
ISSN 0361�7688, Programming and Computer Software, 2015, Vol. 41, No. 3, pp. 162–169. © Pleiades Publishing, Ltd., 2015.
Original Russian Text © P.G. Emelyanov, D.K. Ponomaryov, 2015, published in Programmirovanie, 2015, Vol. 41, No. 3.

162

1. INTRODUCTION

Decomposition of boolean functions is an impor�
tant research topic having a long history and a wide
range of applications. Apart from combinatorial opti�
mization, game and hypergraph theory, it has attracted
the most attention in the logic circuit synthesis.
Decomposition is related to the key parameters of
electronic circuits such as size, time delay, and energy
consumption. The report [Perkowski and Gry�
giel(1995)] contains an extensive survey of decompo�
sition methods till the mid�1990's. The results of the
next fifteen years of research are presented in [Stein�
bach and Lang (2003), Bioch (2010), Khatri and
Gulati (2011)]. To position our paper in this research
landscape, let us consider a number of key questions
related to decomposition and indicate the specifics of
our work.

Representations of Boolean Functions. It is known
that the representation size depends on the normal
form in which a boolean function is given, while trans�
lating between normal forms can be computationally
hard. In this paper, we consider several well�known
normal forms for boolean functions, CNF, DNF, Full
DNF, and ANF,1 but omit questions of translation
between different normal forms. These representa�
tions are widely used in the circuit synthesis
[Perkowski and Grygiel (1995), Sasao and Butler
(2001), Kuon et al. (2008), Mishchenko and Sasao
(2003)]. In the paper, we use the notions formula and

1 Algebraic Normal Form, also known as the Reed�Muller expan�
sion, or Zhegalkin polynomial

function interchangeably, since for the mentioned
classes of formulas, the difference is of no importance
for decomposition.

Among the above mentioned normal forms, CNF
and DNF were first to find application in the logic cir�
cuit synthesis. Implementations of boolean functions in
full DNF, given as lookup tables, are used in the last
generations of FPGA�based circuits. These have a
number of advantages in comparison to non�program�
mable circuits and, as a consequence, enjoy wide com�
mercial perspectives (e.g. see [Kuon et al. (2008)]).

From the algebraic point of view, ANF is a linear
multivariate polynomial over the finite field of order 2.
In comparison to DNF, the Algebraic Normal Form
allows for a more compact representation of some
classes of boolean functions used e.g. in implementa�
tion of arithmetic schemes, coders, or cyphers. Some
researchers conjecture that, in general, this basis can
be more cheap than DNF in the SOP�design [Sasao
and Besslich (1990)]. Decomposition of positive bool�
ean formulas (known also as monotone formulas)
given in CNF/DNF attracted a particular attention in
game and optimization theory (see the introduction in
[Bioch (2010)] for a summary of literature). Positive
DNF has numerous set�theoretic and hypergraph
interpretations, which makes this form interesting in
combinatorial research. Binary Decision Diagrams
(BDDs) are out of the scope of this paper, but we note
that they are also considered in tasks of decomposi�
tion.

Types of Decomposition. Typically one is interested
in decompositions of the form F = F1 � … � Fk, where

COMPUTER ALGEBRA, APPLIED LOGIC,
CIRCUIT SYNTHESIS

Algorithmic Issues of AND�Decomposition
of Boolean Formulas

P. G. Emelyanova, b* and D. K. Ponomaryova, c**
a Ershov Institute of Informatics Systems, Siberian Branch, Russian Academy of Sciences,

pr. Lavrentiev 6, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia

c Institut für Künstliche Intelligenz, Universität Ulm, James�Franck�Ring, O27, D�89069 Ulm, Deutschland
e�mail: *emelyanov@iis.nsk.su, **ponom@iis.nsk.su

Received February 01, 2015

Abstract—AND�decomposition of a boolean formula means finding two (or several) formulas such that their
conjunction is equivalent to the given one. Decomposition is called disjoint if the component formulas do not
have variables in common. In the paper, we show that deciding AND�decomposability is intractable for bool�
ean formulas given in CNF or DNF and prove tractability of computing disjoint AND�decomposition com�
ponents of boolean formulas given in positive DNF, Full DNF, and ANF. The latter result follows from trac�
tability of multilinear polynomial factorization over the finite field of order 2, for which we provide a polytime
factorization algorithm based on identity testing for partial derivatives of multilinear polynomials.

DOI: 10.1134/S0361768815030032

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 3 2015

ALGORITHMIC ISSUES OF AND�DECOMPOSITION 163

� ∈ {OR, AND, XOR}. Decomposition into two
components (bi�decomposition) is the most impor�
tant case of decomposition of boolean functions. Even
though it may not be stated explicitly, this case is con�
sidered in many papers: [Mishchenko et al. (2001),
Sasao and Butler (2001), Bengtsson et al. (2002),
Mishchenko and Sasao (2003), Chen et al. (2012),
Choudhury and Mohanram (2010), Bioch (2010)],
and [Khatri and Gulati(2011), Ch. 36]). Bi�decompo�
sition has the form:

where π ∈ {OR, AND, XOR}, Δ ⊆ X, and {Σ1, Σ2} is a
partition of the variables X\Δ. As a rule, a decomposi�
tion into more than two components can be obtained
by applying bi�decomposition iteratively to the already
obtained components. We note that the representation
form of the components may differ from that of the
input function F. If Δ = then decomposition is
called disjoint and considered as optimal for many
reasons. Sometimes requirements to decompositions
are strengthened with additional optimality criteria,
with balancedness of the variable partition being the
most popular. Quite often, these additional require�
ments imply solving computationally hard problems.

The well�known example of bi�decomposition is
Shannon’s Expansion:

In some sense, a complete solution to bi�decompo�
sition of arbitrary functions is given in series of papers
by Steinbach et al. [Steinbach and Lang (2003)].
It allows to verify whether a given boolean function is
decomposable wrt a given variable partition and to
compute its components. Finding a partition is a diffi�
cult task on its own and apart from that, the solution
implies a number of steps which may be intractable.

In [Bioch (2005), Bioch (2010)], Bioch studies
computational properties of modular decompositions
based on a generalization of Shannon’s Expansion.
A set of variables A is called modular set of a boolean
function F(X) if F can be represented as F(X) =
H(G(A), B), where {A, B} is a partition of X and H, G
are some boolean functions. The function G(A) is
called component of F and a modular decomposition
is obtained from iterative decomposition into such
components. It is shown that in general it is coNP�
complete to decide whether a subset of variables is
modular, however for positive DNF this problem is
tractable. The complexity of finding a modular tree
representing all modular sets of a monotone boolean
function is O(n5N) where n is the number of variables
and N is the number of products in DNF.

We note that a function may have a modular or bi�
decomposition, but may not be AND�decomposable,
since this form of decomposition assumes representa�
tion of a function as a conjunction. Thus, AND�
decomposition can be viewed as a special case of mod�
ular and bi�decomposition. We demonstrate that

F X() π F1 Σ1 Δ,() F2 Σ2 Δ,(),(),=

0

F xFx 1= xFx 0=¬∨ x Fx 0=∨() x Fx 1=∨¬().= =

deciding even this special case of decomposability is
coNP�complete for formulas given in CNF and DNF.
On the other hand, we show tractability of computing
AND�decompositions of formulas given in positive
CNF and DNF, Full DNF, and ANF. It is not obvious,
whether the technique used by Bioch for positive DNF
is applicable to the case of AND�decomposition.
We note however that in our Lemma 2, the idea of com�
puting decomposition components resembles the final
step of constructing components in [Bioch (2010),
Sect. 2.9].

How to Partition the Variables. This is the principal
problem in decomposition of boolean functions.
For many representations of functions, if a variable
partition is given then finding decomposition compo�
nents (if decomposition exists) is simple. Constructing
modular sets [Bioch (2005), Bioch (2010)] is one way
to solve this problem. In general, there are several
approaches possible. Either the variable sets Δ, Σ1, Σ2

are guessed before the algorithm is run [Mishchenko
et al. (2001), Sasao and Butler (2001), Mishchenko
and Sasao(2003)], and hence, the algorithm may fail if
the choice was wrong, or these sets are constructed
during the runtime [Khatri and Gulati (2011), Ch. 5,
6] and [Chen et al. (2012)].

Logic vs. Algebraic Decomposition. Approaches to
decomposition of boolean functions can be classified
into logic and algebraic. The first are based on equiva�
lent transformations of formulas in propositional
logic. In the latter, boolean functions are considered as
algebraic objects, with the corresponding transforma�
tion rules. Informally, these approaches can be charac�
terized as syntactic and semantic, respectively.
Although propositional formulas can be treated as
algebraic objects, this distinction appears to be useful
from the methodological point of view. As it is often
the case, semantic methods have a higher potential
than syntactic techniques. In general, logic�based
approaches to decomposition are more powerful and
achieve better results than algebraic ones: a boolean
function can be decomposable logically, but not alge�
braically, since boolean divisors of a boolean function
may be different from its algebraic factors [Khatri and
Gulati (2011), Ch. 4].

A standard algebraic representation of boolean
functions is polynomials, usually over finite fields,
among which �2 (the Galois field of order 2) is the best
known. Then AND�decomposition corresponds to
factorization of multivariate polynomials over �2.
We note that in general, one distinguishes between
decomposition and factorization of polynomials, if
they are not multilinear. The state of the research on
this problem is well presented in [von zur Gathen and
Gerhard (2013)], although it does not contain the key
result by Shpilka and Volkovich [Shpilka and Volkov�
ich (2010)] reported in 2010. Probably, this was
because the result was obtained by an original tech�
nique of complexity analysis for arithmetic circuits

164

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 3 2015

EMELYANOV, PONOMARYOV

and was published in proceedings of a colloquium on
automata and languages. The authors noted the strong
connection between polynomial factorization and
identity testing. It follows from their results that a mul�
tilinear polynomial over �2 can be factored in time
O(l3), where l is the size of the polynomial given as a
symbol sequence. In this paper, we provide a factoriza�
tion algorithm for multilinear polynomials over �2

which runs in O(l3) and is based on identity testing for
partial derivatives of a product of polynomials
obtained from the input one. Although the algorithm
has the same O�complexity, the size of auxiliary data
used by the algorithm is smaller, which is significant on
large inputs. For instance, the product of polynomials
is computed only once, in comparison to the approach
of [Shpilka and Volkovich(2010)]. Moreover, we show
that the algorithm can be implemented without com�
puting the product explicitly, which contributes to effi�
ciency of factorization of large input polynomials.

The paper is organized as follows. In Section 2, we
introduce definitions and notations used in the text and
formulate the computational problems considered in the
paper. In Section 3, we study the complexity of these
problems: first, for boolean formulas given in CNF, then
in DNF, and finally in ANF. Omitted proofs can be found
in the extended version of this paper available at:
http://persons.iis.nsk.su/en/person/ponom/papers/

2. PRELIMINARIES

2.1. AND�Decomposability

For a formula ϕ, let var (ϕ) be a set of its variables.
If Σ is a set of variables and var (ϕ) ⊆ Σ, then we say that
ϕ is defined over variables Σ (or over Σ for short).
taut(Σ) denotes a tautology over Σ. A literal is either a
variable (a positive literal) or negation of a variable (a
negative literal). A formula ϕ is called positive if it does
not contain negative literals. If ξ and ξ' are clauses (or
conjuncts, respectively), then ξ' ⊆ ξ means that ξ' is a
subclause (sub�conjunct) of ξ, i.e. ξ' is defined by a non�
empty subset of literals from ξ. If ϕ is in DNF, then a
conjunct ξ of the formula ϕ is called redundant in ϕ, if
there is another conjunct ξ' in ϕ such that ξ' ⊆ ξ.

We now define the main property of boolean for�
mulas studied in this paper, the definition is adopted
from [Ponomaryov (2008)], where it is given in a gen�
eral form.

Definition 1 (Decomposability). A boolean formula
ϕ is called AND�decomposable into components with
disjoint supports (or decomposable, for short) if it is
equivalent to the conjunction ψ1 ∧ ψ2 of some formu�
las ψ1 and ψ2 such that:

1. var (ψ1) ∪ var (ψ2) = var (ϕ);
2. var (ψ1) ∩ var (ψ2) = ∅;
3. var (ψi) ≠ ∅, for i = 1, 2.
We say that ϕ is decomposable with a variable par�

tition {Σ1, Σ2}, if ϕ has some decomposition compo�

nents ψ1 and ψ2 over the variable sets Σ1 and Σ2;
respectively.

Note that a similar definition could be given for
OR�decomposability, i.e. for decomposition into the
disjunction of ψ1 and ψ2. Clearly, a formula ϕ is AND�
decomposable iff ¬ϕ is OR�decomposable.

Example 1. The formula (x ∧ y) ∨ (x ∧ ¬y) is equiv�
alent to the conjunction of x and taut(y) and hence
decomposable.

The positive formula in DNF (x ∧ u) ∨ (x ∧ v) ∨ (y ∧
u) ∨ (y ∧ v) is decomposable with the components x ∨ y
and u ∨ v.

Note that Definition 1 is formulated with the two
components ψ1 and ψ2 which in turn can be decom�
posable formulas. Since at each decomposition step
the variable sets of the components must be proper
subsets of the variables of the original formula ϕ, the
decomposition process necessarily stops and gives for�
mulas which are non�decomposable. The obtained
formulas define some partition of var(ϕ) and the fact
below (which follows from a property of a large class of
logical calculi shown in [Ponomaryov (2008)]) says
that this variable partition is unique.

Fact 1 (Uniqueness of Decompositions—Corollary
of Thm. 1 in [Ponomaryov (2008)])

If ϕ is decomposable, then there is a unique parti�
tion {π1, … , πn} of var(ϕ), such that ϕ is equivalent to

∧{ψi |var(ψi) = πi, i = 1, …, n}, where each formula ψi

is not decomposable.
This means that any possible algorithm2 for

decomposing a formula into components could be
applied iteratively to obtain from a given ϕ some for�
mulas ψi, i = 1, …, n, which are non�decomposable
and uniquely define a partition of the variables of ϕ.

2.2. Computational Problems Considered in the Paper

In the text, we omit subtleties related to efficient
encoding of input sets of variables and boolean formu�
las (given in CNF, DNF, or ANF) assuming their stan�
dard representation as symbol sequences. The com�
plexity of each computational problem below will be
defined wrt the size of the input formula.

 Given a formula ϕ, decide whether ϕ is
decomposable.

 Given a formula ϕ and a partition {Σ1, Σ2}
of var(ϕ), decide whether ϕ is decomposable.

It turns out that the problem ∅Dec for formulas in
DNF is closely related to the problem of multilinear
polynomial factorization (Dec�2) which we formulate
below. The connection is, in particular, due to the fact
that taking a conjunction of two formulas in DNF is

2 Existence and complexity of decomposition algorithms in vari�
ous logics have been studied in [Morozov and Ponomaryov
(2010), Konev et al. (2010), Ponomaryov (2014), Ponomaryov
(2008)].

∅Dec

∅DecPart

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 3 2015

ALGORITHMIC ISSUES OF AND�DECOMPOSITION 165

quite similar to taking a product of two multivariate
polynomials. We recall that a multivariate polynomial
F is linear (multilinear) if the degree of each variable in
F is 1. We denote a finite field of order 2 by �2 and say
that a polynomial is over the field �2 if it has coeffi�
cients from �2. A polynomial F is called factorable over
�2 if F = G1 · G2, where G1 and G2 are non�constant
polynomials over �2.

Example 2. Consider the multilinear polynomial
F = xu + xv + yu + yv (cf. the positive DNF from
Example 1). We have F = (x + y) · (u + v), thus F is fac�
torable.

The following important observation shows further
connection between polynomial factorization and the
problem ∅Dec:

Fact 2 (Factoring over �2) If a multilinear polyno�
mial F is factorable over �2, then its factors do not have
variables in common.

Clearly, if some factors G1 and G2 of F have a com�
mon variable, then the polynomial G1 · G2 is not linear
and thus, is not equal to F in the ring of polynomials
over �2.

 Given a non�constant multilinear polyno�
mial F over �2, decide whether F is factorable over �2.

Since every monomial can be viewed as a set of
variables and the whole polynomial as a family of such
sets, the problem Dec�2 can be reformulated as a vari�
ant of the well�known NP�complete Set Splitting
Problem (known also as the Hypergraph 2�Coloring
Problem):

 Given a family � of
subsets of a set S, decide whether there exists a partition
{Σ1, Σ2} of S such that � = {S1 ∪ S2 |Si ∈ �i, i = 1, 2}
where each �i is a family over the elements from Σi.

It turns out that the above requirement of splitting
into a Cartesian union introduces enough structure
into the Set Splitting Problem to obtain tractability.

3. MAIN RESULTS

3.1. Complexity of Decomposition for CNF

We show that in general, decomposition is a hard
problem for CNF, but in the case of positive CNF it
allows for an efficient solution. Note that decomposi�
tion itself is conceptually closer to the CNF represen�
tation, since it gives a conjunction of formulas. The
situation with positive DNF and full DNF is more
complicated, because decomposable formulas in
DNF have a Cartesian structure which can be recog�
nized in polytime, but the proof of this fact relies on
polynomial factorization in �2.

Theorem 1 (Complexity for CNF). For boolean for�
mulas given in CNF,

1. the problem ∅DecPart is coNP�complete;
2. the problem, ∅Dec is coNP�hard and is in PNP.

Dec�2

Cartesian Splitting Problem

Proof Sketch. We prove coNP�hardness in point 1
by showing that the set of formulas in CNF which are
valid or unsatisfiable (denote it by Ω) is Karp�reduc�
ible to the set of decomposable formulas in CNF. For a
given formula ϕ in CNF we consider the following for�
mula constructed for ϕ, where p, q ∉ var(ϕ) are
“fresh” variables:

Clearly, ψ can be converted into CNF in linear
time (in the size of ϕ). In the proof, we show the fol�
lowing equivalences: ψ is decomposable ⇔ ψ is
decomposable with the variable partition {{p}, var(ϕ)
∪ {q}} ⇔ ϕ ∈ Ω. This shows coNP�hardness of the
problems ∅Dec, ∅DecPart.

The containment of ∅DecPart in coNP is shown
by a Karp�reduction to the set of valid boolean formu�
las. Let ϕ be a boolean formula and {Σ1, Σ2} an arbi�

trary partition of var (ϕ). We consider the formulas

and such that var() ∩ var() = ∅ and for i =

1, 2, each formula is obtained from ϕ by renaming

the variables from Σ3 ⎯ i into “fresh” ones, not present
in ϕ. Then we show that that ϕ is decomposable with
the partition {Σ1, Σ2} iff the formula ∧ ϕ is

tautology.
For the proof of point 2 of the Theorem it remains

to provide a PNP�algorithm for solving the problem
∅Dec. We show that if a formula ϕ in CNF is decom�
posable and contains a clause ξ with variables from
both decomposition components, then ξ must contain
a sub�clause ξ' ⊂ ξ such that ϕ entails ξ'. This property
gives an algorithm for deciding ∅Dec, which tries to
“eliminate” literals one�by�one from clauses of a given
formula in CNF (by quering an NP�oracle) and gives
an equivalent formula, for which decomposability can
be decided (and the corresponding components can be
computed) in polytime. �

Theorem 2 (Complexity for Positive CNF). For
positive boolean formulas in CNF, the problem ∅Dec is
in P. Moreover, decomposition components can be com�
puted in polynomial time (if decomposition exists).

This theorem follows from observation that a posi�
tive formula does not have “too many equivalent
reformulations” and entailment of positive formulas is
tractable (we provide a formal justification in the
extended version of this paper). This allows us to easily
compute a “canonical form” of a positive formula as a
set of clauses, which uniquely defines decomposition
components.

3.2. Decomposition of Formulas in DNF and ANF

We recall that the Algebraic Normal Form (ANF)
of a boolean formula can be viewed as a multilinear
polynomial over �2. Due to Fact 2, the notion of
decomposability for formulas in ANF can be defined

ψ ϕ p∨() ∧ q x∨()∧=
x ∈ var(ϕ)

ϕΣ1
*

ϕΣ2
* ϕΣ1

* ϕΣ1
*

ϕΣi
*

ϕΣ1
* ϕΣ2

*

166

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 3 2015

EMELYANOV, PONOMARYOV

in terms of polynomial factorability over �2. For this
reason, we use the terminology of polynomials when
talking about algebraic results in this section. We start
with the complexity of decomposition for formulas in
Full DNF (i.e. formulas explicitly given by the set of
satisfying assignments) and then formulate results on
positive DNF and polynomial factorization over �2.
Interestingly, the latter problem is also related to
decomposition of formulas in Full DNF, even though
such formulas contain negative literals. We show that
negative literals can be encoded as “fresh” variables
giving a positive DNF.

Theorem 3 (Complexity for Full DNF). For bool�
ean formulas in Full DNF,

1. the problem ∅DecPart is in P;
2. the problem ∅Dec is reducible to Dec�2 and hence

is in P.
In every case, the corresponding decomposition com�

ponents can be computed in polynomial time.
Proof Sketch. The proof is based on the following

important characterization:
Lemma 1 (Semantic Criterion of Decomposabil�

ity). Let ϕ be a boolean formula and V be the set of sat�
isfying assignments. The formula ϕ is decomposable with
a variable partition {Σ1, Σ2} iff V = , where

for i = 1, 2, is the restriction of V onto the variables

from Σi and is the set of all assignments v

such that the restriction of v onto Σi belongs to .

To prove point 1 of Theorem 3, let ϕ be a formula
in Full DNF and {Σ1, Σ2} be a partition of var(ϕ).
Since Full DNF is the explicit representation of all
satisfying assignments, one can compute the sets ,

for i = 1, 2 and check in polynomial time, whether the
condition in Lemma 1 holds.

In the proof of point 2, for a given formula ϕ, we
consider a positive formula ϕ' obtained by injective
substitution of negative literals with “fresh” variables,
not occurring in ϕ. Then we construct a multilinear
polynomial F as a sum of monomials which corre�
spond to conjuncts of ϕ' and show that ϕ is decompos�
able iff F is factorable over �2. �

It turns out that for a positive formula ϕ in DNF
without redundant conjuncts, decomposability is
equivalent to factorability over �2 of the multilinear
polynomial corresponding to ϕ. The polynomial is
obtained as the sum of monomials (products of vari�
ables) corresponding to the conjuncts of ϕ Observe
that the positive formula ϕ = x ∨ (x ∧ y) ∨ z with the
redundant conjunct x ∧ y is equivalent to (x ∨ z) ∧
taut({y}) and thus, decomposable. However, the poly�
nomial x + xy + z corresponding to ϕ is non�factor�
able. Also note that if a polynomial has a factor with
the constant monomial, e.g. xy + y = (x + 1) · y, then
the corresponding boolean formula in DNF contains
a redundant conjunct.

V Σ1
∪+ V Σ2

V Σi

V Σ1
∪+ V Σ2

V Σi

V Σi

Theorem 4 (Decomposition of Positive DNF and
Factorization). For positive boolean formulas in DNF
without redundant conjuncts, the problem ∅Dec is
equivalent to Dec�2. �

We formulate the main result on formulas given in
DNF in the following corollary which is a conse�
quence of Theorems 4, 5, and the constructions men�
tioned in the proof sketch to Theorem 1.

Corollary 1 (Complexity for DNF).
1. for formulas in DNF, the problem ∅DecPart is

coNP�complete;
2. for positive boolean formulas in DNF, the problem

∅Dec is in P and the corresponding decomposition com�
ponents can be computed in polynomial time.

Proof Sketch. The first point of the corollary follows
from the construction used in the proof sketch to The�
orem 1. Note that the formula ψ considered in the
proof sketch can be converted into DNF in polyno�
mial time, if the input formula ϕ is given in DNF,
which shows coNP�hardness for the first point of the
Corollary. The containment in coNP can be shown by
reduction to the validity of boolean formulas as in the
proof sketch to Theorem 1, since the construction
there does not depend on the normal form in which
the formula ϕ is given. The second point of the Corol�
lary follows from Theorems 4 and 5, and the fact that
redundant conjuncts can be found and eliminated effi�
ciently from an input formula. �

We now turn to tractability of the problem Dec�2, to
which the decomposition problems in Theorem 3 and
Corollary 1 are reduced. As already noticed, tractability
of Dec�2 follows from the results of [Shpilka and Volk�
ovich (2010)], where the authors propose two solutions
for decomposition of a polynomial over an arbitrary
finite field F. The first one is a decomposition algo�
rithm, which has a subroutine for computing a justifica�
tion assignment for an input polynomial, and relies on a
procedure for identity testing in �. It is proved that the
complexity of this algorithm is O(n3 · d · IT), where n is
the number of variables, d is the maximal individual
degree of variables in the input polynomial, and IT is
the complexity of identity testing in �. It follows that
this gives a decomposition algorithm of quartic com�
plexity for factoring multilinear polynomials over �2.
The second solution proposed by the authors is a
decomposition algorithm which constructs for every
variable of an input polynomial f, a combination f · f1 –
f2 · f3 of four polynomials, where each fi is a “copy” of
f under a renaming of some variables. Every combina�
tion is tested for equality to the zero polynomial. It can
be seen that this gives an algorithm of cubic complex�
ity for factoring multilinear polynomials over �2.

In Theorem 5 below, we provide a solution to fac�
torization of multilinear polynomials over �2, which is
different from the both algorithms proposed in
[Shpilka and Volkovich (2010)]. The only common
feature between the approaches is application of iden�
tity testing, which seems to be inevitable in factoriza�

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 3 2015

ALGORITHMIC ISSUES OF AND�DECOMPOSITION 167

tion. Our solution is based on computation of partial
derivatives of polynomials obtained from the input one
and gives an algorithm of cubic complexity. More pre�
cisely, the product f1 · f2 is computed, where fi are poly�
nomials obtained from the input, and then for each
variable x, the partial derivative of f1 · f2 is tested for
equality to zero. In particular, our algorithm operates
polynomials which are smaller than the ones consid�
ered in [Shpilka and Volkovich (2010)]. Moreover, we
note in the extended version of the paper that the same
can be achieved without computing the product f1 · f2

explicitly, which is particularly important on large
inputs. We present the factorization algorithm as the
theorem below to follow the complexity oriented style
of exposition used in this paper.

Theorem 5 (Tractability of Linear Polynomial Fac�
torization over �2). The problem Dec�2 is in P and for
any factorable multilinear polynomial its factors can be
computed in polynomial time.

Proof. Let F be a non�constant multilinear polyno�
mial over �2. We describe a number of important prop�
erties which hold if F is factorable over �2. Based on
these properties, we derive a polynomial procedure for
partitioning the variables of F into disjoints sets Σ1 and
Σ2 such that if F is factorable, then it must have factors
which are polynomials over these variable sets. Having
Σ1 and Σ2, it suffices to check whether F is indeed fac�
torable wrt this partition: if the answer is “no”, then F
is non�factorable, otherwise we obtain the corre�
sponding factors.

Checking whether F is factorable wrt a variable par�
tition can be done efficiently due the following fact:

Lemma 2 (Factorization Under a Given Variable
Partition). In the notations above, for i = 1, 2, let Si be
the set of monomials obtained by restricting every mono�
mial of F onto Σi (for instance, if F = xy + y and Σ1 = {x};
then S1 = {x, 1}j). Let, Fi be the polynomial consisting of
the monomials of Si, for i = 1, 2. Then F is factorable
into some polynomials with the sets of variables Σ1 and Σ2

iff F = F1 · F2.

Proof of the Lemma. The “if” direction is obvious,
since for i = 1, 2, each Fi necessarily contains all the
variables from Σi. Now assume that F has a factoriza�
tion F = G1 · G2 which corresponds to the partition Σ1,
Σ2. Then every monomial of F is a product of some
monomials from G1, G2, i.e. it either contains variables
of both Σ1 and Σ2, or only from Σi for some i = 1, 2 iff
G3 – i contains the constant monomial. This means that
Si is the set of monomials of Gi, for i = 1, 2, i.e. Fi = Gi. �

Let us proceed to properties of factorable polyno�
mials over �. Let Fx = v

 be the polynomial obtained

from F by setting x equal to v. Note that = Fx = 1 +

Fx = 0 and every multilinear polynomial can be repre�
sented in the form

F∂
x∂

�����

F = · x + Fx = 0 = (Fx = 1 + Fx = 0)x + Fx = 0

(the last expression is also called Reed’s expansion).

First of all, note that if some variable x is contained
in every monomial of F, then F is either nonfactorable

(in case F = x), or trivially factorable, i.e. F = x · .

We further assume that there is no such variable in F.
We also assume that F ≠ x + 1, i.e. F contains at least
two variables3.

Let F be a polynomial over the set of variables {x, x1,
…, xn}. If F is factorable, then it can be represented as
F = (x · Q + R) · H, where

—the polynomials Q, R, and H do not contain x;

—Q and R do not have variables with H in com�
mon;

—R is a non�empty polynomial (since F is not triv�
ially factorable);

—the left cofactor of this product is a non�factor�
able polynomial.

Then we have Fx = 0 = R · H and also = Q · H.

Obviously, the both polynomials can be computed in
polynomial time.

Let y be a variable of F, different from x, and con�
sider the following derivative of the product of these
polynomials:

since for all z, 2z = z + z = 0 holds in �2, we have:

It follows that in case y is a variable from H, we have

(Q · R) = 0 and thus,

Let us now show the opposite, assume that the vari�
able y does not belong to H and prove that the H deriv�
ative is not equal to zero.

Since y does not belong to H, in general, Q and R
have the form

3 We note that besides the factors of the form x and x + 1, there is
a number of other simple cases of factorization that can be rec�
ognized easily.

F∂
x∂

�����

F∂
x∂

�����

F∂
x∂

�����

∂
y∂

���� Q R H2⋅ ⋅() Q∂
y∂

�����RH2 Q ∂
y∂

���� RH2()+=

= Q∂
y∂

�����RH2 R∂
y∂

�����QH2
2 H∂

y∂
������QRH+ +

= H2 Q∂
y∂

�����R R∂
y∂

�����Q+⎝ ⎠
⎛ ⎞⋅ H2 ∂

y∂
���� Q R⋅().⋅=

∂
y∂

����

∂
y∂

���� Q R H2⋅ ⋅() 0.=

Q Ay B, R+ Cy D,+= =

168

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 3 2015

EMELYANOV, PONOMARYOV

for some polynomials A, B, C, D not containing y.
Then Q · R = ACy2 + (AD + BC)y + BD and hence,

(Q · R)= AD + BC.

Thus, we need to show that AD + BC ≠ 0. Assume
the contrapositive, i.e. that AD + BC = 0. Note that AD
and BC can not be zero, because otherwise at least one
of the following holds: A = B = 0, A = C = 0, D = B = 0,
or D = C = 0. The first two conditions are clearly not
the case, since we have assumed that x and y are not
contained in H, while the latter conditions yield that F
is trivially factorable (wrt the variable y or x, respec�
tively).

From this we obtain that AD + BC = 0 holds iff
AD = BC (since we are in �2).

Let B = f1 · … · fm and C = g1 · … · gn be the (unique)
factorizations of B and C into nonfactorable polyno�
mials. We have AD = f1 · … · fm · g1 · … · gn, thus we may
assume that A = f1 · … · fk · g1 · … · gi for some 0 ≤ k ≤ m
and 0 ≤ l ≤ n (when k = l = 0 we assume that A = 1).

The polynomials B, C, D can be represented in the
same form. Let us denote for polynomials U, V by
(U, V) the greatest common divisor of U and V. Then
A = (A, B) · (A, C), B = (A, B) · (D, B), similarly for C
and D, and we obtain

which is a contradiction, because we have assumed
that x · Q + R is non�factorable.

We have obtained a procedure for partitioning the
variables of F into disjoint sets Σ1 and Σ2 in the follow�
ing way. Having chosen some initial variable x from F,
we first assign Σ1 = {x}, Σ2 = ∅ and compute the poly�

nomial Q · R · H2 (which equals · Fx = 0). Then for

every variable y from F (distinct from x), we compute

the derivative (Q · R · H2). If it equals to zero, we put

y into Σ2, otherwise we put y into Σ1. If at the end we
have Σ2 = ∅, then the polynomial F is non�factorable.
Otherwise it remains to apply Lemma 2 to verify
whether the obtained sets Σ1 and Σ2 indeed correspond
to a factorization of F. If the answer is “no”, then F is
non�factorable, otherwise the polynomials F1 and F2

defined in Lemma 2 are the required factors.
If n is the size of the input polynomial as a symbol

sequence, then it takes O(n2) steps to compute the
polynomial G = Q · R · H2 and check whether the deriv�

ative equals zero for a variable y (since both, iden�

tity testing and computing the derivative can be done

∂
y∂

����

x Q R+⋅ x Ay B+() Cy D+()+⋅=

= x A B,() A C,()y A B,() D B,()+()⋅

+ A C,() D C,()y D B,() D C,()+()

= A B,()x D C,()+() A C,()y D B,()+(),

F∂
x∂

�����

∂
y∂

����

G∂
y∂

�����

in time linear in the size of a polynomial over �2, given
as a symbol sequence). As we must check this for every
variable y ≠ x, we have a procedure that computes a
candidate variable partition in O(n3) steps. Then it
takes O(n2) time to verify by Lemma 2 whether this
partition indeed corresponds to factors of F. �

3.3 Testing AD = BC without Multiplication

In practice, computing the product of polynomials
having sizes comparable to the input polynomial is not
reasonable, especially in the case when this product is
not needed explicitly. Let us demonstrate that testing
AD = BC can be done without explicitly computing the
products AD and BC.

Consider expansions of the polynomials A, D, B, C
with respect to a variable x such that the monomial x
does not divide AD and BC:

The equality is true if the coefficients at the corre�
sponding degrees of x are equal:

Thus, in the first two equalities, we have the same
problem to be solved for smaller polynomials. Let us
show that the third equality can be treated similarly.

Assume that the first two equalities are already
checked to be true; otherwise, the original equality
does not hold. In addition, we can assume further that
A1, A2 ≠ 0.

Let us multiply the both sides of the third equality
by A1A2 (other combinations are possible). We have

Since the first two equalities hold, we can apply suit�
able substitutions and regrouping

extract the common factor

and next, rewrite as follows:

Therefore, verifying the third equality reduces to
testing two equalities with polynomials having smaller
sizes:

or

As a result, verifying the original equality is reduced
to testing at most four smaller equalities. By applying
this procedure recursively, the problem can be reduced

A1x A2+() D1x D2+() B1x B2+() C1x C2+(),=

A1D2x2 A1D2 A2D1+()x A2D2+ +

= B1C1x2 B1C2 B2C1+()x B2C2.+ +

A1D1 B1C1=

A2D2 B2C2=

A1D2 A2D1+ B1C2 B2C1+=⎩
⎪
⎨
⎪
⎧

A1
2A2D2 A1A2

2D1+ A1A2B1C2 A1A2B2C1.+=

A1
2B2C2 A1A2B2C1+ A2

2B1C1 A1A2B1C2,+=

A1B2 A1C2 A2C1+() A2B1 A2C1 A1C2+(),=

A1B2 A2B1+() A1C2 A2C1+() 0.=

A1B2 A2B1= A1C2 A2C1.=

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 3 2015

ALGORITHMIC ISSUES OF AND�DECOMPOSITION 169

to either constant polynomials or small ones, for
which multiplication is faster. The number of recursive
calls is estimated by O(N) (this is the number of verti�
ces in a rooted, at least binary and at most quaternary,
tree having N leaves).

4. CONCUSIONS

We have proved that AND�decomposability is
intractable in general for boolean formulas given in
CNF or DNF. On the other hand, we have shown the
existence of polytime algorithms for computing
decomposition components of positive formulas in
DNF and formulas given in Full DNF, and the Alge�
braic Normal Form. Since AND�decomposability
and OR�decomposability are the dual notions, our
results are also applicable to the latter case.

Efficient AND�decomposition is important in
optimization of logic circuits, since it can substantially
reduce the representation size. The result on decom�
position of positive DNF can contribute to improving
efficiency of existing model counting techniques,
while the result on Full DNF can be applied to opti�
mization of lookup tables. It is straightforward to
transform a DNF into a full DNF, thus, under a mod�
erate increase of the formula size, one can decompose
the obtained full DNF and then minimize the formu�
las having a smaller size, in order to obtain a compact
conjunctive decomposition of the source DNF.

The factorization algorithm for multilinear poly�
nomials over �2, described in this paper, can be used
for efficient disjoint AND�decomposition of formulas
given in DNF or ANF. It remains an open question,
whether this algorithm can be used to obtain non�dis�
joint decompositions for boolean formulas.

Further research questions include implementa�
tion of the proposed decomposition algorithms and
their evaluation on industrial benchmarks for boolean
circuits.

5. ACKNOWLEDGMENTS

The first author was supported by the Russian
Foundation for Humanities, grant no. 13�01�12003B.
The second author was supported by the German
Research Foundation within the Transregional Col�
laborative Research Center SFB/TRR 62 “Compan�
ion�Technology for Cognitive Technical Systems” the
Russian Academy of Sciences (project no. 15/10), and
the Russian Foundation for Basic Research (grant
no. 15�07�03410). .

REFERENCES

1. Perkowski, M.A. and Grygiel, S., PSU Electrical Engi�
neering Department Report, Portland, Oregon, USA:

Department of Electrical Engineering, Portland State
University, 1995.

2. Steinbach, B. and Lang, C., Artificial Intelligence
Review, 2003, vol. 20, p. 319.

3. Bioch, J.C., in Boolean Models and Methods in Mathe�
matics, Computer Science, and Engineering, Crama, Y.
and Hammer, P.L., Eds., New York, NY, USA: Cam�
bridge University Press, 2010, vol. 134 of Encyclopedia
of Mathematics and Its Applications, pp. 39–78.

4. Khatri, S.P. and Gulati, K., Eds., Advanced Techniques
in Logic Synthesis, Optimizations and Applications, New
York Dordrecht Heidelberg London: Springer, 2011.

5. Sasao, T. and Butler, J.T., Proc. 2001 Asia and South
Pacific Design Automation Conference (ASP�DAC'01),
New York, NY, USA: ACM, 2001, pp. 219–224.

6. Kuon, I., Tessier, R., and Rose, J., FPGA Architecture:
Survey and Challenges, Boston–Delft: Now Publishers
Inc., 2008.

7. Mishchenko, A. and Sasao, T., Proc. 40th ACM/IEEE
Design Automation Conference (DAC'03), New York,
NY, USA: ACM, 2003, pp. 149–154.

8. Sasao, T. and Besslich, P., IEEE Transactions on Com�
puters, 1990, vol. C�39, p. 262.

9. Mishchenko, A., Steinbach, B., and Perkowski, M.A.,
Proc. 38th ACM/IEEE Design Automation Conference
(DAC'01), New York, NY, USA: ACM, 2001, pp. 103–
108.

10. Bengtsson, T., Martinelli, A., and Dubrova, E., Proc.
Notes of the 11th IEEE/ACM International Workshop on
Logic & Synthesis (IWLS'02), 2002, pp. 51–55.

11. Chen, H., Janota, M., and Marques�Silva, J., Proc.
Design, Automation & Test in Europe Conference
(DATE'12), IEEE, 2012, pp. 816–819.

12. Choudhury, M. and Mohanram, K., Proc. 2010
IEEE/ACM International Conference on Computer�
Aided Design (ICCAD'10), Piscataway, New Jersy, USA:
IEEE Press, 2010, pp. 586–591.

13. Bioch, J.C., Discrete Applied Mathematics, 2005, vol.
149, p. 1.

14. von zur Gathen, J. and Gerhard, J., Modern Computer
Algebra, New York, NY, USA: Cambridge University
Press, 2013), 3rd ed.

15. Shpilka, A. and Volkovich, I., Proc. 37th International
Colloquium on Automata, Languages and Program�
ming. Part 1 (ICALP 2010), Springer, 2010, vol. 6198 of
Lecture Notes in Computer Science, pp. 408–419.

16. Ponomaryov, D., Bulletin of the Novosibirsk Comput�
ing Center 2008, vol. 28, p. 111, URL http://per�
sons.iis.nsk.su/files/persons/ pages/deIta�decomp.pdf.

17. Morozov, A. and Ponomaryov, D., Siberian Mathemat�
ical Journal, 2010, vol. 51, p. 667.

18. Konev, B., Lutz, C., Ponomaryov, D., and Wolter, F.,
Proc. Twelfth International Conference on Principles of
Knowledge Representation and Reasoning (KR'10), Palo
Alto, California, USA: AAAI Press, 2010.

19. Ponomaryov, D., in Research Note. Abstract appears in
Proc. Logic Colloquium’ 14, 2014, URL http://per�
sons.iis.nsk.su/files/persons/ pages/sigdecomp.pdf.

