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Abstract—We study the dependence of the parameters of the evolution of scalarly charged black holes
(BHs) in the early Universe on the parameters of field theories of interaction, and the influence of the
geometric structure of the relative position of BHs on the limitation of their maximum mass, The problem
of the metric of a scalarly charged BH in a medium of expanding scalarly charged matter is discussed, the
expression is obtained for the macroscopic cosmological constant at late stages of expansion, generated by
quadratic fluctuations of the metric, connecting the cosmological constant value with the BH masses and
their concentration.
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INTRODUCTION

In the first part of the author’s article [1], two
problems were formulated that need to be solved in
the theory of the formation of supermassive black
hole (SMBH) nuclei in the early Universe using the
mechanism of scalar-gravitational instability of the
cosmological medium of scalarly charged fermions,
in order to lead it in accordance with the observed
picture:

1. According to the results presented, the process
of increasing the SMBH mass does not stop when the
required mass (1) is reached (see [2, 3]),

msmbh ∼ 104−106M� ≈ 1042−1044 mpl, (1)

but continues endlessly. Now we need to find a mech-
anism to stop this process.

2. What does the large-scale structure of the
Universe become after the completion of this process,
what is the fate of the matter that fell into the sphere
of influence of a SMBH?

The first question was partly answered in the sec-
ond part of the article [4]—the process of evolution
of spherical scalar-gravitational disturbances ends
quite quickly automatically precisely due to the geo-
metric factor of spherical symmetry. As shown in this
paper, the process of SMBH formation is determined
by the fundamental parameters of the cosmological
model,

P = [[α,ms, e, π0],Λ],
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where α is the self-interaction constant of the Higgs
potential, ms is the mass of scalar bosons, e is the
scalar charge of fermions, π0 is their initial Fermi
momentum, Λ is the cosmological constant, and on
the initial conditions, which in the simplest case (if the
initial values of the derivatives of functions are equal
to zero) can be written with three quantities:

I = [Φ0,m0, q0],

where Φ0, m0, and q0 are the initial values of the scalar
potential, the central singular mass, and the pertur-
bation charge, respectively. In this paper, we, firstly,
specify the dependence of the evolution parameters of
BHs in the early Universe on the parameters of the
field-theoretical model of interactions; secondly, we
study the large-scale geometric factors that stop the
process of growth of the BH mass; and thirdly, we
consider a possible large-scale picture of the Universe
at the end of the SMBH formation process.

1. FORMATION AND EVOLUTION
OF BLACK HOLES IN VARIOUS
FIELD-THEORETICAL MODELS

In [4], three similar process models are consid-
ered:

The basic model corresponding to the Planck in-
teraction scales1 ,

P0 =
[[
1, 1, 1, 0.1

]
, 3× 10−6

]
; (2)

1 We use the Planck system of units G = c = � = 1.
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Table 1. The maximum mass of a black hole

M mmax m�
max tmax tsu(5) tsm

M− 1027 10−11 2.5(2) 2.5(7) 2.5(17)

M+ 1052 1014 3.7(2) 3.7(7) 3.7(17)

the field-theoretical model SU(5), resulting from the
base model with the similarity coefficient k = 10−5:

PSU(5) =
[[
10−10, 10−5,

√
10 × 10−3,

√
10× 10−4

]
,

3× 10−16
]

(k = 10−5), (3)

and the standard field-theoretical model SM—with
the similarity coefficient k = 10−15:

PSM =
[[
10−30, 10−15,

√
10× 10−8,

√
10× 10−9

]
,

3× 10−36
]

(k = 10−15). (4)

In this case, as shown in [4], the final parameters of
the process significantly depend on the initial condi-
tions only by the factor of the location of the initial
state of the system in relation to the unstable state
in this model, which corresponds to the value of the
scalar potential Φ+ = 1 in the models under consid-
eration. Namely, we will denote the process models
as those with an initial state “above” the stable one,
Φ(0) > Φ+, by the upper symbol +, and models with
an initial state “below” the stable one, Φ(0) < Φ+,
with the upper symbol −: M+

0 ,M−
0 , etc.

Taking into account the properties of the similarity
transformation (see [4]), we present the approximate
results of numerical simulation of the evolution of the
BH mass for three similar cosmological models.

Explanations for Table 1: tmax is the time at
which the maximum BH mass mmax is reached for the
model (2), tsu(5)—for the model PSU(5), and tsm—
for the model PSM; m�

max is the value of this mass in
solar mass units; the numbers in parentheses indicate
order.

Let us note, firstly, that in all cases the initial sin-
gular mass in the spherical perturbation was assumed
to be equal to m(0) = mPl (!). When the initial mass
increases by a factor of p, it is necessary to increase
the maximum mass by the same factor. From Ta-
ble 1, secondly, one can see that models of the M−

type lead to maximum masses of formed BHs that
are approximately 25(!) orders of magnitude smaller
than the Mtype+ models. Thirdly, the smaller are
the fundamental constants P, the longer is the BH
formation time. Fourth, and finally, the maximum
masses of formed BHs in all M+ type models that
suit us, even in the M+

0 model, are many orders of
magnitude higher than the required SMBH masses
(1). Therefore, although the problem with limiting the
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Fig. 1. Cosmological evolution of the scalar field potential
Φ(t) in the SM+ model (4).
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Fig. 2. Dependence of the number of e-folds N = ln a(t)
on cosmological time t (dashed line) and the Hubble
parameter (solid line) in the SM+ model (4).

mass of SMBHs was fundamentally resolved in [4],
the answer to the question of why the SMBH masses
are limited precisely by the value (1) was not obtained
in that work.

In this paper we will try, firstly, to answer this
question as well as the second question, which turns
out to be closely related to the first one.

In what follows, we will consider the standard in-
teraction model SM (4) as the base model. Figures 1
and 2 present an example for the standard model of
the evolution of cosmological parameters.
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From these plots it is clear, firstly, that at the time
instant (t ∼ 1016) there is a sharp transition of the
cosmological system from a state with a scalar po-
tential Φ+ ≈ 1 to a state with Φ∞ → 0, accompanied
by microscopic oscillations of this scalar potential
(Fig. 2). Secondly, this transition is accompanied by
an equally rapid decrease in the Hubble parameter:
from H1 ≈ 2.8888 × 10−16 to H2 ≈ 1.8300 × 10−17,
while the inflationary expansion rate decreases by
approximately a factor of 16, which corresponds to a
decrease in the effective cosmological constant Λ by
approximately a factor of 250(!) (Fig. 3). As shown in
the previous parts of the work, these transitions arise
due to the instability of the cosmological system in
state 1, as a result of which the cosmological system
passes into a stable state 2, characterized by a lower
inflation rate. Thirdly, according to the results of the
previous paper [4], it is precisely during this transition
that there begins a rapid growth of the BH mass.

Figure 3 shows the results of a numerical simu-
lation of the cosmological evolution of the BH mass
under spherical perturbations, in comparison with the
expression for the mass in the nth harmonic of a plane
perturbation, based on qualitative considerations (see
[1]),

m(n, t) =
4π

n3
H2

0e
3H0t. (5)

The results of numerical modeling confirm the ap-
proximate results of Table 1: a noticeable increase in
mass begins immediately after the transition of the
cosmological system to a stable state (see Fig. 2) at
time t � 4× 1016, and the mass reaches its maximum
value mmax ≈ 1052 at time tmax ≈ 4× 1017. After
reaching this maximum, the mass begins to fall and
reaches a constant limit of m∞ ≈ 1042. Let us imme-
diately note that the drop in the BH mass is a short-
coming of the linear approximation of the perturbation
theory used. The mass of a macroscopic black hole,
as is known, can only increase its mass with time.
In the linear approximation of perturbation theory,
the geometric properties of the BH horizon do not
manifest themselves. In this regard, the maximum
mass of the BH obtained within the framework of
linear perturbation theory should be taken as the final
mass of the formed BH.

Comment 1 (On the estimates). Next, com-
paring the results of numerical modeling with
those obtained on the basis of the qualitative for-
mula (5), we see that the latter gives the BH mass
values achieved by tmax is 10 orders of magnitude
smaller than the precise results of numerical sim-
ulation. Or, in other words, the value mmax is
achieved based on the qualitative relation (5) at
times 2 orders of magnitude later than tmax. This
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Fig. 3. Cosmological evolution of the BH mass in the
model of spherical perturbations (solid line) and accord-
ing to the qualitative formula (dashed line) in the interac-
tion model SM+ (4).

must be kept in mind in the future when assessing
the cosmological process of SMBH formation.

2. END OF THE SMBH FORMATION
PROCESS

In the previous parts of the article, we considered
the evolution of a single local spherical disturbance in
the Friedmann Universe,

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2), (6)

with dx2 + dy2 + dz2 ≡ dr2. In fact, such distur-
bances are formed, albeit randomly, taking into ac-
count the macroscopic homogeneity and isotropy of
the Universe, on the average, uniformly. Of course,
the initial parameters of these disturbances are largely
random, but nevertheless, to simplify the model, we
will assume them to be the same. Let τg be the
time instant of BH birth in scalar-gravitational dis-
turbances. At the inflation stage (where H0 = H1 or
H0 = H2, depending on the stage of evolution),

a(t) = eH0t, (7)

and according to [1], this time instant is

τg � 1

H0
ln

(
n√
8πH0

)
, (8)

where n ≡ |n| is the wave number of the perturbation
mode exp(inr). The mass mg of a new-born BH
at the inflation stage does not depend on the wave
number n [1],

mg � 1

4
√
2π

1

H0
. (9)
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Let us take into account that the disturbance
wavelength λ(t) is related to the wave number n by [5]

λ(t) =
a(t)

n
⇒ n =

a(t)

λ(t)
≡ a(τg)

λ(τg)
, (10)

and

λ(τg) � 2mg ⇒ �
√
8πH0. (11)

Then we obtain an estimate for the time of BH birth
in unstable disturbance modes:

τg � 1

H0
ln 2. (12)

Thus we get, for example, in Fig. 3:

1: τg � 2.4 × 1015; mg: �3.5 × 1014, (13)

2: τg � 3.7 × 1017; mg: �5.3 × 1015. (14)

Let further ν(t) be the average number density
of identical BHs formed at t > τg with horizon radius
Rm = 2m(t), so that m(τg) = mg, ν(τg) = νg. Then
the average distance between the BHs is (see Fig. 1)

RN (t) =

(
3

4πν(t)

)1/3

. (15)

Assuming that starting from this moment τg the
number of BHs does not change, we obtain:

ν(t) = νg

(
a(τg)

a(t)

)3

(= νge
−3H0(t−τg)). (16)

Thus from (15) (see Fig. 4) we find

RN (t) =
a(t)

a(τg)

(
3

4πνg

)1/3

≡ a(t)

a(τg)
RN (τg). (17)

Next, to estimate the radius of the BH horizon at
the inflation stage, we use the qualitative relation from
[1] (5):

RM (t) = 2m(t) � 8πH2
0

a3(t)

n3

� 1√
8πH0

e3H0(t−τg). (18)

When the horizon radii of two BHs come into
contact, the process of their mass increase must be
stopped, at least before the possible BH merger. Ac-
cording to (17) and (18), this point in time, τmax, is
determined by the relation

a(t)

a(τg)
�

√
δ ⇒ τmax � 1

2H0
ln(δ + 4), (19)

where

δ ≡ RN (τg)

RM (τg)
=

√
8πH0RN (τg) > 1

Horizon radius

Average distance

R N

R M

Fig. 4. The SMBH number density and their radii.

is the ratio of the average distance between the BHs
to the BH horizon radius at the moment of their
formation. The BH density introduced above at the
moment of their birth, νg, is related to the dimension-
less parameter δ > 1 by

νg = 6
√
8π

(
H0

δ

)3

. (20)

From (18) and (19) we obtain an estimate for the
maximum mass of SMBHs,

Mmax � δ3/2√
8πH0

≡
√

3

8πΛ
δ3/2. (21)

Thus, firstly, the maximum mass of a BH is de-
termined by only two parameters—the cosmological
constant and the number density of the number of
newborn black holes (20), and, secondly, it increases
with a decrease in the cosmological constant. For
example, the minimum SMBH mass threshold (1)
m = 1044 in the case of δ = 108 is achieved at a
value of the cosmological constant Λ � 10−65. Note,
firstly, that according to (19), the time to reach the
maximum mass (21) is greater than or of the order
of the cosmological time τ0 � H−1

0 at this stage of
expansion. The values of the Hubble constant in the
early stages of expansion should be greater than its
modern value. Secondly, as we noted, the estimating
formula (18) gives a greatly underestimated growth
rate of the BH mass (see footnote 1), so we must
make appropriate corrections to Eq. (21).

Summarizing the results of this section, we note
that the macroscopic geometric factor is, apparently,
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the main one in determining the maximum para-
meters of SMBHs formed in the process of cosmo-
logical evolution.

3. THE COSMOLOGICAL CONSTANT
AFTER SMBH FORMATION

3.1. Scalar Field in the Neighborhood of SMBH
So since, as a result of the scalar-gravitational

instability of the cosmological medium of scalarly
charged fermions, scalarly charged BHs are appar-
ently formed, it is necessary, firstly, to consider the
question on such isolated static BHs. For the first
time, the spherically symmetric solution in the case
of a massless canonical scalar field was found by
I.Z. Fisher (1948) [6]. In Ref. [7] (see also the reviews
[8, 9]), the question of the geometry of a scalarly
charged BHs with a massless scalar field (V (Φ) ≡ 0)
was studied in detail in the absence of ordinary matter.
In the classical work [10], the “no-hair” theorem was
proved on the absence of scalar hair in BHs. Ac-
cording to this theorem, outside a black hole horizon,
the scalar field can only be constant: Φ = const. It
should be noted that the conditions for the validity of
the theorem are, firstly, the Minkowski nature of the
metric at infinity, and, secondly, the presence of the
event horizon itself.

Let us consider a static spherically symmetric
metric in curvature coordinates (see, e.g., [5])

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dΩ2, (22)

which the equation for the scalar Higgs field Φ(r) has
the form

1

r2
d

dr

(
r2e(ν−λ)/2 d

dr
Φ

)

− e(ν−λ)2Φ(m2
s − αΦ2) = 0. (23)

In [11], Eq. (23) was solved in the spatially flat
metric ν = λ = 0 for the central point scalar charge
e. For the self-interaction constant α = 0, Eq. (23)
reduces to the well-known Yukawa equation

1

r2
d

dr

(
r2

d

dr
Φ

)
−m2

sΦ = 0 (24)

and has as its solution the well-known Yukawa po-
tential

Φ =
2G

r
e−msr, (25)

where G is a scalar charge.
The self-interaction constant factor α �≡ 0 funda-

mentally changes the nature of solutions to Eq. (23).
Now this equation has no stable solutions with zero
asymptotics at infinity,

Φ(r)
∣
∣∣
r→∞

→ 0. (26)

Stable solutions of Eq. (23) in a spatially flat metric
are solutions with nonzero asymptotic behavior at
infinity corresponding to special stable points of the
dynamical system,

Φ(r)
∣∣
∣
r→∞

→ Φ± = ±ms√
α
. (27)

For solutions close to stable, assuming

Φ(r) = Φ± + φ(r) (φ 	 1), (28)

in the linear approximation we obtain the equation,
instead of (24),

1

r2
d

dr

(
r2

dφ

dr

)
+ 2m2

sφ = 0. (29)

Let us pay attention to the change in the sign of
the massive term as compared to the Yukawa equa-
tion (24), due to which the stable solution of the
equation for the Higgs field will be [11]

Φ(r) = ±ms√
α
+

2G

r
cos(

√
2msr). (30)

The presence of a fundamental scalar field with
the Higgs potential fundamentally changes the phy-
sical picture. Now the vacuum state corresponds
to one of the stable points of the Higgs potential
(27), which, in turn, corresponds to the zero potential
energy of the scalar field,

V (Φ±) = 0. (31)

Taking into account the above, we study the solution
to the complete problem of a self-gravitating scalar
Higgs field. Nontrivial combinations of Einstein’s
equations with a cosmological constant in the metric
(22)2 can be reduced to the form

2rΦ′2 + (λ+ ν)′ = 0, (32)

eλ − 1− rν ′ = r2eλ
[
Λ− α

2

(
Φ2 − m2

s

α

)2 ]
. (33)

We will seek solutions to the set of equations (23),
(32), (33) that are close to being stable, assuming
(28). Then, in the zeroth approximation, due to the
smallness of φ(r), Eq. (23) becomes an identity, and
Eq. (32) gives

λ = −ν. (34)

As a result, Eq. (33) is reduced to the closed equation
for ν (or λ)

rν ′ + 1 + e−ν(1− Λr2) = 0, (35)

2 These are combinations of the equations 1
1, 4

4 and the scalar
field equation.
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solving which, we find in the zeroth approximation:

ν0 = −λ0 = ln

(
1− 2m

r
− Λr2

3

)
, (36)

where m is an integration constant. Thus in the
zeroth approximation we obtain the well-known
Schwarzschild–de Sitter solution [12]

ds2 =

(
1− 2m

r
− Λr2

3

)
dt2

− dr2

1− 2m

r
− Λr2

3

− r2dΩ2. (37)

Due to (32), in the first approximation in the
smallness of φ, the relation (34) is preserved, and
therefore Eq. (35) is also preserved. It follows that
the metric (37) is preserved in the approximation
linear in φ. Therefore, in a linear approximation,
the field equation (23) can be considered against the
background of the Schwarzschild–de Sitter solu-
tion (37):

1

r2
d

dr

(
r2eν0

d

dr
φ

)
+ 2m2

se
ν0φ = 0. (38)

Without posing, in this article, the problem of find-
ing solutions to Eq. (38) and studying their behavior
near the horizons of the metric (37), we only note
that, in general, the solution is in the form (28) with
Φ(∞) = Φ± = const, (27), does not contradict the
theorem on the absence of scalar hair in BHs. At the
same time, the Higgs potential is implicitly included
in the solution of field equations, firstly, through the
vacuum value of the scalar potential (27), and sec-
ondly, through renormalization of the bare cosmolog-
ical constant Λ0 (see, e.g., [1]), decreasing its value:

Λ = Λ0 −
1

4

m4
s

α
. (39)

3.2. The Cosmological Factor

One should remember, however, that the proper-
ties of a scalarly charged BH discussed above refer
to an isolated static system. In fact, the process of
BH formation occurs in a cosmological environment,
which determines its evolution. In this regard, let us
again turn to Figs. 1, 2, illustrating the evolution of
the cosmological medium during the BH formation
for the standard model SM (4).

In this regard, the question arises of how to com-
bine the model of an isolated static scalarly charged
BH with the model of a BH in a cosmological envi-
ronment. In particular, what can happen to the quasi-
vacuum state of this BH, corresponding in this case to
the value of the scalar potential Φ± = 1, which in the

cosmological environment after the transition should
tend to zero, thereby violating the quasi-vacuum na-
ture of the state and causing instability of the scalar
field. This rather serious issue requires an additional
research, which we hope to conduct in the future.

For now, we will explore the essence of this issue
from the point of view of the qualitative theory of
ordinary differential equations (see, e.g, [13]). To do
that, consider the equation of the scalar field Φ(x, t)
with the potential energy V (Φ) in flat space-time

Φ̈− Φ′′ + V ′
Φ(Φ) = 0, (40)

where, as usual, the dot denotes derivatives with re-
spect to t, and the prime with respect to x. Let us
consider two fundamentally different situations: the
case where Φ = Φ(t), and the case where Φ = Φ(x).
We will call the first situation the T-situation, and
the second the X-situation. The corresponding field
equations are obtained from (40):

T : Φ̈ + V ′
Φ(Φ) = 0, (41)

X : Φ′′ − V ′
Φ(Φ) = 0. (42)

According to the qualitative theory of differential
equations, in both situations the singular points Φi

of the corresponding normal system of differential
equations are determined by the equations

V ′
Φ(Φi) = 0,

and the eigenvalues of the characteristic matrix of
the system λs are, in turn, determined through these
singular points:

T : λi = ±
√

−V ′′
ΦΦ(Φi) = 0,

X : λi = ±
√
V ′′
ΦΦ(Φi) = 0.

In the case of the Higgs potential

V (Φ) = −α

4

(
Φ2 − m2

s

α

)2

,

there are singular points of the system

Φ0 = 0, Φ± = ±ms√
α
.

So, we get for the eigenvalues:

T : λ0 = ±ims; λ± = ±
√
2ms;

X : λ0 = ±ms; λ± = ±i
√
2ms = 0.

Thus, according to the qualitative theory of differ-
ential equations in the T-situation, the zero singular
point Φ0 = 0 is an attracting focus (cycle), and the
singular points Φ± are saddle points, i.e., unstable
points of the system. In the case of the X-situation,
on the contrary, the zero singular point Φ0 = 0 is
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a saddle point, i.e., it is unstable, and the singular
points Φ± are attracting foci (cycles). This explains
why in the static case the scalar potential tends to a
quasi-vacuum solution at infinity (27) (X-situation),
which is unstable for the cosmological T-situation,
while in the cosmological situation at t → ∞ the
stable solution is zero. The collision of these systems,
which are opposite from the point of view of differen-
tial equations, is a problem that we have to solve in
the future.

One can, of course, object to this conclusion.
Indeed, in the standard model of a scalar field with
a parabolic potential, the zero singular point is pre-
served, as are the eigenvalues of the characteristic
matrix at this point. But then it turns out that the
solution Φ = C1 exp(−msx) at this point Φ → 0 as
x → ∞ is not stable for a static field, just like the
Yukawa solution. Yes, indeed, these solutions, strictly
speaking, are not stable since they do not have a
growing branch as compared to general solutions.
The damped (only as x → +∞!) solution corresponds
to the particular initial conditions

Φ(0) = Φ0, Φ′(0) = −Φ0

ms
.

With a slight variation of these conditions, a second
branch appears in the solution, diverging exponen-
tially quickly at positive infinity, which corresponds to
a classical Lyapunov instability. A completely similar
situation arises with the Yukawa potential in the case
of spherical symmetry. In the case of a parabolic po-
tential of a scalar field, this contradiction can be quite
simply eliminated using the fact that there is only one
singular point of the X- and T-systems. If there are
several singular points with different characteristics,
this contradiction cannot be easily eliminated. Nev-
ertheless, even in this case there is a way out, as long
as the cosmological system is, in though an unstable
but rather a long inflationary phase, as in Figs. 2, 3.
In this case, the cosmologically unstable state (T-
situation) with Φ = 1 is at the same time stable for
the X-situation, i.e., for a scalarly charged BH.

If we assume that the general cosmological trend
in the course of evolution nevertheless turns out to
be dominant, then we must accept as a fact that
the scalar field in the outer regions close to the BH
horizons should completely disappear in the course
of cosmological evolution. Thus there should be a
strong drop in the value of the cosmological constant,
possibly even to zero, in accordance with Eq. (39).
In this case, under the horizon, the scalar field can
remain in a state close to a stable one, Φ = Φ± (27).

3.3. Macroscopic Picture of the Universe
with Black Holes

Let us find out the possible outcome of the situ-
ation when the Universe is filled with supermassive
scalarly charged BHs surrounded by fermionic matter
in the absence of a scalar field or when it is weak.
In the author’s early papers [14–16], foundations of
a statistical theory of relativistic classical systems
with gravitational interaction were formulated. In
the papers [17, 18], based on this theory, a kinetic
equation for massless particles in the macroscopic
Friedmann world was derived, taking into account the
gravitational interaction with microscopic spherically
symmetric local fluctuations of the metric generated
by point sources of mass. In this case, the cosmolog-
ical evolution of spherical local fluctuations generated
by point masses was taken into account, studied in
[19] for the ultrarelativistic equation of state of matter
in the Universe, and in [20] and other papers for the
equation of state of a perfect fluid with an arbitrary
constant barotropic coefficient. Finally, in [21] these
results were applied to obtain an effective energy-
momentum correlation tensor for quadratic fluctu-
ations of the gravitational field of BHs arising due
to the an overlap of their gravitational attraction re-
gions in the macroscopically spatially flat Friedmann
Universe. The resulting expression for the energy-
momentum tensor components at the nonrelativistic
stage of evolution of the material component of the
cosmological environment, adapted to our notation,
has the form

δT i
k = − 1

8π
δG(2) i

k

= 3πνsrs

(
2m(t)

rs

)2

δik ≡ 〈εg〉δik, (43)

where 〈εg〉 is the average correlation energy density,
νs = ν(rs) is the average BH density per accom-
panying volume, μ(t) = m(t)/a(t) is the reduced BH
mass, rs is the sound horizon at the moment of
transition to the total nonrelativistic state of cosmo-
logical matter. Assuming that after completion of
the process of exponentially rapid mass growth, the
matter becomes nonrelativistic, and the SMBH mass
remains practically unchanged (only due to slow gas
accretion), we obtain

〈εg〉 ∼ 12π
νsm

2
smbh

rs
= const. (44)

Thus, at the nonrelativistic stage of expansion after
completion of the SMBH formation, the Universe
can be described by a cosmological model with the
effective cosmological constant

Λeff = 〈εg〉,
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generated by quadratic correlations of local gravita-
tional fields of SMBHs.

4. CONCLUSION

Note that the BH number density ν(t) appears
in Section 2, therefore the formulas for the effective
constant (44) and the maximum achievable mass of
the BH (21) are quite strictly related to each other.
Thus, to clarify the correctness of the estimate (44)
of the modern value of the cosmological constant,
one can use the observational data on the maximum
mass of SMBHs mmax, their average density ν(t)
and the radius of the sound horizon of matter at the
nonrelativistic stage.
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