-dbl-acc-lemma one
need to generalize the expression odd (doubleAcc
x (S (S y))) to odd (doubleAcc x z) with
z = S (S y). It’s not super sophisticated, but the
expression left after taking out the odd (double-
Acc x z) is a composition of two functions, which
makes this generalization nontrivial. Our tool is use�
less on these examples. Supercompilers like HOSC

usually use most specific generalizations, which helps
in some cases. But the best tool to prove equalities like
these is HipSpec, which takes generalizations from
discovered lemmas.

Now let’s consider tests that require strong induc�
tion, i.e. induction schemes that peel more than one
constructor at a time. This is not a problem for
Graphsc and HOSC since they don’t explicitly instan�
tiate induction schemes (they check correctness of
proof graphs instead). But Zeno and HipSpec instan�
tiate induction schemes, so these tests are problematic
for them. In the case of HipSpec the maximum induc�
tion depth can be increased, so we specified the depth
of 2, which helped HipSpec to pass two of these tests
at the price of increased running times for other tests.

Our tool doesn’t pass the KMP�test because it
requires deep driving (and again, our experimental
supercompilation mode helps pass it). In the case of
length-intersperse it has trouble with recog�
nizing the goal as something worth proving because
both sides are equal up to renaming and are repre�
sented by the same equivalence class. Currently it is
not obvious how this (seemingly technical) problem
can be solved.

The last test subset to discuss is the subset of tests
requiring coinduction. Coinduction is not currently
supported by Zeno and HipSpec, although there are
no obstacles to implement it in the future. The equal�
ity ho/map-iterate can’t be proved by our tool
because besides coinduction it needs a nontrivial gen�
eralization.

7. RELATED WORK

Our work is based on the method of equality satu�
ration, originally proposed by Tate et al. [1], which in
turn is inspired by E�graph�based theorem provers like
Simplify [2]. Their implementation, named Peggy, was
designed to transform programs in low�level impera�
tive languages (Java bytecode and LLVM), although
internally Peggy uses a functional representation.
In our work we transform lazy functional programs, so
we don’t have to deal with encoding imperative opera�
tions in functional representation, which makes every�
thing much easier. Another difference is that in our
representation nodes correspond to functions, not just
first�order values, which allows more general recur�
sion to be used, moreover we merge equivalence
classes corresponding to functions equal up to param�
eter permutation, which considerably reduces the
E�graph complexity. We also articulate the merging by
bisimilarity transformation, which plays a very impor�
tant role, making our tool essentially an inductive
prover. Note that Peggy have a similar (but simpler)
transformation that can merge θ�nodes.

Initially our work arose from analyzing differences
between overgraph supercompilation [20] and equality
saturation, overgraph supercompilation being a variety
of multi�result supercompilation with a flavor of
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equality saturation. Its main difference from the
present work is that equivalence classes in overgraphs
(which are called nodes in overgraph terminology)
correspond to expressions with free variables rather
than to functions in abstract sense. In overgraph two
equivalence classes may be merged only when their cor�
responding expressions are syntactically equal up to
variable renaming, but not when they are only semanti�
cally equivalent. We also used to consider the method
described in the present paper to be a kind of supercom�
pilation, but although it borrows a lot from supercompi�
lation, it is much closer to equality saturation.

Supercompilation [5] is a program transformation
technique that consists in building a process tree (per�
haps implicitly) by applying driving and generalization
to its leaves, and then folding the tree, essentially pro�
ducing a finite program, equivalent to the original one.
Although supercompilation is usually considered a
source�to�source program transformation, it can be
used to prove program equivalence by syntactically
comparing the resulting programs, due to the normal�
izing effect of supercompilation.

Traditional supercompilers always return a single
program, but for some tasks, like program analysis, it
is beneficial to produce a set of programs for further
processing. This leads to the idea of multi�result
supercompilation, which was put forward by Klyuch�
nikov and Romanenko [21]. Since there are many
points of decision�making during the process of super�
compilation (mainly when and how to generalize), a
single�result supercompiler may be transformed into a
multi�result one quite easily by taking multiple paths
in each such point. The mentioned motivation behind
multi�result supercompilation is essentially the same
as that behind equality saturation.

Another important enhancement of traditional
supercompilation is higher�level supercompilation.
Higher�level supercompilation is a broad term denot�
ing systems that use supercompilation as a primitive
operation, in particular supercompilers that can invent
lemmas, prove them with another (lower�level) super�
compiler, and use them in the process of supercompi�
lation. Examples of higher�level supercompilation are
distillation, proposed by Hamilton [22], and two�level
supercompilation, proposed by Klyuchnikov and
Romanenko [13, 18].

Zeno [8] is an inductive prover for Haskell which
works quite similarly to multi�result supercompila�
tion. Indeed, Zeno performs case analysis and applies
induction (both correspond to driving in supercompi�
lation) until it heuristically decides to generalize or
apply a lemma (in supercompilation this heuristic is
called a whistle). That is, both methods are depth�first
in nature unlike the equality saturation approach,
which explores possible program transformations in
breadth�first manner.

HipSpec [7] is another inductive prover for
Haskell. It uses theory exploration to discover lemmas.
For this purpose it invokes QuickSpec [19], which

generates all terms up to some depth, splits them into
equivalence classes by random testing, and then trans�
forms these classes into a set of conjectures. After that
these conjectures are proved one by one and then used
as lemmas to prove other conjectures and the main
goal. To prove conjectures HipSpec uses external
SMT�solvers. This bottom�up approach is contrasted
to the top�down approach of most inductive provers,
including Zeno and supercompilers, which invent
lemmas when the main proof gets stuck. HipSpec dis�
covers lemmas speculatively which is good for finding
useful generalizations but may take much more time.

As to our tool, we do something similar to the bot�
tom�up approach, but instead of using arbitrary terms,
we use the terms represented by equivalence classes of
the E�graph (i.e. generated by transforming initial
term) and then try to prove them equal pairwise, dis�
carding unfruitful pairs by comparing perfect tree pre�
fixes that have been built in the E�graph so far, instead
of testing. Since we use only terms from the E�graph,
we can’t discover complex generalizations this way,
although we can still find useful auxiliary lemmas
sometimes (but usually for quite artificial examples).

Both Zeno and HipSpec instantiate induction
schemes while performing proof by induction. We use
a different technique, consisting in checking the cor�
rectness of a proof graph, similarly to productivity and
termination checking in languages like Agda. This
approach has some advantages, for example we don’t
have to know the induction depth in advance. Super�
compilers usually don’t even check the correctness
because for single�level supercompilation it is ensured
automatically. It is not the case for higher�level super�
compilation, and for example, HOSC checks that
every lemma used is an improvement lemma in the ter�
minology of Sand’s theory [12].

8. CONCLUSIONS

In this paper we have shown how an inductive prover
for a non�total first�order lazy functional language can
be constructed on top of the ideas of equality saturation.
The key ingredient is merging by bisimilarity, which
enables proof by induction. Another feature that we
consider extremely important is the ability to merge
equivalence classes even if they represent functions
equal only up to some renaming. This idea can be
extended, for example if we had ticks, we could merge
classes representing functions which differ by a finite
number of ticks, but we haven’t investigated into it yet.

Of course our prover has some deficiencies:
• Our prover lacks proper generalizations. This is a

huge issue since many real�world examples require
them. We have an experimental flag that enables arbi�
trary generalizations, but it usually leads to combina�
torial explosion of the E�graph. There are two plausi�
ble ways to fix this issue. The first one is to use some
heuristics to find generalizations from failed proof
attempts, like it’s done in supercompilers and many
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inductive provers. The other one is to rely on some
external generalization and lemma discovery tools.
In this case a mechanism of applying externally speci�
fied lemmas and generalizations might be very useful.
In the case of E�graphs it is usually done with
E�matching, and we have an experimental implemen�
tation, although it doesn’t work very well yet.

• Although it is possible to prove some proposi�
tions that hold only in total setting by adding some
transformations, our prover is not very effective on this
task. It may not seem to be a big problem if we only
work with non�total languages like Haskell, but actu�
ally even in this case the ability to work with total val�
ues is important since such values may appear even in
partial setting, e.g. when using the function deepseq.

• Our internal representation is untyped, and for
this reason we cannot prove some natural equalities.

• We don’t support higher�order functions inter�
nally and need to perform defunctionalization if the
input program contains them. This issue is especially
important if we want to produce a residual program.

Besides mitigating the above problems, another
possibility for future work is exploring other applica�
tions such as program optimization.
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