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Images of Black Holes Viewed by a Distant Observer

V. I. Dokuchaev*

Institute for Nuclear Research, Russian Academy of Sciences,
60th October Anniversary prospect 7a, 117312 Moscow, Russia

Received March 14, 2024; revised June 1, 2024; accepted June 2, 2024

Abstract—We describe the possible forms of black hole images viewed by a distant observer (or a telescope)
on the celestial sphere. These images are numerically calculated based on general relativity and the
equations of motion in the Kerr–Newman metric. A black hole image is a gravitationally lensed image
of the black hole event horizon. It may be viewed as a black spot on the celestial sphere, projected inside the
position of a classical black hole shadow. In the nearest future it will be possible to verify modified gravity
theories by observations of astrophysical black holes with Space Observatory Millimetron.
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1. INTRODUCTION

How does a black hole look like? It is a standard
question of both scientific experts and men in the
streets. In this paper, the black hole images are cal-
culated based on general relativity and the equations
of motion in the classical Kerr–Newman metric [1–
6] describing a rotating and electrically charged black
hole (see Appendices A, B, C for details). These im-
ages are the gravitationally lensed images of a black
hole event horizon.

Numerical supercomputer simulations of general-
relativistic hydro-magnetic accretion onto a black
(see, e.g., [7–13]) confirm the Blandford-Znajek
mechanism [14] of energy extraction from fast ro-
tating Kerr black holes. The crucial feature of this
mechanism is an electric current flowing through the
black hole immersed into an external poloidal mag-
netic field. This electric current heats the accreting
plasma up to the nearest outskirts of the black hole
event horizon. A very high luminosity of this hot
accreting plasma will spoil some parts of the black
spots in astrophysical black hole images.

Images of astrophysical black holes may be viewed
as black spots on the celestial sphere, projected inside
the possible positions of classical black hole shadows.
See in Figs. 1, 2 some examples of classical black hole
shadows.

It must be stressed that the shapes of discussed
dark spots are independent from the distribution and
emission of the accreting plasma. Instead, the corre-
sponding shapes of dark spots are completely deter-
mined by the properties of the black hole gravitational
field and the black hole parameters like the mass
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M and the spin a. (Throughout this paper we use
the standard dimensionless units with GM/c2 = 1,
where G is the Newtonian gravitational constant, and
c the velocity of light.)

See in Fig. 3 an example of reconstruction of
the spherically symmetric Shwarzschild black hole
event horizon silhouette using 3D trajectories of pho-
tons (numerically calculated by using Careter), which
start very near the black hole event horizon and are
detected by a distant observer (or a distant telescope).
Correspondingly, Fig. 4 shows an example of recon-
struction of an extremely fast rotating Kerr black hole
with spin a = 1.

The trajectories of photons in all figures of this
paper are calculated numerically by using the test
particle equations of motion in the Kerr metric (see
Appendices B and C). The event horizon silhouette
(dark spot) is always projected on the celestial sphere
within the classical black hole shadow.

2. CLASSICAL BLACK HOLE SHADOW

Some examples of classical black hole shadows
are shown in Fig. 1 for the cases of the supermassive
black holes M87* at the center of galaxy M87 and
SgrA* at the center of our native Milky Way galaxy.
The left panel shows shadows of SgrA*, the right one
those of M87*.

Figure 2 shows the results of a numerical simula-
tion of the motion of a compact spherical probe (neu-
tron star or spaceship) near a fast rotating black hole
(a = 0.9982) in a circular orbit with the dimensionless
radius r = 20.

The apparent shape of the black hole shadow, as
seen by a distant observer in the equatorial plane is
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Fig. 1. Some examples of classical black hole shadows are shown for the cases of supermassive black holes SgrA* and M87*.
(a): Shadow of SgrA* (with a possible inclinations of the rotation axis with respect to the polar angle θ0) in the spherically
symmetric Schwarzschild case (a = 0) is the black circle with a radius rsh = 3

√
3 � 5.196. The closed large curve is the

shadow of an extremely fast rotating black hole (a = 1), and the closed smaller curve to the shadow of a moderately fast
rotating black hole (a = 0.65). Note that the vertical size of the shadows, in the case of SgrA*, is independent from the values
of spin a. (b): The corresponding forms of the shadow in the case of M87* (with possible inclinations of the rotation axis with
respect to the polar angle θ0 = 163◦) for spin values a = 1 (the largest closed curve), a = 0.75, and a = 0 (circle) of radius
rsh = 3

√
3.
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Fig. 2. Numerical simulation of a compact spherical probe (neutron star or spaceship) orbiting around a fast rotating black hole
(a = 0.9982) in a circular orbit with the dimensionless radius r = 20. One orbital period is shown in discrete time intervals.
A distant observer is placed a little bit above the black hole equatorial plane. A direct image is shown as well as the first
and second light echoes. The central gray region is the classical black hole shadow. The image of the second light echo is
concentrated at the outskirts of the shadow. Gravitational lensing of the spherical probe in the black hole’s gravitational field
(in the ellipsoidal approximation) is viewed by a distant observer as a deformation of the probe. For details see [15].

determined parametrically, (λ, q) = (λ(r), q(r)), from
a simultaneous solution of the equations Vr(r) = 0

and [rVr(r)]
′ = 0 (see, e.g., [6, 17, 18]):

λ =
−r3 + 3r2 − a2(r + 1)

a(r − 1)
, (1)

q2 =
r3[4a2 − r(r − 3)2]

a2(r − 1)2
. (2)

3. DARK SPOTS IN BLACK HOLE IMAGES
The form of a dark spot in the astrophysical black

hole image, which is viewed by a distant telescope
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Fig. 3. Reconstruction of the Schwarzschild black hole
event horizon silhouette using 3D trajectories of photons
(numerically calculated using the equations of motion in
the Kerr metric), which start very near the event horizon
and are detected by a distant observer (or telescope).
The event horizon silhouette is always projected on the
celestial sphere within the classical black hole shadow of
radius 3

√
3. Meanwhile, the corresponding radius of the

event horizon silhouette is rh � 4.457 [21, 22].

(observer) at the black hole equatorial plane, may
be calculated by using Brandon Carter’s [4] integral
equation of motion in the Kerr metric

∞∫

2

dr√
Vr

= 2

π/2∫

θmin

dθ√
Vθ

, (3)

where θmin is a turning point of the photon trajectory
for a direct image in the polar direction (for details, see
[19, 20]).

In the Schwarzschild case, a turning point is at
the polar angle θmin = arccos (q/

√
q2 + λ2), where

q and λ are the parameters of photon trajectories
from Eq. (A.7). Respectively, from the right-hand-
side integral in (3) is equal to π/

√
q2 + λ2. The

resulting numerical solution of the integral equation
(3) provides the radius of the event horizon image
reh =

√
q2 + λ2 = 4.457. The nearest hemisphere of

the event horizon is projected into a disk with radius
rEW � 2.848. The farthest hemisphere is projected
into the hollow dark disk with radius reh � 4.457. It
is a radius of the gravitationally lensed event hori-
zon image. Figures 3 and 4 show the correspond-
ing numerical solutions for the gravitationally lensed
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Fig. 4. Reconstruction of the extremely fast Kerr black
hole (a = 1) event horizon silhouette for the rotation axes
orientation of the supermassive black hole SgrA*. 3D
trajectories of photons (numerically calculated curves)
are used, starting very near the black hole event horizon
and detected by a distant observer (telescope). The near-
est hemisphere of the event horizon is projected into the
(light colored) disk with radius rEW � 2.848. The farthest
hemisphere is projected into the hollow (dark disk with
radius reh � 4.457. It is a radius of the gravitationally
lensed event horizon image. The reconstructed curves are
the corresponding parallels and meridians at the gravita-
tionally lensed image of the event horizon globe.

event horizon images in the Schwarzschild (a = 0)
and extremely fast Kerr rotation case (a = 1), for the
rotation axes orientation of the supermassive black
hole SgrA*. The near hemisphere of the event horizon
is projected by the lensing photons into the central
(dark) region. Respectively the far hemisphere is
projected into the hollow light colored region. The
closed curves at the event horizon globe are the cor-
responding reconstructed parallels and meridians.

The event horizon globe of the Kerr black hole (e =
0, a �= 0), according to the general equation (A.4), is
rotating as a solid body with an angular velocity

Ωh =
a

2(1 +
√
1− a2)

. (4)

Figure 5 shows a 3D picture of the supermassive
black hole M87* with a supposed spin parameter
a = 1, surrounded by a thin nontransparent accretion
disk. An inclination angle of M87* rotation axis with
respect to a distant observer is supposed to be near
17◦. The arrows indicate the direction of the black
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Fig. 5. 3D picture of the supermassive black hole M87*
with a supposed spin parameter a = 1, surrounded by a
thin accretion disk, which is supposed to be nontranspar-
ent. The largest closed curve is an outer boundary of the
classical black hole shadow, viewed by a distant observer
(telescope) in the celestial sphere. Two numerically cal-
culated photon trajectories start from the inner boundary
of the accretion disk (in the vicinity of the black hole event
horizon equator) and arrive far from the black hole at the
position of a distant observer.

hole rotation axis. The smallest black closed curve
is the outer boundary of the dark spot which may be
viewed by a distant observer at the celestial sphere.
Two numerically calculated photon trajectories start
from the inner boundary of the accretion disk (in the
vicinity of the event horizon equator) and finish far
from the black hole at the position of a distant ob-
server. The largest closed curve in this 3D picture is
the outer boundary of the classical black hole shadow.
We remind the reader that black spots in the images of
astrophysical black holes are always projected inside
the possible positions of the black hole shadows. The
dashed circle is a projection of the imaginary sphere
with unit radius on the celestial sphere in the absence
of gravity (i.e., in Euclidean space). The southern
hemisphere of the gravitationally lensed event horizon
globe may be viewed by a distant observer in the case
of M87*.

Figure 6 shows, in discrete time intervals, gravita-
tionally lensed images of a small probe (neutron star
or space ship) with a zero angular momentum (λ = 0)
and a zero Carter constant (q = 0), which is plunging
into a fast-rotating black hole. A distant observer
is placed a little bit above the black hole equatorial

Fig. 6. Gravitationally lensed images, in discrete time
intervals, of a small probe with a zero angular momentum
(λ = 0) and zero Carter constant (q = 0), plunging into
a fast rotating black hole. A distant observer is placed a
little bit above the black hole equatorial plane. The probe
is winding around the black hole equator One circle of this
winding is shown. For details of numerical calculations
and for animation see [30–35].

plane. The small probe is winding around the equator
of the event horizon globe. One circle of this winding
is shown. The escaping signals from this probe are
exponentially fading in time. For numerical animation
see [16].

Superpositions of the modeled dark spots with the
Event Hotizon Telescope images of the supermassive
black holes SgrA* and M87* are shown in Figs. 7
and 8.

4. DISCUSSION AND CONCLUSIONS

In this paper we discuss the possible shapes of
black hole images, viewed by a distant observer, cal-
culated based on general relativity and the equations
of motion in the Kerr–Newman metric. The black
hole image is a gravitationally lensed image of the
black hole event horizon. It may be viewed as a
black spot on the celestial sphere, projected inside the
position of a classical black hole shadow. The event
horizon silhouette (dark spot) is always projected on
the celestial sphere within the classical black hole
shadow.

Images of astrophysical black holes may be viewed
as black spots on the celestial sphere, projected inside
the possible positions of classical black hole shadows.

GRAVITATION AND COSMOLOGY Vol. 30 No. 3 2024
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Fig. 7. A composition of the Event Horizon Telescope image of supermassive black hole SgrA* [23–29] with the numerically
modeled dark spot corresponding to the gravitationally lensed image of the event horizon globe with spin a = 1. The closed
purple curve is the outline of the classical black hole shadow. The magenta arrow is the direction of the black hole rotation axis.
The magenta dashed circle is the position of the event horizon with radius rh = 1 in Euclidean space without gravity.

(b)(а)

Fig. 8. Superposition of the modeled dark spot with the Event Hotizon Telescope image of the supermassive black hole M87*.
(a): a = 1; (b): a = 0.75. A 17◦ inclination angle of the black hole rotation axis on the celestial sphere is supposed. Note that
the size of the dark spot in the case of the rotation axis orientation of this black hole weakly depends on the value of the spin
parameter a.

The very high luminosity of the hot accreting plasma
spoils some parts of the black spots in the astrophys-
ical black hole images.

It must be stressed that the forms of the discussed
dark spots are independent from the distribution and
emission of the accreting plasma. Instead, the cor-
responding shapes of dark spots are completely de-
termined by the properties of the black hole’s gravi-
tational field and its parameters like the mass M and
spin a.

In the nearest future, it will be possible to ver-
ify modified gravity theories by observations of as-
trophysical black holes with the international Mil-
limetron Space Observatory [39–42].

APPENDIX

A. THE KERR–NEWMAN METRIC

The line element of the classical Kerr–Newman
metric [1–6] describing a rotating (a �= 0) and elec-
trically charged (e �= 0) black hole, is

ds2 = −e2νdt2 + e2ψ(dφ − ωdt)2

+ e2μ1dr2 + e2μ2dθ2, (A.1)

where

e2ν =
ΣΔ

A
, e2ψ =

A sin2 θ

Σ
, e2μ1 =

Σ

Δ
,
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e2μ2 = Σ, ω =
2Mar

A
,

Δ = r2 − 2Mr + a2 + e2, Σ = r2 + a2 cos2 θ,

A = (r2 + a2)2 − a2Δsin2 θ, (A.2)

where M is the black hole mass, a = J/M is its
specific angular momentum (spin), e is its electric
charge, ω is the frame-dragging angular velocity.

The roots of the equation Δ = 0 determine the
black hole event horizon radius r+ and the Cauchy
radius r−:

r+ = 1±
√

1− a2 − q2. (A.3)

The event horizon of the Kerr–Newman black hole
rotates as a solid body (i.e., independently from the
polar angle θ) with the angular velocity

ω+ =
2Mar+

(r2+ + a2)2
. (A.4)

For particles moving near such a black hole, ac-
cording to Carter’s equations of motion [4], there are
the following integrals of motion: μ is the particle
mass, E is its total energy, L is its azimuthal angular
momentum, and Q is the specific Carter constant,
determining the non-equatorial motion. The corre-
sponding radial potential R(r) is

R(r) = P 2 −Δ[μ2r2 + (L− aE)2 +Q], (A.5)

where P = E(r2 + a2)− aL. The polar potential
Θ(θ) is

Θ(θ) = Q

− cos2 θ[a2(μ2 − E2) + L2 sin−2 θ]. (A.6)

The particle trajectories depend on three parame-
ters:

γ =
E

μ
, λ =

L

μ
, q =

√
Q

E
. (A.7)

For massless particles like photons there are two
parameters: λ and q. The corresponding horizontal
and vertical impact parameters, α and β, which are
viewed on the celestial sphere by a distant observer
placed at the polar angle θ0 are [17, 19, 20]

α = − λ

sin θ0
, β = ±

√
Θ(θ0). (A.8)

From an astrophysical point of view (see, e.g.,
[36–38]), the most probable are the cases of fast
rotating supermassive black holes with spin values
close to the maximum value, amax = 1.

B. EQUATIONS OF MOTION
FOR TEST PARTICLES

The first-order differential equations of motion in
the Kerr–Newman metric, derived by Brandon Carter
[4], are

Σ
dr

dτ
= ±

√
R(r), (B.1)

Σ
dθ

dτ
= ±

√
Θ(θ), (B.2)

Σ
dφ

dτ
= L sin−2 θ + a(Δ−1P − E), (B.3)

Σ
dt

dτ
= a(L− aE sin2 θ) + (r2 + a2)Δ−1P, (B.4)

where τ is the proper time of a massive (μ �= 0) par-
ticle or an affine parameter of a massless (μ = 0)
particle like a photon.

C. INTEGRAL EQUATIONS
FOR TEST PARTICLE MOTION

For numerical calculations, very useful are the
integral equations of motion corresponding to (B.1)–
(B.4):

�

∫
dr√
R(r)

= �

∫
dθ√
Θ(θ)

, (C.1)

τ = �

∫
r2√
R(r)

dr +�

∫
a2 cos2 θ√

Θ(θ)
dθ, (C.2)

φ = �

∫
aP

Δ
√

R(r)
dr +�

∫
L− aE sin2 θ

sin2 θ
√
Θ(θ)

dθ, (C.3)

t = �

∫
(r2 + a2)P

Δ
√

R(r)
dr

+�

∫
(L− aE sin2 θ)a√

Θ(θ)
dθ. (C.4)

The integrals in Eqs. (C.1)–(C.4) monotonically
grow along the particle trajectory and change their
sign at both the radial and polar turning points:

rs∫

r0

dr√
R(r)

=

θs∫

θ0

dθ√
Θ(θ)

, (C.5)

where rs and θs are, respectively, the initial radial
and polar particle coordinates, and r0 � rh and θ0
are the corresponding final particle coordinates. A
more complicated case is with one turning point in
the latitude (or polar) direction, θmin(λ, q), which is a
solution of the equation Θ(θ) = 0. The corresponding
ordinary integrals in Eq. (C.1) are written as

r0∫

rs

dr√
R(r)

=

θs∫

θmin

dθ√
Θ(θ)

+

θ0∫

θmin

dθ√
Θ(θ)

. (C.6)
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We use these equations in our numerical calculations
of photon trajectories, starting in the vicinity of the
Kerr–Newman black hole and finishing at the posi-
tion of a distant observer very far from the black hole.
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