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Abstract—In this methodological paper we consider geodesic motion of particles in spherically symmetric
black hole space-times.We develop an approach based on splitting the velocity of a freely falling particle to
the flow velocity, which depends only on the metric, and a deviation from it (a peculiar velocity). It applies to
a wide class of spherically symmetric metrics and is exploited under the horizon of the Schwarzschild black
hole. The present work generalizes previous results obtained for pure radial motion. Now, the motion is, in
general, nonradial, so that an observer can have a nonzero angular momentum. This approach enables us
to give simple physical interpretation of redshifts (blueshifts) inside the horizon including the region near
the singularity and agrees with the recent results obtained by direct calculations.
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1. INTRODUCTION

The goal of the present paper is to describe
geodesic motion in the interior of a spherically sym-
metric black hole from a viewpoint which is rather
rarely presented in scientific and methodological lit-
erature concerning black holes, and has been mostly
developed in cosmology. The concept of “expansion
of space” is well known in methodological literature
and is widely used in cosmological textbooks (see,
for example, [1]). Though from a purely scientific
perspective it is usually considered as a redundant
concept, and there are no formal differences in in-
terpretations of Hubble expansion as “expansion of
space” and the motion of galaxies through space
(see [2] and references therein), visualization of the
Hubble flow and peculiar velocities with respect
to it can be considered to be pedagogically useful.
However, it rises a question of what is specific in
cosmology that gives rise to this concept. A recent
development gives rather an unexpected answer to
this question: such an interpretation is not specific
to cosmology and can be developed in other areas of
general relativity.

In [3] it was suggested to think of a black hole
as a river of space that flows through it. Later, this
picture was expanded in [4, 5]. In particular, this
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allows splitting of a velocity of a test particle to two
natural parts. One of them represents motion with
a flow while the second one gives a deviation from
it due to peculiar movement. This leads to rather
a transparent kinematic picture that is useful in a
number of applications. For example, it was applied
in [5] to the description of the so-called Bañados-
Silk-West (BSW) effect [6] and in [7] to the problem
of maximizing the time inside a black hole horizon.

Kinematics of particles (including the inner region
of a black hole) was considered in [5] for pure radial
motion only and for the Gullstrand-Penlevé frame.
Also, radial motion of particles in this frame (but
without using the notions of a flow and peculiar ve-
locities) was considered in [8] for the Schwarzschild,
Bardeen and Reissner-Nordsrtöm black holes. Our
goal here is to generalize our approach developed
in [5] in two aspects. First, we consider an arbi-
trary motion that implies nonzero angular momen-
tum. Second, we use synchronous coordinate sys-
tems. This allows us to make a direct comparison of
our definitions with those usual in cosmology, as well
as to consider another (different from the Gullstrand-
Penlevé one) famous frame existing only inside a
black hole horizon [9]. Relying on this approach,
we establish some generic properties of motion near
the black hole singularity and give simple physical
explanation of the recent results for redshift inside a
black hole [10].
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We use the system of units in which the funda-
mental constants G = c = 1.

2. STATIC SPHERICALLY SYMMETRIC
METRIC AND EQUATIONS OF MOTION

Let us consider the class of spherically symmetric
metrics

ds2 = −fdt2 +
dr2

f
+ r2dω2,

dω2 = sin2 θdφ2 + dθ2. (1)

The horizon radius is r = r+, f(r+) = 0.
Equation (1) implies that gttgrr = −1. This form

includes the Schwarschild, Reissner-Nordström, de
Sitter and anti-de Sitter metrics, etc. In principle,
we can write a more general form with independent
gtt and grr , but this would cause technical difficulties
without qualitative changes, so in the present paper
we restrict ourselves to Eq. (1).

We are interested in the behavior of test particles.
For the spherically symmetric case, the motion occurs
in a plane. We choose it to be θ = π/2. Then, in the
original frame (1), the equations of motion for a free
particle with the energy E and angular momentum L
read

dt

dτ
=

ε

f
, (2)

dr

dτ
= −P, (3)

dφ

dτ
=

L
r2

, (4)

where ε = E/m, L = L/m, τ is the proper time, m is
the particle mass, and

P ≡
√

ε2 − f(1 +
L2

r2
). (5)

We assumed that a particle moves towards the
horizon, so r decreases with time.

The original frame is deficient on the horizon where
f = 0. To make the metric regular near the horizon,
we apply the transformation

t = t̃+ F (r)− r∗, (6)

r = r̃, (7)

where

r∗ =

r∫
dr̄

f(r̄)
, (8)

and F is regular near the horizon r = r+. Then, the
metric can be rewritten in the new coordinates in the
form

ds2 = −fdt̃2 + 2dt̃dr(1− fF ′)

+ dr2[2F ′ − f(F ′)2] + r2dω2. (9)

Introducing also v according to

v =
√

1− f, (10)

and setting

F ′ =
1− v

f
=

1

1 + v
, (11)

we obtain the metric in the following famous form (the
Gullstrand-Penleve (GP) metric)

ds2 = −dt̃2 + (dr + vdt̃)2 + r2dω2. (12)

The transformation of time can be rewritten in the
form

t = t̃−
∫

v dr

f
. (13)

The form (12) is widely used in analog models of
General Relativity, as well as in the so-called “river
model” of a black hole, where v represents the velocity
of a flow (“river”), being a background on which
standard Special Relativity considerations take place
(see [3] for details).

For a massive particle, it follows from (2)–(4) and
(6) that

dt̃

dτ
=

ε− Pv

f
, (14)

dr

dt̃
= − Pf

(ε− Pv)
, (15)

dφ

dt̃
=

f

ε− vP

L
r2

. (16)

Thus the four-velocity in coordinates (t̃, r, φ) reads

uμ =

(
ε− Pv

f
,−P,

L
r2

)
. (17)

In the present paper we work also in synchronous
frames. To obtain such a frame from the GP one, we
transform not only the temporal coordinate but also a
spatial one. We want to obtain the metric in the form

ds2 = −dt̃2 +Adρ2 + r2(ρ, t̃)dω2 (18)

that would generalize the familiar Lemaı̂tre frame,
well-known for the Schwarzschild metric.

Our goal is achieved with

ρ = t+

r∫
dr̄

fv
. (19)

Then,

A = 1− f = v2. (20)
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If f = 1− r+/r, we return to the known formula for
the Lemaître form of the Schwarzschild metric (see,
e.g., [11]).

The transformation presented here, from the ex-
plicitly static form of the metric (1) to the Lemaı̂tre
one (18), is a special case of a more general procedure
described in [12] and Sec. 3.3.3 of [13].

For free motion, using (14) and (3) we have

dρ

dτ
=

εv − P

vf
, (21)

dρ

dt̃
=

εv − P

(ε− Pv)v
. (22)

3. DEFINITIONS OF A PECULIAR VELOCITY

Now, we want to describe particle motion by differ-
ent types of observers. To this end, we attach a tetrad
to an observer, where the role of a timelike vector is
played by the four-velocity of a reference observer. In
particular, if we choose such an observer as a freely
falling one, with special values of the energy and
angular momentum, this defines a flow. Deviations
from it correspond to a peculiar motion. If we choose a
suitable definition of a three-velocity V (i) (i = 1, 2, 3),
such a reference observer will have V (i) = 0, whereas
a peculiar motion is described by nonzero V (i). In
other words, V (i) describes the motion of a particle
with respect to the flow.

To choose a correct and physically reasonable def-
inition of V (i), we use the tetrad formalism. Then,
the motion of a massive particle is subluminal, so the
absolute value of the vector V (i) is less than 1. In this
section, we compare two different definitions of such
a velocity, which were used independently in different
contexts, and show that they coincide.

Let a particle and an observer have the four-
velocities uμ and ũμ, respectively. Then, following
Eq. (2) of [14], we can introduce the quantity wμ

according to

wμ = ũμ +
uμ

(u, ũ)
. (23)

Equation (23) was used, in particular, in Eq. (40)
of [15]. Note that our notations of four-velocities differ
from those in [14, 15]. The sign at the second term in
(23) differs from that in [15] because of our signature
(−,+,+,+) instead of (+,−,−,−) in [15]. Here,
(u, u) = (ũ, ũ) = −1 instead of +1 in [15].

Meanwhile, there is a standard definition of three-
velocity (see Eq. (3.9) in, e.g., [16])

V (i) = −
uμh(i)μ

hμ(0)uμ
. (24)

Let us choose the tetrad of basis vectors. We
choose the vector “0” along the four-velocity,

hμ(0) = ũμ, hμ(0) = −ũμ. (25)

Then, we see that

wμh
μ
(0) = 0. (26)

Other vectors are orthogonal to “0” by construction,
so

h(i)μh
μ(0) = 0. (27)

Then, it follows from (23) and (27) that

wμh
μ
(i) =

uμh(i)μ

(u, ũ)
. (28)

The denominator can be rewritten using (25),

(u, ũ) = hμ(0)uμ = −hμ(0)uμ. (29)

Then, we obtain that

wμh
μ
(i) = V(i) = V (i) (30)

coincides with (24), as it should be.
We can define the tetrad components of wμ ac-

cording to

w(a) = h(a)μwμ. (31)

Then we have

w(a) = (0, V (i)). (32)

4. LOCAL AND NONLOCAL VELOCITIES
IN A SYNCHRONOUS FRAME

The concept of a peculiar velocity is widely used
in cosmology, where it usually means a velocity with
respect to the FLRW frame. Since the flat FLRW
metric is

ds2 = −dt2 + a(t)2dχ2

+ a(t)2χ2(dθ2 + sin2 θdφ2), (33)

(a is the scale factor, and χ is the radial comoving
coordinate) the corresponding tetrad is

h(i)μ = diag(−1, a, aχ, aχ sin θ), (34)

and for the 3-velocity of a particle with 4-velocity uμ

we have according to (24)

Vi =
h(i)μu

μ

−h(0)μuμ
. (35)

In particular, the radial component of a peculiar ve-
locity is

Vr = auχ/ut = adχ/dt. (36)
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The consept of a peculiar velocity is a local one,
however, the radial component allows for a nice non-
local interpretation [17]. Namely, the rate of change of
a proper d istance between the coordinate origin and
a distant point l = aχ is

dl

dt
=

d(aχ)

dt
= χ

da

dt
+ a

dχ

dt
= vH + Vr, (37)

where vH = χȧ = (χa)ȧ/a = lH is the velocity of the
Hubble flow. The left-hand side of this equation can
be considered as a reasonable definition of the velocity
of a distant object (more precisely, its radial part)
which is an intrinsically nonlocal entity. The above
equation means that the overall change of a proper
distance to a distant point is naturally decomposed
into a sum of the velocity of the cosmological flow
and the radial part of a peculiar velocity. Note that the
summation rule is of the Galileo type, independently
of the velocity values. We see that in spite of a
nonlocal nature of this equation as a whole, as well as
the Hubble flow velocity vH , the second term in the
right-hand side has a local interpretation.

It is also worth noting that the rate of change of
a proper distance to a remote point is a natural defi-
nition only for one (radial) component of the velocity
of a distant point. Obviously, this rate is useless for
defining distant tangent velocities. There are several
proposals to define them, which give different results,
as well as other definitions of a radial velocity, see,
e.g., [14, 18, 19]. We will not consider tangent non-
local velocities and other definitions of a radial non-
local velocity in the present paper.

In [20] it was noticed that the property (37) is not
specific to cosmology and is present in any spherically
symmetric synchronous system. Indeed, if the value
of the “scale factor” a depends on χ as well, and the
particle has a comoving coordinate χ1, we get the
same result using the Leibniz integral rule:

dl

dt
=

d

dt

χ1∫
0

a(χ, t)dχ =

χ1∫
0

da(χ, t)

dt
dχ

+ a(χ1, t)
dχ

dt
= vH + Vr. (38)

The radial velocity in the local sense is the same
since the derivation of (36) does not use spatial ho-
mogeneity. Moreover, both derivations (the local
and nonlocal ones) can be valid even if we abandon
spherical symmetry, but are still able to introduce
a coordinate system in which the free flow is one-
dimensional—in this case, non-radial components of
the metric (whatever they be) do not enter in the
derivation.

In the present paper we mainly describe the
properties of peculiar velocities in the Schwarzchild

space-time. This concept allows us to get different
interpretations of the known physical effects near
and inside a black hole horizon. In our previous
paper [5] we already used the radial part of the peculiar
velocity to reinterpret BSW-like effects, giving a
different perspective (particles which are “slow” in a
conventional sense appear to be “fast” in the sense of
the radial peculiar velocity and vice versa). Now we
extend our analysis to angular peculiar velocities and
show how the known results on a redshift observed
inside a horizon can be explained in this approach.

5. A STATIC OBSERVER

Although our ultimate goal in the present paper is
to consider 3-velocities with respect to synchronous
frames, we start with a more common case of a static
observer.

Then, in the original coordinates (t, r, θ, φ),

e(0)μ = −(
√

f, 0, 0, 0), (39)

e(1)μ = (0, 1/
√

f, 0, 0), (40)

eμ(2) = r(0, 0, 1, 0), (41)

eμ(3) = r sin θ(0, 0, 0, 1). (42)

Then, the motion of an observer with respect to
this frame within the plane θ = π/2 is characterized
by the three-velocity with the tetrad components

V
(1)

st =
ur

fut
=

1

f

dr

dt
= −P

ε
, (43)

V
(3)

st = r
uφ√
fut

=
r√
f

dφ

dt
=

L
√
f

rε
. (44)

Now, for V 2
st = V

(1)2
st + V

(3)2
st we have

V 2
st =

P 2 + L2

r2
f

ε2
=

ε2 − f

ε2
. (45)

6. OBSERVERS IN THE LEMAÎTRE FRAME

Now, we shall consider freely falling observers.
Let ε = 1 and L = 0. We will call this observer the
Lemaître frame observer for brevity, though we mostly
use the (t̃, r) coordinates of the GP metric (12) in
this section. For such an observer, in the original
coordinates (t, r),

U t = ṫ = 1/f, (46)

U r = ṙ = −
√
1− f = −v. (47)

Here we have used (1) and (3), (5) with ε = 1, L = 0.
We denote the corresponding tetrad by hμ(a). In the

coordinates (t, r, θ, φ) it has the form

h(0)μ = (−1,−v/f, 0, 0), (48)

GRAVITATION AND COSMOLOGY Vol. 27 No. 2 2021



130 TOPORENSKY, ZASLAVSKII

h(1)μ = (v, 1/f, 0, 0), (49)

h(3)μ = r(0, 0, 0, 1). (50)

In the coordinates (t̃, r, θ, φ), we have

h(0)μ = (−1, 0, 0, 0), (51)

h(1)μ = (v, 1, 0, 0). (52)

Let some particle move with the four-velocity uμ. By
the definition (24),

V (i) = −
h(i)μu

μ

h(0)μuμ
. (53)

After a simple calculation, we obtain that V (1)

satisfies
dr

dt̃
= −v + V (1), (54)

thus returning to Eq. (5.3) of [5]. This gives us an
intuitive interpretation of a full radial velocity (the rate
of change of the radial coordinate r with respect to the
Lemaı̂tre time t̃) as a sum of the flow velocity taken
with negative sign and a radial peculiar velocity. Note
the difference between (54) and the general result of
this type for synchronous systems (38), which is still
valid if we change the notation for the radial spatial
variable from χ, usually used in cosmology, to ρ as it
is accepted for the Lemaı̂tre metric (18). Namely, the
general formula (38) with the same form of the right-
hand side as in (54) deals with the rate of change
of a proper distance l, not the radial coordinate r.
However, in the Lemaître frame the proper distance
between two points at the same radius is equal simply
to the difference of their values of r—we can see from
(12) that sections of constant time t̃ are flat. That
is why in this particular frame the radial coordinate
r (instead of such a nonlocal entity as the proper
distance l) appears in the left-hand side of (54), and
the Lemaı̂tre frame appears to be especially useful in
visualizing both inside and outside regions of a black
hole in a single picture. The sign of v here should be
reversed (in contrast to the cosmological case) since
the free flow motion is directed towards lower values
of r, while in the cosmological case the Hubble flow
makes the radial distances increase.

For a particle in the flow V (1) = 0. In the general
case, when a peculiar motion is present, Eq. (15)
gives us

V (1) =
εv − P

ε− Pv
. (55)

Taking also into account (21) and (22), one can check
that vdρ/dt̃ (the radial peculiar velocity of (38)) coin-
cides with (55), as should be the case.

The inverse formula reads

P = ε
v − V (1)

1− vV (1)
. (56)

These formulae relate the radial peculiar velocity with
the integrals of motion.

For the component V (3) we obtain from (51), (50),
and (53) that

V (3) = r
uφ

ut̃
= r

dφ

dt̃
. (57)

The reason why this formula is so simple is again
the fact that the sections of constant time t̃ are flat,
and we can use the standard relations of Euclidean
geometry.

For free motion, using (16) and (15), we have

V (3) =
L
r

1− v2

ε− vP
=

L
r

f

ε− vP
. (58)

From (55) and (58) we can obtain the relation that
will be used below:

V (3)2 =
L2/r2

1 + L2/r2
(1− V (1)2), (59)

whence
1

1− v2p
=

1 + L2/r2

1− V (1)2
, (60)

where

v2p ≡ V (1)2 + V (3)2. (61)

Now it is possible to express the energy ε through
the components of the peculiar velocity. Indeed, it
follows from (56) that

ε(v − V (1)) = P (1− vV (1)). (62)

Taking the square and recalling (5), we obtain

ε2 =
(1− vV (1))2

1− v2p
, (63)

where (60) was used. Thus,

ε =
1− vV (1)√

1− v2p

. (64)

Here, we chose the sign to have ε > 0 in the limit
v → 0.

Note that independently of the angular velocity,
ε = 0 always corresponds to vV (1) = 1. We will con-
sider such particles further in the next section. They
can exist only inside the horizon where v exceeds
the speed of light, so V (1) is subliminal, as it should
be for a velocity having a direct physical meaning.
Equation (64) gives us also a simple criterion for the
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energy to be negative in terms of the flow and radial
peculiar velocity: ε < 0 is equivalent to V (1) > 1/v.

Also, from (56) and (64), a useful relation follows:

P =
v − V (1)√
1− v2p

. (65)

Then, one can also rewrite (58) as

V (3) =
L
r

√
1− v2p. (66)

To finish this section, we also relate the velocities
with respect to the Lemaître and static frames.

As follows from (43)–(45) and (55),

V (1) =
v + V

(1)
st

1 + vV
(1)

st

. (67)

In the case under discussion, V (1)
st is proportional to

−P according to (43), so V
(1)

st < 0 (the motion is
towards the black hole). We can recognize in (67) the
Lorentz composition law for collinear velocities v and

V
(1)

st .

Also, taking into account (44) we obtain

V (3) = V
(3)

st

√
f

1 + vV
(1)

st

= V
(3)

st

√
1− v2

1 + vV
(1)

st

, (68)

which represents the Lorentz composition law for
perpendicular velocities.

The Inverse formulas read

V
(1)

st =
V (1) − v

1− vV (1)
, (69)

V
(3)

st =
V (3)

√
f

1− vV (1)
. (70)

7. LIMITING TRANSITIONS

Let us consider the horizon limit, when f → 0,
v → 1. We first consider the case of ε > 0. Then,

P = ε− f

2ε

(
1 +

L2

r2+

)
+ ..., (71)

v = 1− f

2
+ ... (72)

Then, it follows from (55) and (58) that

V (1) → 1− ε2 + L2/r2+
1 + ε2 + L2/r2+

, (73)

V (3) ≈ 2Lε
r+(ε2 + 1 + L2/r2+)

. (74)

We remind a reader that the velocity with respect
to a static frame at the horizon always has compo-
nents in this limit (see Eqs. (43), (44))

|V (1)
st | → 1, (75)

V
(3)

st → 0. (76)

On the contrary, the velocity with respect to the
Lemaı̂tre frame at the horizon does depend on the
particular motion of the particle in question. In partic-
ular, the radial velocity can take any value in the range
0 ≤ |V (1)| < 1. For pure radial motion, the left limit is
realized for ε = 1, and this corresponds to a particle
comoving with the Lemaı̂tre frame, so the peculiar
velocity is evidently zero. The upper limit is a limiting
case for ε → 0. As for the angular part of the peculiar

velocity, near the horizon V
(3)

st is small, so a particle

hits a horizon radially. However, a small V (3)
st near the

horizon is compensated by a significant Lorentz boost
(68) with (75). As a result, in the Lemaitre system
V (3) is finite and nonzero. It is a bright manifestation
of the known relativistic effect according to which a
vector, not collinear to the direction of motion, rotates
under a Lorentz transformation.

If the metric has an inner horizon, the case of ε < 0
for a particle approaching the horizon is possible as
well. The asymptotics for a negative energy are totally
different, since now

P → −ε, (77)

and Eq. (16) gives us dφ/dt̃ → 0, so that

V (3) → 0. (78)

As for the radial motion, (55) in the limit (77) gives

V (1) → 1, (79)

so that vp → 1.
Near the singularity, r → 0, f → −∞, and for pure

radial motion

v ≈ P ≈
√

|f |, (80)

which gives us from (55) that

V (1) ≈ 1− ε

v
≈ 1− ε√

|f |
→ 0. (81)

For a nonradial motion withL �= 0, we have a different
asymptopics of P :

P ≈
√
|f |L

2

r2
	 v, (82)

and it follows from (55) that

V (1) ≈ 1

v
≈ 1√

|f |
→ 0. (83)
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This means that any initial differences in radial motion
for different particles disappear near the singularity,
and the radial motion of any particle tends to the
motion of the frame. On the contrary, if L �= 0, then

V (3) ≈ L
|L| = ±1, (84)

so pure radial motion appears to be unstable—an ar-
bitrary small deviation grows infinitely and results in
an ultrarelativistic motion in an angular direction. If
initially the directions of the vectors L are distributed
randomly, the corresponding particles have mutual
ultrarelativistic relative velocities near a singularity.

8. ANOTHER SYNCHRONOUS SYSTEM
INSIDE A HORIZON

In this section we consider another synchronous
system (see, e.g., [9] and page 25 of the book [22]),
which can be obtained from static coordinates when
using them inside the horizon. In this region the
initial signature of the metric changes, and the coor-
dinate r becomes timelike, as well as the coordinate t
changes its nature and becomes spacelike. Therefore,
it is appropriate to make a simple change of notations
defining a new time coordinate T = −r, a new spatial
coordinate y = t and a function g = −f . Note that g
is a function of the new time inside the horizon,

ds2 = −dT 2

g
+ gdy2 + T 2dΩ2. (85)

To turn this form of the metric to an explicitly syn-
chronous form, we need to make an additional time
reparametrization,

dt̂ =
dT
√
g
, (86)

so that the metrics becomes
ds2 = −dt̂2 + gdy2 + T 2(t̂)dΩ2. (87)

The metric coefficients depend only on time, so this
is a cosmology-like metrics. Indeed, taken by itself it
can be considered as a metric of a Kantowski–Sachs
(KS) Universe. The obvious cosmological intuition
makes it natural to treat particles with constant y
and angular coordinates as being at rest and consider
peculiar velocities with respect to them.

The geodesic equations give us for the 4-velocity
components

ut̂ =
dt̂

dτ
=

P
√
g
, (88)

uy =
dy

dτ
= −ε

g
, (89)

uφ =
dφ

dτ
=

L
T 2

. (90)

As usual,

uμu
μ =

L2

T 2
+

ε2

g
− P 2

g
= −1. (91)

We see from (89) that the coordinate y is constant
if ε = 0. We are familiar with this condition from
Section 6 where we have shown (see the discussion
after Eq. (64)) that such particles have peculiar ve-
locities with respect to the Lemaı̂tre frame equal to
the inverse flow velocity of the Lemaı̂tre frame. In the
Kantowski-Sachs frame, considered in the present
section, the peculiar velocities of particles with ε = 0
are zero by definition.

For the general situation, we fix the tetrad in the
coordinates (t̂, y, θ, φ) as

ĥμ(0) = (1, 0, 0, 0), (92)

ĥ(0)μ = −(1, 0, 0, 0), (93)

hμ(1) = (0,
1
√
g
, 0, 0), (94)

ĥ(1)μ = (0,
√
g, 0, 0), (95)

ĥ(3)μ = (0, 0, 0, |T |). (96)

A simple calculation using (88)–(90) gives

V̂ (1) =
ĥ(1)μu

μ

−ĥ(0)μuμ
=

√
g
dy

dt̂
= − ε

P
, (97)

V̂ (3) =
L√g

|T |P . (98)

For the Schwarzschild metric and pure radial motion,
our Eq. (97) agrees with Eqs. (18), (A.9) of [23].

The absolute value of the peculiar velocity

V̂ 2 = V̂ (1)2 + V̂ (3)2 (99)

can be presented as

V̂ 2 =
1

P 2

(
ε2 +

L2

T 2
g

)
=

P 2 − g

P 2
, (100)

or, directly in terms of the conserved quantities,

V̂ 2 =

ε2

g + L2/T 2

1 + ε2/g + L2/T 2
. (101)

If ε = 0, evidently V̂ (1) = 0, and we have a simple
formula for the angular velocity

V̂ (3) =
L√

L2 + T 2
. (102)

If L = 0, V̂ (3) = 0, so that the condition for zero
peculiar velocity in terms of the conserved quantities
is ε = 0 and L = 0.
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It is easy to see that for any nonzero ε near the
horizon, where g → 0,

|V̂ (1)| → 1, V̂ (3) → 0. (103)

On the other hand, near the singularity g → ∞,
and if L = 0, then P diverges as

√
g, and it follows

from (97) that

V̂ (1) ≈ − ε
√
g
≈ −ε

v
→ 0. (104)

If L �= 0, then the asymptotic of P near a singularity
is different,

P ≈ √
g

∣∣∣∣LT
∣∣∣∣ , (105)

so that

V (1) ≈ − ε
√
g

∣∣∣∣TL
∣∣∣∣ → 0. (106)

For the angular component we have

V̂ (3) → sgnL =± 1. (107)

The “cosmological” intuition matches with these
results completely. Since the radial “scale factor” g
diverges, the radial peculiar velocity tends to zero,
while the angular peculiar velocity tends to the speed
of light since the angular “scale factor” T 2 tends to
zero. We see that near the singularity the limiting
values of the radial and angular components of the pe-
culiar velocity with respect to the Kantowski-Sachs
frame (106), (107) are the same as with respect to
the Lemaı̂tre frame (83), (84) though the forms of
asymptotics are different.

9. REDSHIFTS INSIDE A BLACK HOLE

The redshift measured by an observer freely falling
inside a black hole depends rather nontrivially on the
angular motion of a photon and that of an observer
himself. We start with reminding a formal derivation
of the redshift (for a full treatment see [10]), and then
explain how different limiting cases can be understood
intuitively using the formalism of peculiar velocities.

A photon is characterized by the wave vector kμ.
Let us consider the metric (1). It is assumed that kt =
−ω0, where ω0 has the meaning of the frequency mea-
sured at infinity. And, kφ = −ω0l has the meaning
of the angular momentum. A photon is propagating
from infinity inwards. The normalization condition
kμk

μ = 0 gives us outside the event horizon in the
coordinates (t, r, φ)

kμ =

(
ω0

f
, −Q,

ω0l

r2

)
,

kμ =

(
− ω0,

−Q

f
, ω0l

)
, (108)

where

Q = ω0

√
1− fl2

r2
. (109)

Below we will be interested in the properties
of particles inside the horizon. The correspond-
ing formulas can be obtained by the substitution
f = −g < 0.

Under the horizon, we have in the coordinates
(T , y, φ)

kμ =

(
Q,

ω0

g
,
ω0l

T 2

)
, (110)

kμ =

(
− Q

g
, ω0, ω0l

)
, (111)

where now ky = ω0 is conserved, ω0 > 0, and

Q = ω0

√
1 +

g

T 2
l2. (112)

It follows from (109)–(112) that

ω =
PQ

g
− ω0

ε

g
− ω0l

L
r2

. (113)

This general formula leads to a number of different
asymptotics near a singularity, depending on the mo-
tion of an observer and the photon observed, resulting
in infinite redshifts, infinite blueshifts or finite red-
shifts. They are summarized in [10]. Here we interpret
these results from the viewpoint of peculiar velocities.

Using (64)–(66), we obtain from (113)

ω =
Q(v − V (1))− ω0(1− vV (1))

g
√

1− v2p

− ω0l

r

V (3)√
1− v2p

. (114)

Let l = 0. Then Q = ω0 and

ω

ω0
=

(v − V (1))− (1− vV (1))

g
√

1− v2p

. (115)

Substituting (10), we obtain

ω

ω0
=

(1 + V (1))

(1 + v)
√

1− v2p

. (116)

If the motion is purely radial, V 1 = V , v2p = V 2, we
return to our known formula (11.3) from [5] (Eq. (78)
of its arxiv version)

ω

ω0
=

√
1 + V

(1 + v)
√
1− V

. (117)
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The peculiar velocity notation gives us the possi-
bility to interpret some results on redshifts observed
by a freely falling observer near the singularity. In-
deed, the combined redshift is

(1 + z) = (1 + zg)(1 + zd), (118)

where

1 + zg =
1

1 + v
, 1 + zd =

√
1 + V√
1− V

. (119)

The gravitational part zg is the shift observed by a par-
ticle in the flow (with a zero peculiar velocity), which
has been calculated in the Lemaı̂tre frame in [20],
and zd is the Doppler shift due to a nonzero peculiar
velocity. In this interpretation Eq. (118) represents an
evident combination of the Lorentz redshift (the part
which depends on V ) and the gravitational redshift
(the part which depends on v). Near a singularity,
depending on the direction of the photon, we have
either an infinite redshift or an infinite blueshift.

The same decomposition can be written also with
respect to the KS frame (87), (92)–(96). We con-
tinue to consider a radial photon and a radially falling
observer (l = 0, L = 0). Now the redshift measured
by an observer in the flow (ε = 0) has an even sim-
pler form since only the first term in the main for-
mula (113) is nonzero: ω/ω0 = 1/

√
g. For an ob-

server with nonzero ε we get

ω

ω0
=

P − ε

g
. (120)

Using (5) with L = 0 and (97), it can be rewritten in
the form

ω

ω0
=

1
√
g

√
1 + V̂ (1)√
1− V̂ (1)

, (121)

giving again a combination of gravitational and
Lorentz redshifts, but with respect to the KS frame
now.

Now we consider a situation with a nonradial pho-
ton (l �= 0). It is easier to work in the KS frame. For
a radially falling observer near the singularity we have
g → ∞, and recalling the definitions of P and Q, we
see that the first term in (113) dominates, giving an
infinite blueshift with the asymptotic

ω

ω0
≈ l

|T | . (122)

Let us now consider the case of a nonradial motion
of an observer as well. In this case the infinite grav-
itational blueshift (122) is combined with an infinite
Doppler redshift since the angular peculiar velocity
approaches 1. Indeed, near the singularity, the term
with ε in (101) is negligible, V (1) → 0 according to

(104), so Eq. (102) becomes a good approximation.
It can be rewritten as

L =
|T |V̂ (3)√

(1− V̂ (3))(1 + V̂ (3))
. (123)

Taking into account that now T → 0, for a finite L
the velocity component |V̂ (3)| → 1 in agreement with
(107). Let for definiteness L > 0. Then V̂ (3) → +1,
and √

1− V̂ (3) ≈ |T |/(L
√
2). (124)

Let l > 0. Taking into account the Doppler factor,
we find that the ratio

ω

ω0
=

l

|T |

√
1− V̂ (3)

1 + V̂ (3)
≈ l

|T |
|T |

L
√
2
√
2
=

l

2L
(125)

is finite and coincides with the result obtained earlier
in Eq. (47) of [10].

If l < 0, the velocities of an observer and a photon
are pointed in opposite directions. Then, instead
of (125), we have

ω

ω0
=

|l|
|T |

√
1 + V̂ (3)

1− V̂ (3)
≈ 2L |l|

T 2
→ ∞. (126)

This agrees with Eq. (48) of [10].

10. CONCLUSIONS
In the present paper we have considered the 3-

velocity of an object falling freely into a black hole
with respect to two different freely falling frames. By
direct analogy with the cosmological terminology, we
call this 3-velocity a peculiar velocity. We have de-
termined the dependence of peculiar velocity compo-
nents of freely falling objects on the integrals of mo-
tion and considered their asymptotics near horizons
and a singularity. We have developed rather a general
approach that can, in principle, be applied both in
cosmology and the physics of black holes, including
their interiors. Now, the concept of a peculiar velocity
is exploited to include nonradial motions. This, in
particular, enabled us to give a simple qualitative ex-
planation of the phenomenon of red/blue shifts inside
a black hole, especially near the singularity. It agrees
with the results of direct calculations done earlier.
We have also shown how the general formula for the
frequency shift in a radial fall admits a simple decom-
position to the gravitational and kinematic parts for
two considered frames. Since we considered geodesic
motion in a fixed static spherically symmetric metric
(without demanding that this metric is a solution of
GR equations), our results are valid for any black hole
solutions of the form (1) in any metric theory with
geodesic motion of particles and photons.
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