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Abstract—We consider a Bianchi Type I universe filled with cold dark matter and non-interacting Tsallis
holographic dark energy in the framework of f(R) theory of gravity. We take the GO scale as an
IR cutoff and find exact solutions of the field equations by considering a linearly varying deceleration
parameter. The evolution of different cosmologically relevant parameters are studied graphically, and
Statefinder diagnostics is performed in the light of recent cosmological observations. We find that our
model corresponds to current accelerated expansion scenarios, and the function f(R) ≈ R implies that our
model resembles General Relativity.
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1. INTRODUCTION

General Relativity has been able to explain the
evolution of the universe to a very striking accu-
racy, but some unexplained phenomena still evade
it. Such phenomena originate from cosmology and
quantum field theory and are essentially results of
lack of a definitive quantum gravity theory [1]. Late-
time cosmic acceleration is the latest addition to this
list. According to General Relativity, the universe’s
expansion should decelerate due to the effect of grav-
itational attraction. But the observations indicate
otherwise, i.e., instead of showing deceleration, the
universe is undergoing expansion with acceleration
[2, 3]. This cosmic acceleration was observed not only
from high-redshift surveys of Type Ia Supernovae but
also from the anisotropy power spectrum of the Cos-
mic Microwave Background [4]. The most favored
explanation for this acceleration is that the Universe
is currently dominated by some form of dark energy
which produces negative pressure [5].

A number of dark energy models have been pro-
posed in the literature. However, none of them is
completely satisfactory. Also, there is no satisfactory
theoretical basis for the origin of this exotic matter,
which is seen precisely at the epoch when one needs
a source for cosmic acceleration. The simplest model
is the so-called concordance model or ΛCDM model,
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where a cosmological constant plays the role of dark
energy, and the nature of dark matter remains unde-
termined apart from the fact that it does not inter-
act but gravitationally [6]. The latest observations
coming from different sources seem to indicate that
the energy budget of the universe is 4.9% of ordinary
baryonic matter, 26.8% of dark matter and 68.3% of
dark energy [4].

In the recent times, holographic dark energy has
emerged as a powerful candidate to explain the con-
sequences of dark energy. The holographic dark en-
ergy is theoretically based on the famous holographic
principle by G. ‘t Hooft [7] which was later modified
by Fischler and Susskind [8]. Following the work
of Li [9], the density of holographic dark energy can
be obtained as ρHDE = 3c2M2

pL
−2, where 3c2 is a

numerical constant, L is the infrared (IR) cutoff, and
M2

p is the reduced Planck mass. Different suitable
choices of this IR cutoff lead to some new problems
in cosmology. Tsallis and Cirto [10] in 2013 assumed
some quantum modification of the horizon entropy of
a black hole and proposed the entropy in the form
S = γAδ, where δ is a nonadditive parameter, γ is a
constant, and A is the surface area of the event hori-
zon. Using this entropy, the Tsallis holographic dark
energy (THDE) density can be obtained as ρTHDE =
DL2δ−4, where D is an unknown parameter, and
depends on γ and δ [11].

In this present work we use the IR cutoff as the
Granda-Oliveros (GO) scale and then the THDE
density ρTHDE = D(αH2 + βḢ)−δ+2, where α and β
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are suitable constants which must satisfy the obser-
vational constraints.

Again, General Relativity is a classical theory
which can describe the universe at the largest scales
but surprisingly fails to describe the quantum world.
In other words, General Relativity cannot be quanti-
zed [12]. There is another approach where the action
of General Relativity is modified. Such modifications
by introducing higher-order curvature invariants to
the gravitational action have been made for a very
long time. In 1919 Weyl, and in 1922, Eddington
considered such modifications in the action [13, 14].
Later these modifications were revived in higher-
order gravity theories. Recently, such modifications
are introduced to explain the accelerated expansion.
Some of the popular modified gravity theories are
f(R) gravity [15], f(R,T ) gravity [16], f(G) gravity
[17], f(G,T ) gravity [18], f(T ) gravity [19], etc.

The f(R) theory of gravity is one of the simplest
modifications of General Relativity, in which f(R)
is an arbitrary function of the Ricci scalar R. A
new scalar degree of freedom appears in f(R) gravity,
dubbed the scalaron that is absent in General Relati-
vity. There are three versions of f(R) gravity: metric
f(R) gravity, Palatini f(R) gravity, and metric-affine
f(R) gravity. The first version is the metric formalism
in which the affine connection Γα

μν depends on gμν . In
metric f(R) gravity, matter is minimally coupled to
the metric. The second one uses the Palatini formal-
ism in which Γα

μν and gμν are treated as independent
variables, and the action is varied with respect to both.
In metric-affine f(R) gravity, one uses the Palatini
variation but abandons the assumption that the ac-
tion of matter is independent from the connection [20].

Recently, Ens and Santos studied f(R) gravity
and Tsallis holographic dark energy in the context of
the FLRW metric [21]. Jawad and Chattopadhyay
studied the new holographic dark energy model in the
framework of modified f(R) Horǎva-Lifshitz grav-
ity [22]. Sarkar and Chattopadhyay reconstructed
f(R) gravity with Barrow Holographic Dark Energy
(BHDE) as a form of background evolution and ob-
served that in this case the equation of state can have
a transition from quintessence to phantom [23].

In the present work, we study the anisotropic
and homogeneous Bianchi Type I universe filled with
pressureless cold dark matter and Tsallis Holographic
Dark Energy in the framework of metric f(R) theory
of gravity. The paper is organized as follows: in
Section 2, we give a brief introduction to f(R) gravity
field equations. In Section 3, we derive the field
equations of the f(R) gravity for the Bianchi Type I
metric. Considering a generalized, linearly varying
deceleration parameter proposed by Akarsu et al. [24],
we solve the field equations in Section 4. In Section 5,

we obtain the directional scale factors and different
physical parameters of the universe. We discuss their
properties graphically and perform Statefinder diag-
nostics in Section 6. Finally, we conclude the paper
in Section 7.

2. f(R) GRAVITY FIELD EQUATIONS

f(R) gravity is one of the simplest modifications of
Einstein’s theory of gravity. In f(R) gravity, the Ricci
scalar R in the Einstein-Hilbert action is replaced by
an arbitrary function f(R) . As a result, there are
changes in the gravitational geometry as described
by Einstein’s field equations. One of the earliest
f(R) theories was proposed in [25] with f(R) = R+

R2/(6M2) plus some nonlocal terms. This function
could explain the cosmic inflation and also the late-
time cosmic acceleration. Various other forms of the
function have also been suggested in the literature to
explain the present cosmic acceleration [26].

The action of f(R) theory of gravity is

S =
1

2κ

∫
d4x

√
−gf(R) + Sm(gμν , ψ), (1)

where g is the determinant of the metric, κ = 8πG,
G being the gravitational constant, and ψ denotes
matter fields.

Varying the action (1) with respect to the metric
tensor gμν , the field equations are obtained as

F (R)Rμν −
1

2
f(R)gμν −∇μ∇νF (R)

+ gμν�F (R) = κ(Tμν + T̄μν), (2)

where F = df(R)/dR, � = ∇μ∇μ, ∇μ being the
covariant derivative associated with the Levi-Civita
connection of the metric. Tμν is the stress-energy
tensor of matter given by

Tμν =
−2√−g

δLM

δgμν
.

For pressureless cold dark matter, Tμν = ρmuμuν , ρm
being the energy density of cold dark matter.

For Tsallis holographic dark energy, the stress-
energy tensor T̄μν is given by

T̄μν = (ρTHDE + pTHDE)uμuν + pTHDEgμν , (3)

where ρTHDE and pTHDE are the energy density and
pressure of THDE. In this paper, we use the natural
units convention c = 8πG = 1. Also, time t is con-
sidered to be the cosmic time (in billions of years).
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3. BIANCHI TYPE I METRIC
AND FIELD EQUATIONS

We consider a spatially homogeneous and anisot-
ropic Bianchi Type I metric

ds2 = −dt2 +A2dx2 +B2dy2 + C2dz2, (4)

where A, B, and C are directional scale factors which
are functions of the time t only. The corresponding
Ricci scalar R is given by

R = 2

(
Ä

A
+

B̈

B
+

C̈

C
+

ȦḂ

AB
+

ḂĊ

BC
+

ĊȦ

AC

)
, (5)

where an over dot denotes differentiation with respect
to t.

We assume that the universe is filled with a mix-
ture of pressureless cold dark matter and THDE with
obtained by the identification of IR cutoff GO scale
given by

ρTHDE = D(αH2 + βḢ)−δ+2, (6)

where H is the Hubble parameter, α and β are con-
stants which must satisfy the observational cons-
traints. For δ = 1, the usual new holographic dark
energy density can be recovered, and for δ = 2, the
THDE behaves like a cosmological constant. For
1 < δ < 2, δ can be defined as δ = d/(d − 1), d > 1
as proposed in [27].

For the metric (4), the Hubble parameter is defined
as

H =
1

3

(
Ȧ

A
+

Ḃ

B
+

Ċ

C

)
. (7)

The field equations (2) for the metric (4) in natural
units are obtained as

Ä

A
+

Ȧ

A

Ḃ

B
+

Ċ

C

Ȧ

A
− f

2F
− Ḃ

B

Ḟ

F
− Ċ

C

Ḟ

F
− F̈

F
= peff, (8)

B̈

B
+

Ȧ

A

Ḃ

B
+

Ḃ

B

Ċ

C
− f

2F
− Ȧ

A

Ḟ

F
− Ċ

C

Ḟ

F
− F̈

F
= peff, (9)

C̈

C
+

Ḃ

B

Ċ

C
+

Ċ

C

Ȧ

A
− f

2F
− Ȧ

A

Ḟ

F
− Ḃ

B

Ḟ

F
− F̈

F
= peff, (10)

Ä

A
+

B̈

B
+

C̈

C
− f

2F
− Ȧ

A

Ḟ

F
− Ḃ

B

Ḟ

F
− Ċ

C

Ḟ

F
= −ρeff − peff, (11)

where ρeff = (ρm + ρTHDE)/F , and peff = pTHDE/F
are the effective energy density and pressure, respec-
tively. The energy-momentum conservation yields

ρ̇m + ρ̇THDE + 3H(ρm + ρTHDE

+ pTHDE) = 0. (12)

Considering the cold dark matter and THDE to be
noninteracting, we can split Eq. (12) into the follow-
ing two continuity equations:

ρ̇m + 3Hρm = 0, (13)

ρ̇THDE + 3H(ρTHDE + pTHDE) = 0. (14)

4. COSMOLOGICAL SOLUTIONS
OF THE FIELD EQUATIONS

For the metric (4), the average scale factor a is
defined as

a = (ABC)1/3 . (15)

From Eqs. (7)–(10), the directional scale factors A,
B, C in terms of a can be obtained as

A = l1ae
m1I(t), (16)

B = l2ae
m2I(t), (17)

C = l3ae
m3I(t), (18)

with

I(t) =

∫
1

a3F
dt, (19)

where l1, l2, l3 are positive constants such that
l1l2l3 = 1 and m1, m2, m3 are arbitrary constants
satisfying the condition m1 +m2 +m3 = 0.

The integral I(t) suggests that we may consider F
as a function of the average scale factor a as

F = lan, (20)

where l is a constant of proportionality, and n is an in-
teger [28]. Now, to find the scale factors explicitly, we
consider a generalized, linearly varying deceleration
parameter proposed by Akarsu et al. [24], given as

q = − äa

(ȧ)2
= −kt+m− 1, (21)

which is linear in time with a negative slope and can
be considered as a generalization of Berman’s law [29,
30]. Berman’s law has been used for cosmological
models obeying the Einstein equations, the Pryce-
Hoyle tensor equation, Brans-Dicke relations and
also in dark energy cosmological models which take
into account the current acceleration of the universe.
The law (21) gives a better consistency with cosmo-
logical observations as compared to Berman’s law.
Integrating Eq. (21), the scale factor is obtained as

a = a1 exp
[ 2

m
arctanh

( k

m
t− 1

)]
, (22)

where we consider k > 0,m > 0, and a1 is an integ-
ration constant. The argument of arctanh in Eq. (22)
is (kt/m− 1), which is defined for (−1, 1). So, in
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our model, the universe starts at t = 0 and ends at
t = 2m

k , i.e., it has a finite lifetime. By substituting the
values of m = 1.6 and k = 0.097, it can be observed
that t ≈ 33 billion years, which is the lifetime of the
universe. The energy density of the fluid and the
scale factor both diverge in finite time as t → tend.
This is the big rip behavior, as was first suggested by
Caldwell et al. [31]. The universe begins with qi =
m− 1, starts accelerating at tt = (m− 1)/k, enters
into a super-exponential expansion phase at tse =
m/k, and ends at qend = −m− 1. The same has
been discussed in [24]. The dark energy in our model
passes into a phantom region, as shown in Figs. 8 and
14. This has been shown to be viable in a number of
recent studies [32, 33] and leads into a big rip in the
future.

We take a1 = 1 in the present work and obtain

A = l1

(
kt

2m− kt

)1/m

em1I(t), (23)

B = l2

(
kt

2m− kt

)1/m

em2I(t), (24)

C = l3

(
kt

2m− kt

)1/m

em3I(t). (25)

From Eq. (13), we obtain

ρm = ρ0

(
kt

2m− kt

)−3/m

, (26)

where ρ0 is an integration constant. Also, the effec-
tive energy density of matter is obtained as

ρeff
m =

ρm
F

=
ρ0
l

(
kt

2m− kt

)−(3+n)/m

. (27)

From Eq. (6), the energy density and the equation of
state parameter of Tsallis holographic dark energy are
obtained as

ρTHDE = D

(
4ξ

t2(2m− kt)2

)−δ+2

, (28)

ωTHDE = ωeff
THDE = −1 + (δ − 2)

(2m − kt)ζ

6ξ
, (29)

where ξ = α− βm+ βkt and ζ = 4βm− 4α− 3βkt.
Also, the pressure of THDE is obtained as

pTHDE = D

(
−1 +

(δ − 2)(2m − kt)ζ

6ξ

)

×
(

4ξ

t2(2m− kt)2

)−δ+2

. (30)

The trace of the stress-energy tensor is obtained as

T = 3pTHDE − (ρm + ρTHDE)

= D

(
4ξ

t2(2m− kt)2

)−δ+2

− ρ0

(
kt

2m− kt

)−3/m

×
(
−4 +

(δ − 2)(2m− kt)ζ

2ξ

)
. (31)

Finally, the Ricci scalar R and the function f(R) are
obtained as

R = 24

(
m+ 2

t(2m− kt)2

)
, (32)

f(R) = D

(
2− (δ − 2)(2m− kt)ζ

4ξ

)

(
4ξ

t2(2m− kt)2

)−δ+2

+
ρ0
2

(
kt

2m− kt

)−3/m

+
λ

t2(2m− kt)2

(
kt

2m− kt

)n/m

, (33)

where λ = 6l(2m+ 4− 3n− n2 − nm).
Some relevant cosmological parameters are obtai-

ned as:
Mean Hubble parameter,

H =
2

t(2m− kt)
. (34)

Expansion scalar:

θ = 3H =
6

t(2m− kt)
. (35)

Spatial volume:

V = a3 =

(
kt

2m− kt

)3/m

. (36)

Shear scalar:

σ2 =
1

2

[(
Ȧ

A

)2

+

(
Ḃ

B

)2

+

(
Ċ

C

)2

− 1

3
θ2

]

=
m2

1 +m2
2 +m2

3

2l2

(
kt

2m− kt

)−(2n+6)/m

. (37)

Anisotropy parameter:

Am = 6
(σ

θ

)2
=

(
m2

1 +m2
2 +m2

3

)
t2(2m− kt)2

12l2

×
(

kt

2m− kt

)−(2n+6)/m

. (38)

5. EVOLUTION OF THE RELEVANT
COSMOLOGICAL PARAMETERS

In this section, we proceed to investigate the cos-
mological behavior of the model by studying the evo-
lution of some cosmologically relevant parameters.
From Fig. 1, it is observed that the deceleration
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parameter became negative when the universe was
around 6 billion years old and attains a value of q ≈
−1 at current times, which implies accelerated ex-
pansion. The deceleration parameter continues to be
negative till the end of time.

From Fig. 2 it is observed that the universe starts
at t → 0 with a ≈ 0, a increases with time, and it
increases exponentially at late times showing an ac-
celerated expansion of the universe. Figure 3 plots
the mean Hubble parameter H versus cosmic time
t, and it diverges at the beginning and at the end
of the evolution. Our results obtained in Figs. 1–3
are similar to those obtained by Akarsu et al. [24].
Figure 4 shows variation of the effective energy den-
sity of dark matter with cosmic time, it is found
to be decreasing in nature, as known from various
cosmological observations. From Fig. 5 we observe
that the early universe is highly anisotropic, and the
anisotropy dies out in the course of evolution for
both negative and positive values of n. Here, we
have considered the value of m2

1 +m2
2 +m2

3 equal to
0.0001 since a smaller value gives the evolution of the
universe from an earlier time. A comparatively large
value of m2

1 +m2
2 +m2

3 shows the evolution from a
later time. For 1.8 < m < 2, the anisotropy of the
universe has a nonzero value at the beginning i.e.,
at the time of big bang. For m ≥ 2, the universe
is found to be isotropic at t = 0, but gradually the
anisotropy grows and reaches a non-zero value but
decays at later times and tends to zero at the end. For
m ≤ 1.8, the universe begins with high anisotropy
which decays with time. For relatively smaller values
of m(≈ 0.5), the anisotropy decays out at very early
times. For our present study, we have taken the value
m = 1.6. For large value of k(≈ 2), the anisotropy
of the universe dies out at the beginning, but at
smaller values of k(≈ 0.097), the anisotropy decays
gradually and tends to zero, in agreement with the
current observations. In the present study, we have
considered k = 0.097. Figure 6 shows variation of the
Ricci scalar R with cosmic time.

6. SOME PARTICULAR CASES

As already mentioned, the Tsallis holographic dark
energy behaves like the usual holographic dark en-
ergy if δ = 1. At δ = 2, it behaves like a cosmological
constant, and at 1 < δ < 2, δ is defined as δ = d/(d−
1), d > 1 [27]. To study the cosmological evolution of
THDE in a Bianchi Type I universe in the framework
of f(R) gravity, we consider the following particular
cases:
Case I: δ = 1. In this case, we obtain

ρTHDE =
4Dξ

t2(2m− kt)2
, (39)

1

0

�1

�2

2
q

2 4 6 8 10 12 14 16 20 22 24 26 28
t

Fig. 1. Evolution of the deceleration parameter q with
cosmic time t with k = 0.097, m = 1.6.

1

2

3

4

5

a

50 10 15 20 25 30
t

Fig. 2. The scale factor a vs. cosmic time t, with k =
0.097, m = 1.6.

ωTHDE = ωeff
THDE = −1− (2m− kt)ζ

6ξ
, (40)

T = D

(
−4 +

(δ − 2)(2m− kt)ζ

2ξ

)

×
(

4ξ

t2(2m− kt)2

)
− ρ0

(
kt

2m− kt

)−3/m

, (41)

f(R) =
λ

t2(2m− kt)2

(
kt

2m− kt

)n/m

+D
8ξ + ζ(2m− kt)

t2(2m− kt)2
+

ρ0
2

(
kt

2m− kt

)−3/m

.

(42)
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1

2

3

4

5

6
H

50 10 15 20 25 30
t

Fig. 3. The Hubble parameter H vs. cosmic time t, with
k = 0.097, m = 1.6.

1

3

4

6

�m

50 10 15 20 25 30 t

n = �1
n = 1

eff

Fig. 4. Evolution of the effective energy density of cold
dark matter ρeff

m with cosmic time t, with k = 0.097, m =
1.6, l = 1, ρ0 = 1.

Figure 7 shows variation of the THDE density for
δ = 1, and Fig. 8 variation of the EoS parameter with
cosmic time t. We observe that the usual new holo-
graphic dark energy behaves like a phantom at late
times. In Fig. 9, the trace of the stress-energy tensor
T is plotted against t, and is found to be negative at all
times. Figure 10 shows the evolution of the function
f(R).
Case II: δ = 2. In this case, ρTHDE = D, and

0.4

0.2

0.6

0.8

1.0

1.2

1.4
Am

10 2 3 4 5 6 7 8
t

n = �1
n = 1

Fig. 5. Evolution of the anisotropy parameter Am with
cosmic time t, with k = 0.097, m = 1.6, m2

1 +m2
2 +

m2
3 = 0.0001, l = 1.

2

1

3

4

5

6

R

50 10 15 20 25 30 35
t

Fig. 6. The Ricci scalar R vs. cosmic time t, with k =
0.097, m = 1.6.

ωTHDE = −1, which mimics the energy density and
the equation of state parameter of the cosmological
constant. We have:

T = −4D − ρ0

(
kt

2m− kt

)−3/m

, (43)

f(R) = 2D +
2λ

t2(2m− kt)2

(
kt

2m− kt

)n/m

+
ρ0
2

(
kt

2m− kt

)−3/m

. (44)
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0.08

�THDE

50 10 15 20 25 30
t

Fig. 7. Evolution of THDE density ρTHDE with cos-
mic time t with D = 1, α = 0.8, β = 0.4, k = 0.097,
m = 1.6.

0

�0.5

�1.0

0.5
�THDE

5 10 15
t

Fig. 8. Evolution of the EoS parameter ωTHDE with cos-
mic time t, with α = 0.8, β = 0.4, k = 0.097, m = 1.6.

In Fig. 11, the trace T of the stress energy tensor
is plotted against cosmic time t, it is found to be
negative and attains a constant value at late times.
Figure 12 shows variation of the function f(R) with
cosmic time t, it is observed to be similar to that of
the Ricci scalar R shown in Fig. 6.

0

�0.5

�1.0

�1.5

�2.0

�2.5

1.0

0.5

T

5 10 15 20 25 30 35 40
t

Fig. 9. Evolution of the trace T of the stress energy tensor
vs. t, withD = 1, α = 0.8, β = 0.4, k = 0.097, m = 1.6,
ρ0 = 1.

1.0

1.5

0.5

2.0

2.5

3.0

3.5

4.0

4.5

f(R)

50 10 15 20 25 30 35
t

n = 1
n = �1

Fig. 10. The function f(R) vs. t, with D = 1, α = 0.8,
β = 0.4, k = 0.097, m = 1.6, ρ0 = 1, l = 1.

Case III: δ = 1.4. In this case, we plot the THDE
density, EoS parameter, the trace T and the function
f(R) versus cosmic time t for the particular value
δ = 1.4. Figure 13 shows variation of the THDE
density, and Fig. 14 variation of the EoS parameter
with cosmic time t. In this case we also observe
that the THDE behaves like a phantom at late times.
Figure 15 shows the trace T as a function of t, and it
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Fig. 11. Evolution of the trace T vs. t, with D = 1,
k = 0.097, m = 1.6, ρ0 = 1.
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26
28
f(R)
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t

n = 1
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Fig. 12. The function f(R) vs. t with D = 1, k = 0.097,
m = 1.6, ρ0 = 1, l = 1.

is found to be negative, while Fig. 16 shows variation
of the function f(R) with t.

7. STATEFINDER DIAGNOSTICS

The Statefinder is a geometric diagnostic that
characterizes the properties of dark energy in a
model-independent manner [34]. It is used for
distinguishing different types of dark energy. It
was introduced to characterize flat universe models
with cold dark matter (dust) and dark energy. It
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Fig. 13. The THDE density ρTHDE vs. cosmic time t, with
D = 1, α = 0.8, β = 0.4, k = 0.097, m = 1.6.
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Fig. 14. The EoS parameter ωTHDE vs. t, with α = 0.8,
β = 0.4, k = 0.097, m = 1.6.

is dimensionless and is constructed from the scale
factor a of the universe and its time derivatives only.
The parameter r forms the next step in the hierarchy
of geometrical cosmological parameters after the
Hubble parameter H and the deceleration parameter
q, while s is a linear combination of q and r chosen in
such a way that it does not depend on the dark energy
density, given as

r =
1

aH3

d3a

dt3
, s =

r − 1

3(q − 1
2)
.

The Statefinder pair {r, s} is algebraically related to
the equation of state of dark energy and its first time
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Fig. 15. The trace T vs. t, with D = 1, α = 0.8, β = 0.4,
k = 0.097, m = 1.6, ρ0 = 1.
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Fig. 16. The function f(R) vs. t, with D = 1, α = 0.8,
β = 0.4, k = 0.097, m = 1.6, ρ0 = 1, l = 1.

derivative. For the ΛCDM model, the statefinder pair
becomes (1, 0). From Fig. 17 we observe that our
model admits a ΛCDM scenario at late times.
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Fig. 17. Evolution of the Statefinder parameter r vs. s,
with k = 0.097, m = 1.6, t = 13.8.

8. CONCLUSION

In this paper, we have studied a spatially homoge-
neous and anisotropic Bianchi Type I universe filled
with cold dark matter and a non-interacting Tsallis
holographic dark energy in the framework of f(R)
theory of gravity. Exact solutions of the field equa-
tions are obtained by considering a generalized lin-
early varying deceleration parameter, and we derived
various parameters of cosmological importance. The
cosmological behavior of the model is studied graph-
ically, including physical and geometric properties of
the relevant parameters. We also perform Statefinder
diagnostics in the light of recent cosmological obser-
vations. We find that:

• Our model is a finite time model where the
universe passes on from deceleration to the
present accelerating epoch and will eventually
enter into superexponential expansion.

• The new holographic dark energy behaves like
phantom dark energy at late times, and the
universe ends in a Big Rip.

• The universe starts with high anisotropy,
which dies out rapidly. The anisotropy decrease
is more rapid at negative values of n than at
positive values of n.

• The Ricci scalar is found to be positive and
diverging at the beginning and at the end of the
evolution.

• The THDE density decreases at early times
and increases at late times for δ = 1 and 1.4,
while it behaves like cosmological constant at
δ = 2.
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• The trace T of the stress energy tensor is found
to be negative for all the three values of δ.

• The function f(R) ≈ R for δ = 2, which imp-
lies that our model resembles General Relati-
vity .

• The Statefinder parameters pass through the
point (1, 0) which corresponds to the ΛCDM
model.
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