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Abstract—The current study investigates dark energy cosmological models using a boundary term and
a non-coincident gauge formulation of nonmetricity gravity. To obtain the modified field equations from
the action, we considered the function f(Q,C) = Q+ λCm, where Q is the nonmetricity scalar, C is the
boundary term given by C = R̊−Q, and λ,m are model parameters. The scale factor that we acquired,
a(t) = [sinh(k0t)]

1/n, is determined by taking into account the time-dependent deceleration parameter.
The constants n and k0 are used in this calculation. By comparing the Hubble function with H(z) datasets,
we were able to use likelihood analysis to determine the model parameters that best fit the data. We have
performed our result analysis and a discussion using the cosmological parameters, including the effective
equation-of-state parameter, energy density, energy conditions, deceleration parameter, OM diagnostic
analysis, and age of the universe, using these best match values of the model parameters.
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1. INTRODUCTION

The Supernova Cosmology Project collaboration
[1], the Supernova Search Team collaboration [2], the
WMAP collaboration [3, 4], the Planck Collaboration
[5], and recent observational predictions suggest that
our Universe is going through an accelerated phase of
expansion which assigns a new boulevard in modern
cosmology. These results suggest that our universe
is dominated by dark energy (DE), or extraterrestrial
cosmic fluid with heavy negative pressure, which ac-
counts for � 3/4 of the critical density. Moreover,
information from the Cosmic microwave background
(CMB) [6] indicates that the Universe appears to be
shaped like a flat surface on a huge scale. The flatness
of the cosmos cannot be explained by conventional
matter or dark matter alone; instead, a “dark energy”
must be the cause of the discrepancy. The same dark
energy also accelerates the expansion of the universe.

Einstein’s general theory of relativity (GR) is the
most successful theory of gravity. This theory, how-
ever, is incompatible with Mach’s principle and the
recent finding of the universe’s late-time acceleration
of expansion. Numerous observations [7–9] indicate
that the ΛCDM DE model is the best fit to the current
observable universe that is speeding up in the present
and was slowing down in the past. The simplest
way to explain the DE behavior of the universe in the
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context of GR is to use the cosmological constant
Λ, which has a negative and constant equation of
state and makes the most sense for late-time accel-
erating expanded universes [10–13]. Although this
cosmological term Λ accurately describes the current
behavior of the universe and makes best fits to mod-
ern observational evidence, it suffers from two main
fundamental issues: its fine-tuning problem and its
derivation in the field equations [14, 15].

Cosmologists believe that the late-time accelera-
tion of the cosmos could be better explained by a
modified theory of gravitation. Many ways to tweak
Einstein’s initial concepts have been found by re-
searchers to improve the theory of gravity: f(R)
gravity [16], f(G) gravity [17], f(T ) gravity [18],
f(R,T ) gravity [19], and f(Q) gravity [20] etc. are
well-known modified theories of gravitation. With
these updated theories, the DE problem was better
understood, and other gravity theories that may ac-
count for the Universe’s late-time fast expansion were
constructed.

A research on the intriguing concept of gravita-
tional interaction mediated by non-metricity when
torsion and curvature vanish has recently been con-
ducted [21–29]. This method can be highly signifi-
cant for a fundamental understanding of gravity since
gravity can be interpreted as a gauge theory without
explicitly stating the existence of the Equivalence
Principle. Examining f(Q) theories, where Q is the
nonmetricity scalar, offers new perspectives on the

330



TRANSIT COSMOLOGICAL MODELS 331

cosmic speed-up that arises from the inherent effects
of a geometry different from Riemannian. A power-
law function is assumed in the analysis of the con-
necting matter in f(Q) gravity in [30]; cosmological
aspects were recently studied in [31] using a model-
independent reconstruction technique, and [32] pro-
vides a covariant formulation of f(Q) theory. In
recent times, [33] reviewed a number of cosmological
models in f(Q) gravity, and [34] used a tachyon field
to study the Tsallis holographic dark energy in viscous
f(Q) gravity. Reference [35] presents a dynamical
system analysis in f(Q) gravity with perturbations,
whereas [36–38] have examined string-fluid cosmo-
logical models in f(Q) gravity. A holographic Ricci
dark energy model in f(T ) gravity is described in [39],
and some ΛCDM cosmological models were recently
rebuilt in f(T ) gravity in [39–41]. References [42–
44] examine a few accelerating cosmic viscous fluid
models in f(T ) gravity. Recently, [45] suggested an
extension of f(Q) gravity to f(Q,T ) theory, and some
transit phase accelerating cosmological models with
observational constraints were recently examined in
f(Q,T ) gravity in [46–50].

Though there are parallels between the modified
theories at the equation level, the previously mentio-
ned novel classes of modified gravity arise in curva-
ture, torsional, and nonmetricity conditions. This is
because, the conventional Levi-Civita Ricci scalar R̊,
the torsion scalar T , and the nonmetricity scalar Q

there are arbitrary functions f(R̊), f(T ), and f(Q) no
more differ by a complete derivative. The boundary
terms C = R̊−Q were recently added to the f(Q)
gravity theory to generate the f(Q,C) theory [51],
a new extended theory of gravity. They proposed a
particular form of the f(Q,C) function as f(Q,C) =

Qe
λ

Q0
Q + βC2, with a prediction that the boundary

term could function as a dark energy term. A recent
detailed study of the role of boundary terms in the
f(Q) theory was conducted by [52]. Recently, an
accelerating cosmological model was investigated in
f(Q,C) gravity in [53] with the arbitrary function
f(Q,C) chosen as Q+ αC2, and we have investi-
gated a DE accelerating in late-time universe with an
function f(Q,C) = αQ2 + βC2 in [54]. According to
these preliminary investigations, the boundary term
might function as a DE factor. We will investigate
the behavior of DE cosmological models in f(Q,C)
gravity with a perfect fluid in this study, motivated by
the recently suggested theory described earlier.

To assess the properties of the DE component
of the cosmos using observational data, current
research aims at determining the equation-of-state
(EoS) parameter ω. This parameter is defined as
ω(t) = p/ρ, the ratio of fluid pressure to energy

density. The most straightforward explanation for
DE is the vacuum energy with EoS ω = −1, also
referred to as the “cosmological constant,” or the
Λ-term. Quintom (ω < −1) and quintessence (ω >
−1) are described by minimally coupled scalar fields
and as alternatives to vacuum energy with time-
dependent EoS features. Consciousness may go from
the phantom realm to the quintessence zone as it
grows. In [55] and [56] it is stated that −1.67 < ω <
−0.62, and −1.33 < ω < −0.79, respectively, are
some observational constraints on the EoS parameter
ω. The most recent results on the limits of the
EoS were obtained in 2009 in [57, 58], and were
−1.44 < ω < −0.92 at 68% confidence level. We are
unable to utilize a constant value forω since we do not
yet have observational data that distinguish between
constant and variable ω. The EoS parameter was
considered to be a constant with phase values of −1,
0,+1

3 , and +1 for a vacuum fluid, dust, radiation, and
stiff fluid dominated worlds, respectively, according to
[59, 60]. That being said, ω is usually a function of
time or redshift (mu-reference [61, 62]).

Motivated by the preceding debate, we study in
this work an isotropic and homogeneous flat universe
model in f(Q,C) = Q+ λCm gravity theory, where
λ,m are model parameters. To find the best fit model,
we compare our findings with H(z) datasets.

The present paper is organized as follows: a brief
introduction was given in Section 1, some basic con-
cepts of f(Q,C) gravity are mentioned in Section 2.
Section 3 contains the modified field equations, and in
Section 4 we obtain some cosmological solutions. In
Section 5 we obtain some observational constraints
on the model using χ2-test with contour plots, and
the resulting analysis and discussion are presented in
Section 6. Finally, the conclusions are given in the
last Section 7.

2. BRIEF CONCEPTS OF f(Q,C) GRAVITY

Let us start with the affine connection’s most basic
version in order to analyze the cosmological charac-
teristics of nonmetric gravity [63],

Γk
ij = Γ̊k

ij +Kk
ij + Lk

ij. (1)

The metric tensor gij ’s Levi-Civita connection is pro-
vided here by

Γ̊k
ij ≡

1

2
gkβ(∂igβj + ∂jgβi − ∂βgij), (2)

whereas

Kk
ij ≡

1

2
gkβ(Tiβj + Tjβi + T βij), (3)

Lk
ij ≡

1

2
gkβ(−Qiβj −Qjβi +Qβij), (4)
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are, respectively, the disformation and contortion ten-
sors. The torsion tensor is T k

ij ≡ Γk
ij − Γk

ji, and
the nonmetricity tensor is given by

Qρij ≡ ∇ρgij = ∂ρgij − Γβ
ρigβj − Γβ

ρjgiβ. (5)

The characteristics of the metric-affine space-time
will thus depend on some choices made regarding the
links. In our study, it is presumable that the torsion
and curvature will vanish, leaving the nonmetricity as
the source of geometry. Depending on the contraction
order, there are two distinct traces of the nonmetricity
tensor: Qi = Qi

α
α and Q̃i = Qα

iα. Therefore, it is
possible to define the nonmetricity scalar as [20]

Q = −1

4
QαβiQ

αβi +
1

2
QαβiQ

βiα

+
1

4
QαQ

α − 1

2
QαQ̃

α, (6)

which, for general diffeomorphisms, is an invariant
quadratic combination.

Last but not least, the constraints on curvature
and torsion can be used to further obtain the relation-
ships (all values with a (̊) are calculated with respect
to the Levi-Civita connection Γ̊)

R̊ij + ∇̊αL
α
ij − ∇̊jL̃i + L̃αL

α
ij

− LαβjL
αβ

i = 0, (7)

R̊+ ∇̊α(L
α − L̃α)−Q = 0. (8)

Thus it is evident that since Qα − Q̃α = Lα − L̃α, we
consider the boundary term from the previous relation
[30, 31].

C = R̊−Q = −∇̊α(Q
α − Q̃α)

= − 1√−g
∂α[

√
−g(Qα − Q̃α)]. (9)

Now, we consider the following action for f(Q,C)
gravity theory [51, 52]:

S =

∫
1

16π
[f(Q,C) + 16πLm]

√
−g d4x, (10)

where f(Q,C) is an arbitrary function of the nonmet-
ricity scalar Q, C is the boundary term, Lm denotes
the matter Lagrangian, and g is the determinant of
the metric tensor gij .

The field equations emerge from variations in the
action with respect to the metric as follows:

2√−g
∂k(

√
−gfQP

k
ij)

+ (PiαβQj
αβ − 2PαβjQ

αβ
i)fQ

− f

2
gij +

(
C

2
gij − ∇̊i∇̊j + gij∇̊α∇̊α

− 2P k
ij∂k

)
fC = 8πTij , (11)

where fQ = ∂f/∂Q, fC = ∂f/∂C, and where Tij is
the matter energy momentum tensor. We observe
here that by varying the action with respect to the
affine connection, we may obtain the connection field
equation because the affine connection is independent
from the metric tensor [51]

(∇i − L̃i)(∇j − L̃j)
[
4(fQ − fC)P

ij
k

+Δk
ij
]
= 0, (12)

where

Δk
ij = − 2√−g

δ(
√−gLm)

δΓk
ij

is the hyper momentum tensor [45]. As

∂j
√
−g = −

√
−gL̃j, (13)

the previous connection field equation can be reexp-
ressed while taking the coincident gauge as

∂i∂j(
√
−g[4(fQ − fC)P

ij
k +Δk

ij ]) = 0. (14)

If this is the case, the field equation that is equivalent
to the f(Q) gravity equation will be found [30]. The
second and third terms on the right-hand side make
up the f(Q) theory, as we can see from the field equa-
tion (11). Following the conventional computation
(for an example, see [32, 45]), we arrive at

2√−g
∂k(

√
−gfQP

k
ij)

+ (PiαβQj
αβ − 2PαβjQ

αβ
i)fQ

=

(
Q

2
gij + G̊ij + 2P k

ij∂k

)
fQ, (15)

where the Einstein tensor associated with the Levi-
Civita link is G̊ij . Consequently, e may covariantly
rewrite the metric field equation as

−f

2
gij + 2P k

ij∇k(fQ − fC) +
(Q
2
gij + G̊ij

)
fQ

+
(C
2
gij − ∇̊i∇̊j + gij∇̊α∇̊α

)
fC = 8πTij . (16)

The effective stress energy tensor is defined as follows:

T eff
ij = Tij

+
1

8π

[
f

2
gij − 2P k

ij∇k(fQ − fC)−
QfQ
2

gij

−
(C
2
gij − ∇̊i∇̊j + gij∇̊α∇̊α

)
fC

]
, (17)

and as a result, we get

G̊ij =
8π

fQ
T eff
ij . (18)
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As a result, we acquire an additional, effective sector
of geometric origin within the context of f(Q,C)
gravity.

If the function f is linear in C, then (16) reduces to
the standard field equation for f(Q) gravity: f(Q) =
f(Q) + βC:

−f

2
gij + 2P k

ij∇kfQ +

(
Q

2
gij + G̊ij

)
fQ

= 8πTij . (19)

3. MODIFIED FIELD EQUATIONS

This section introduces f(Q,C) cosmology and
applies f(Q,C) gravity to a cosmological framework.
We investigate the flat Friedmann-Robertson-Wal-
ker (FRW) space-time, which is homogeneous and
isotropic and is represented by the line element in
Cartesian coordinates

ds2 = −dt2 + a2(t)[dx2 + dy2 + dz2], (20)

where a(t) is called a scale factor, which is a function
of only cosmic time t. The corresponding stress-
energy momentum tensor is given by

Tij = (ρm + pm)uiuj + pmgij , (21)

where ρm amd pm are the matter fluid energy den-
sity and pressure, respectively, uiui = −1, and ui =
(0, 0, 0,−1) is the four-velocity vector, and gij is the
metric tensor.

The framework of f(Q,C) gravity allows us to
acquire an additional, helpful sector of geometric ori-
gin, as indicated in (17), as we said in the preceding
section. As a result, this phrase will be analogous
to an efficient dark-energy sector with an energy-
momentum tensor in a cosmic context,

T
(de)
ij =

1

fQ

[
f

2
gij − 2P k

ij∇k(fQ − fC)−
QfQ
2

gij

−
(
C

2
gij − ∇̊i∇̊j + gij∇̊α∇̊α

)
fC

]
. (22)

In this paper, we consider a nonvanishing affine
connection Γ whose nontrivial coefficients are given
by (i = 1, 2, 3)

Γt
tt =

γ0
a3(t)

− 3H(t),

Γi
it =

γ0
a3(t)

, Γi
ti =

γ0
a3(t)

, (23)

which, as mentioned above, leads to vanishing torsion
and Riemann tensor components, whereas the non-
metricity tensor components are not all zero, giving
rise to the same nonmetricity scalar and boundary
term as in the coincident gauge, namely,

Q = −6H2, C = R̊−Q = 6(3H2 + Ḣ). (24)

We get the Friedmann-like equations by incorpo-
rating these into the general field equations (11) as

3H2 = 8π(ρm + ρde) (25)

−(2Ḣ + 3H2) = 8π(pm + pde), (26)

where ρm and pm are the energy density and pressure
of the matter sector considered as a perfect fluid,
and where we have defined the effective dark energy
density and pressure as

ρde =
1

8π

[
−3H2fQ − f

2
− 3γ0

2a3
ḟQ

+(9H2 + 3Ḣ)fC − 3HḟC +
3γ0
2a3

ḟC

]
, (27)

pde =
1

8π

[
f

2
+ 3H2fQ +

(
2H − 3γ0

2a3

)
ḟQ

−(9H2 + 3Ḣ)fC +
3γ0
2a3

ḟC + f̈C

]
. (28)

Now, we define the energy conservation equation as

ρ̇m + 3H[ρm + pm]

=
3γ0

16πa3

[
3H(ḟQ − ḟC) + (f̈Q − f̈C)

]
, (29)

and from the Friedmann like equations (25) and (26),
we can write the effective energy conservation equa-
tion as

ρ̇e + 3H[ρe + pe] = 0, (30)

where ρe = ρm + ρde, and pe = pm + pde.

4. COSMOLOGICAL SOLUTIONS

We have two linearly independent field equations
(25) and (26) in five unknowns H, ρm, pm, γ0, f , and
hence to find exact solutions of the field equations, we
require at least three constraints on these unknowns.
First, we consider the arbitrary f(Q,C) gravity func-
tion, as

f(Q,C) = Q+ λCm, (31)

where λ and m are arbitrary constants, Q is the
nonmetricity scalar, and C is the boundary term given
by C = R̊−Q.

To study the dynamical behavior of the dark energy
models in f(Q,C) gravity, and due to the nonlinear
complexity of its field equations, we need to adopt a
parametrization of either the scale factor a(t) or the
Hubble function H(t). This technique is called a
model-independent way to explore dark energy prop-
erties of expanding universe models. We consider the
time-dependent deceleration parameter (DP) q(t) =
−aä/ȧ2, which gives such a scale factor, called the
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hyperbolic expansion law [64], and this type of tech-
nique has been also used in several studies [65–70] to
explore the cosmological properties in transit phase
universe models. Therefore, motivated by above stud-
ies, we consider the scale factor

a(t) = [sinh(k0t)]
1/n, (32)

where n and k0 are arbitrary constants.
The universe has an accelerated expansion at the

moment, as seen in recent observations of SNe Ia and
CMB anisotropies [1–3, 71, 72], and a decelerated
expansion in the past [73–75]. This has motivated
us to choose such a time-dependent DP. Now, the
DP must exhibit signature flipping for a universe that
was decelerating in the past and accelerating in the
present [76–78]. Therefore, the DP is generally a time
variable rather than a constant.

Now, we define the Hubble function as H = ȧ
a and

obtain it as

H(t) =
k0
n

coth(k0t). (33)

Now, we express the Hubble function H in terms
of the redshift z using the relation [13, 79]

a0
a

= 1 + z, (34)

with the standard convention a0 = 1, as given below

H(z) =
k0
n

√
[(1 + z)2n + 1], (35)

or

H(z) =
H0√
2

√
[(1 + z)2n + 1], (36)

where H0 = k0
√
2/n.

Now, we put the second constraint on the energy
conservation, Eq. (29), we take the interaction of
matter and dark energy as

ρ̇m + 3H[ρm + pm] = K, (37)

and
3γ0

16πa3

[
3H(ḟQ − ḟC) + (f̈Q − f̈C)

]
= K, (38)

where K is a coupling constant. Solving Eq. (38), we
get the matter energy density ρm as

ρm = ρm0(1 + z)3 −K(1 + z)3
z∫

0

dz

H(z)
. (39)

In our model fQ = 1 =⇒ ḟQ = 0, f̈Q = 0, hence,
Eq. (39) reduces to

f̈C = −16πKa3

3γ0
− 3HḟC . (40)

Now, using Eqs. (31), (32), (34), and (35) in Eq. (27),
we get the dark energy density as

ρde =
(m− 1)λ6mk2m0

8πn2m
[(3− n)(1 + z)2n + 3]m

×
[
1

2
+

m(n− 3)n2

k0

(
γ0
2
(1 + z)3

− k0
n

√
(1 + z)2n + 1

)

× .
(1 + z)2n

√
(1 + z)2n + 1

[(3− n)(1 + z)2n + 3]2

]
. (41)

Again using Eqs. (31), (32), (34), (35), and (40) in
Eq. (28), we get the dark energy pressure as

pde = −(m− 1)λ6mk2m0
8πn2m

[(3− n)(1 + z)2n + 3]m

×
[
1

2
− m(n− 3)n2

k0

(
γ0
2
(1 + z)3

− k0
n

√
(1 + z)2n + 1

)
(1 + z)2n

√
(1 + z)2n + 1

[(3 − n)(1 + z)2n + 3]2

]

− 2K

3γ0(1 + z)3
. (42)

5. OBSERVATIONAL CONSTRAINTS

5.1. The Hubble Function
To compare the model with observational datasets,

we use the publicly available emcee software, which
can be found at [80], to generate an MCMC (Monte
Carlo Markov Chain) analysis for our model and
dataset combination. By adjusting the param-
eter values throughout a range of cautious pri-
ors and looking at the parameter space posteriors,
the MCMC sampler constrains the model and cos-
mological parameters. Thus we obtain one-dimen-
sional and two-dimensional distributions for each
parameter: a one-dimensional distribution represents
the posterior distribution of the parameter, whilst a
two-dimensional distribution shows the covariance
between two different values.

We have taken into account 46 Hubble constant
datasets of H(z) over redshift z with errors in H(z)
that are observed in [81–96] by the method of differ-
ential age (DA) time to time (see Table 1), for the best
fit values of model parameters in H(z). We have used
the χ2-test formula listed below for this analysis:

χ2(n,H0) =
i=N∑
i=1

[(Hob)i − (Hth)i]
2

σ2
i

,

where N denotes the total amount of data, Hob, Hth,
respectively, the observed and hypothesized datasets
of H(z) and standard deviations are displayed by σi.

GRAVITATION AND COSMOLOGY Vol. 30 No. 3 2024
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Table 1. The observed values of H(z)

S.No. z H(z) σH Reference

1 0 67.77 1.30 [81]
2 0.07 69 19.6 [82]
3 0.09 69 12 [94]
4 0.10 69 12 [83]
5 0.12 68.6 26.2 [82]
6 0.17 83 8 [83]
7 0.179 75 4 [93]
8 0.1993 75 5 [93]
9 0.2 72.9 29.6 [82]

10 0.24 79.7 2.7 [84]
11 0.27 77 14 [83]
12 0.28 88.8 36.6 [82]
13 0.35 82.7 8.4 [86]
14 0.352 83 14 [93]
15 0.38 81.5 1.9 [85]
16 0.3802 83 13.5 [86]
17 0.4 95 17 [94]
18 0.004 77 10.2 [95]
19 0.4247 87.1 11.2 [95]
20 0.43 86.5 3.7 [84]
21 0.44 82.6 7.8 [87]
22 0.44497 92.8 12.9 [95]
23 0.47 89 49.6 [88]
24 0.4783 80.9 9 [95]
25 0.48 97 60 [83]
26 0.51 90.4 1.9 [85]
27 0.57 96.8 3.4 [96]
28 0.593 104 13 [93]
29 0.60 87.9 6.1 [87]
30 0.61 97.3 2.1 [85]
31 0.68 92 8 [93]
32 0.73 97.3 7 [87]
33 0.781 105 12 [93]
34 0.875 125 17 [93]
35 0.88 90 40 [83]
36 0.9 117 23 [83]
37 1.037 154 20 [84]
38 1.3 168 17 [83]
39 1.363 160 33.6 [89]
40 1.43 177 18 [83]
41 1.53 140 14 [83]
42 1.75 202 40 [89]
43 1.965 186.5 50.4 [84]
44 2.3 224 8 [92]
45 2.34 222 7 [90]
46 2.36 226 8 [91]

Table 2. MCMC results with H(z) datasets

Parameter Value

H0 66+0.91
−0.90

n 1.3+0.018
−0.018

χ2 44.6743

The expression for the Hubble parameter is shown
in Eq. (36) containing the parameters n,H0, and
the contour plots of these parameters obtained from
likelihood analysis is shown in Fig. 1. The MCMC
results are shown in Table 2. We have found the
best fit values of the model parameters n and H0 as
n = 1.3+0.018

−0.018, and H0 = 66+0.91
−0.90 km/s/Mpc for the

Hubble datasets H(z). From Eq. (35), we can find
the present value of the Hubble parameter at z = 0 as
H0 = k0

√
2/n, and for our analysis

k0 =
nH0√

2
= 60.6697.

From Eq. (35) we see that as z → −1, H → k0/n
with k0 > 0, n > 0, and hence, H > 0 for all z. Also,
as z → ∞, H → ∞.

6. ANALYSIS AND DISCUSSIONS

The deceleration parameter is defined as

q = − ä

aH2
= −1 + n sech2(k0t),

and in terms of the redshift z it can be obtained as

q(z) = −1 +
n(1 + z)2n

[(1 + z)2n + 1]
. (43)

The geometric evolution of q(z) is depicted in
Fig. 2, and Eq. (43) represents its mathematical ex-
pression. We can see that q(z) is an increasing func-
tion of z with a signature-flipping point (transition
point) over the redshift −1 ≤ z ≤ 3. We can find
that as z → −1, q → −1, and at z = 0, q = −1 +
n/2, and this reveals that the model is decelerating
(q > 0) at present for n > 2 and accelerating (q <
0) at present for n < 2. We can also see that as
z → ∞, q → −1, which reveals that the late-time
universe is in an accelerating phase. We have esti-
mated the present value of the deceleration parameter
q0 = −0.35, which reveals the accelerated expanding
phase of the universe at present. We can derive the
transition redshift zt as

zt =

[
1

n− 1

]1/(2n)
− 1, n > 1. (44)

GRAVITATION AND COSMOLOGY Vol. 30 No. 3 2024



336 D. C. MAURYA

1.28

1.24

1.32

1.36

64 66 68 7062
H0 n

n

H0 = 66–0.90
+0.91

n = 1.3–0.018
+0.018

1.28 1.32 1.361.24

Fig. 1. The contour plots of the parameters (n,H0) for
the model with 1− σ and 2− σ errors obtained from
datasets.
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Fig. 2. The deceleration parameter q(z) versus z.

We have estimated the transition redshift zt = 0.589,
and this reveals that our universe begins accelerating
its expansion from z < zt, and it was in a decelerating
phase of expansion for z > zt. Here, the universe’s
past evolution is revealed by a positive value of z > 0,
its present state is indicated by z = 0, and its pre-
dicted future evolution is shown by a negative red-
shift, z < 0. As a result, we may express the cosmic
redshift as 0 < z < ∞ for cosmic time 0 < t < t0, the
present age of the universe at z = 0 as t = t0, and

the cosmic redshift −1 ≤ z < 0 for the cosmic time
t0 < t < ∞ (the future universe).

Now, from the Friedmann-like equations (25) and
(26), we can obtain the LHS effective EoS parame-
ter as

ωeff
lhs = −1 +

2

3

n(1 + z)2n

[(1 + z)2n + 1]
. (45)

Using the best fit values of the model parameters from
Table 2, in Eq. (45), we obtain

ωeff
lhs = − 2

15
− 13

150[(1 + z)2.6 + 1]
. (46)

Again, we define the RHS effective EoS parameter
ωeff

rhs as

ωeff
rhs =

pm + pde

ρm + ρm
= F (λ,m, γ0,K, z) (47)

where F (λ,m, γ0,K, z) = pe/ρe.
Now, taking non-relativistic pressure pm ≈ 0, and

using Eqs. (39), (41), and (42) in (47), we obtain the
expression for the RHS effective EoS parameter ωeff

rhs
as

ωeff
rhs =

{
− (m−1)λ6mk2m0

8πn2m
[(3− n)(1 + z)2n + 3]m

×
[
1

2
− m(n− 3)n2

k0

(
γ0
2
(1 + z)3

− k0
n

√
(1 + z)2n + 1

)
(1 + z)2n

√
(1 + z)2n + 1

[(3 − n)(1 + z)2n + 3]2

]

− 2K

3γ0(1 + z)3

}

×
{
ρm0(1 + z)3 −K(1 + z)3

z∫

0

dz

H(z)

+
(m− 1)λ6mk2m0

8πn2m
[(3 − n)(1 + z)2n + 3]m

×
[
1

2
+

m(n− 3)n2

k0

(
γ0
2
(1 + z)3

− k0
n

√
(1 + z)2n + 1

)

× (1 + z)2n
√

(1 + z)2n + 1

[(3− n)(1 + z)2n + 3]2

]}−1

, (48)

where n and k0 are known from the observational
constraints in the above Section 5. Therefore, now,
we have to constrain only m, λ, γ0, and K, the
unknown model parameters.

The next step is to compare the effective EoS pa-
rameters ωeff

lhs and ωeff
rhs with observational datasets in

order to determine the best fit values of cosmological
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Fig. 3. Contour plots of the cosmological parameters (m,λ, γ0,K) for the model, with 1− σ and 2− σ errors obtained from
the datasets.

parameters (m,λ, γ0,K). To do that, we use Eq. (46)
to produce 100 datasets of the EoS parameter ωeff

lhs
across 0 ≤ z ≤ 3. Using these datasets, we use likeli-
hood analysis to estimate the values of the parameters
(m,λ, γ0,K) in Eq. (48). The χ2 test formula was
utilized in this case, as indicated below:

χ2((m,λ, γ0,K)) =
100∑
i=1

[(ωeff
lhs)i − (ωeff

rhs)i]
2

σ2
i

,

where ωeff
lhs is the 100 datasets generated values of

ωeff
lhs from Eq. (46), ωeff

rhs is the theoretical value of ωeff
rhs

obtained from Eq. (47), the corresponding values of z,
and σi denotes standard deviations.

Figure 3 depicts the contour plots of four model
parameters for their best fit values, and the MCMC
results are presented in Table 3. We found that m =

0.52+0.00016
−0.00016, λ = −0.005+0.00016

−0.00016, γ0 = 0.003+0.00016
−0.00016 ,

and K = 0.0007+0.00016
−0.00016 . We have used these best fit

values of the model parameters in our rest analysis of
the model.

The expressions for the matter energy density ρm
and the dark energy density ρde are shown in Eqs. (39)
and (41), respectively. The geometric evolution of the
matter energy density ρm, the dark energy density ρde,
and the effective energy density ρ(eff) over the redshift
z are presented in Fig. 4. From this figure, we can see
that as z → ∞, ρm → ∞, and as z → −1, ρm → 0,

while the dark energy density behaves as

ρde →
(m− 1)λ18m(k0k1)

2m

16π

as z → −1, while as z → ∞, ρde → −∞. Also, one
can see that as z → −1, the dark energy pressure
pde → −∞. Thus the effective energy density of the
universe is an increasing function of the redshift z,
or a decreasing function of cosmic time t in good
agreement with the expanding universe.

�m
�de
�e

Energy density, 104

0

1

2

3

4

5

6

7

–1 0 1 2 3 z

Fig. 4. The energy densities ρm, ρde, and ρe versus red-
shift z.
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rhs versus redshift for the best fit values of the

model parameters.

The mathematical expressions for the effective
EoS parameter ωeff

lhs and ωeff
rhs are given in (46) and

(47), respectively, and their geometric evolution is
shown in Fig. 5. From the figure, we see that
the EoS parameters varies as −1 ≤ ωeff

lhs < 0 and
−1.2 ≤ ωeff

rhs ≤ −0.4 over the redshift −1 ≤ z ≤ 3.
The present values of the effective EoS parameters
are estimated as ωeff

lhs = −0.5667, ωeff
rhs = −0.6714,

and the dark energy EoS parameter is estimated as
ω(de) = −0.6714 at z = 0, which are consistent with
the recent observational limits obtained in [55–58].
Thus we can say that our derived model is evolving
from a matter-dominated state passing through
quintessence, cosmological constant, phantom, and
tends to the ΛCDM model in a late-time universe,
which shows viability of the model [59, 60].

Energy Conditions

The energy-momentum tensor (Tij) needs to be
subject to specific constraints, also known as the
energy conditions, in order to reflect a realistic matter

Table 3. MCMC results with ωeff
lhs(z) datasets

Parameter Value

m 0.52+0.00016
−0.00016

λ −0.005+0.00016
−0.00016

γ0 0.003+0.00016
−0.00016

K 0.0007+0.00016
−0.00016

χ2 99.86571

�e
�e – pe
�e + pe
�e + 3pe

Energy conditions, 105

–1.5

–1.0

–0.5

0

0.5

1.0

1.5

–1 0 1 2 3 z

Fig. 6. Evolution of the energy conditions over the red-
shift z.

distribution. The Raychaudhuri equations provided
the idea of energy conditions, the prerequisite that the
energy density should be positive in addition to grav-
ity being attracting [97]. The energy conditions are
expressed primarily in terms of the isotropic pressure
p and matter energy density ρ since (Tij) is defined
in these terms. The four basic energy conditions
are null (NEC), weak (WEC), dominant (DEC), and
strong (SEC). They are essential to the research
of singularity and black hole thermodynamics theo-
rems. Since the Big-Rip singularity of the universe
results from breaking of the second rule of black
hole thermodynamics, the NEC is crucial to discuss
[98]. While SEC is helpful for understanding the
Hawking-Penrose singularity theory [99], the DEC is
the foundation for proving the positive mass theorem
[100].

For a perfect fluid matter distribution, the inequa-
lities providing the energy conditions are:

Null Energy Condition (NEC): ρ+ p ≥ 0.

Weak Energy Conditions (WEC): ρ ≥ 0, ρ+ p ≥
0.

Dominant Energy Conditions (DEC): ρ ≥ |p|, i.e.,
ρ± p ≥ 0.

Strong Energy Conditions (SEC): ρ+ p ≥ 0, ρ+
3p ≥ 0.

From Fig. 6 we observe that all energy conditions,
viz., NEC, WEC, DEC, and SEC, are satisfied in
most of the evolution history. The violation of SEC
at late time reveals the accelerating scenarios of the
model.
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Fig. 7. Evolution of the Om diagnostic function.

Analysis of Om Diagnostic

The behavior of the Om diagnostic function can
be used to categorize the cosmic dark energy models
[101]. Given a spatially flat world, the simplest diag-
nostic is provided by

Om (z) =

(
H(z)

H0

)2

− 1

(1 + z)3 − 1
, (49)

where H0 is the Hubble parameter’s current value,
and H(z) is the Hubble parameter, as stated in
Eq. (36). The Pith motion is represented by a
negative slope of Om(z), whereas phantom motion
is represented by a positive slope. The ΛCDM model
is represented by Om(z) = const.

The mathematical expression for the Om diag-
nostic function Om(z) is provided in Eq. (49), which
illustrates its geometric behavior over redshift z in
Fig. 7. Figure 7 illustrates the quintessential behavior
of our model by showing that the Om(z) function
has a negative slope. The resulting model within
f(Q,C) = Q+ λCm gravity thus exhibits a behavior
identical to the quintessence dark energy concept. It
is evident from [102] that a quintessence dark energy
model can be equivalently transferred to a generalized
holographic dark energy model given an appropriate
cut-off selection. Because of its fundamental behav-
ior, our derived model may be equivalently transferred
to the generalized holographic dark energy model by
selecting an appropriate cut-off, demonstrating the
model’s viability.

Age of the Universe
We can calculate the age of the universe as

t0 − t =

z∫

0

dz

(1 + z)H(z)
, (50)

where H(z) is given by Eq. (36). Using Eq. (36) in
(50), we have

H0(t0 − t)

= lim
z→∞

z∫

0

√
2dz

(1 + z)
√

[(1 + z)2n + 1]
. (51)

It is evident that as z → ∞, H0(t0 − t) tends to a
constant value, H0(t0 − t) → H0t0 = 0.9588080615,
which is the cosmic age of the universe. The estima-
ted age of the universe at this time is t0 = 14.20 Gyrs,
which is quite similar to the estimates derived from
observations.

7. CONCLUSIONS
The current study investigates dark energy cos-

mological models using a boundary term and a non-
coincident gauge formulation of nonmetricity grav-
ity. To obtain the modified field equations from the
action, we have considered the arbitrary function as
f(Q,C) = Q+ λCm, where Q is the nonmetricity
scalar, C is the boundary term given by C = R̊−Q,
and λ,m are model parameters. The scale factor that
we acquired, a(t) = [sinh(k0t)]

1/n, is determined by
taking into account the time-dependent deceleration
parameter. The constants n and k0 are used in this
calculation. By comparing the Hubble function with
H(z) datasets, we were able to use likelihood analysis
to determine the model parameters that best fit the
data. We have performed our result analysis and
discussion using cosmological parameters, including
the effective equation-of-state parameter, the energy
density, energy conditions, the deceleration parame-
ter, Om diagnostic analysis, and age of the universe,
using these best match values of the model parame-
ters. The main features of the model are as follows:

• We have found the value of the model parame-
ters m = 0.52+0.00016

−0.00016, λ = −0.005+0.00016
−0.00016 ,

which confirms the presence of a boundary
term that behaves just like a dark energy
candidate in this theory of gravity.

• We have found the present value of the decele-
ration parameter q0 = −0.35, which shows
that the model is in an accelerating phase
of expansion. The value of the deceleration
parameter evolves with a transition point at
zt = 0.589 from deceleration to acceleration.
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• We have found that the effective EoS parame-
ter varies as −1.2 < ωeff < 0 over redshifts
−1 < z < 3, which is a good feature of our
derived model.

• We have found that all energy conditions are
satisfied, except the Strong Energy Conditions
(SEC), which causes acceleration in the ex-
pansion of the universe.

• We have found that ρe = ρm + ρde, and as at
late times ρm → 0 with ρe → ρde, which means
that at late times the matter energy density is
converted into dark energy density that causes
the universe’s acceleration.

• Our Om diagnostic analysis suggests that the
present model is a quintessence dark energy
model, which is equivalent to a holographic
dark energy model.

• We have found the present age of the universe
as t0 = 14.20 Gyrs, which is in good agree-
ment with the recently observed values.
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