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Abstract—The gravitational field with torsion is being constructed by using the parametrized absolute
parallelism geometry. A generalized law of variation of Hubble’s parameter in evolutionary cosmological
models is used. The cosmological models under the influence of the gravitational field with torsion are
obtained and discussed. A new model of the Universe is presented using a special class of Riemann–
Cartan geometry. This model is oscillating with expansion and contraction at different stages. It behaves
normally as the conventional Big Bang model in the first half-age until it reaches the moment of a Big
Rip, then reverses its behavior as a result of a changes in the pressure and torsion until it reaches a Big
Crunch at the end of the second half-age. We suppose that the Big Rip singularity is replaced by a regular
maximum of the scale factor at the Big Rip due to a possible physical mechanism of quantum nature. The
positivity condition for the energy density of matter leads to exclusion of open and closed universes.
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1. INTRODUCTION

Lately, there has been some renewed interest in
torsion looking into the Einstein–Cartan construc-
tion of General Relativity (GR) [1–5] and into the
physical effects it may imply [6–9]. The standard
ΛCDM cosmological model is the simplest and ar-
guably the one that most effectively designates the
evolution of the observed universe [10].

Although being the best fit to a wide range of data,
it suffers from several theoretical shortcomings [11],
so it fails in tracking cosmic dynamics at every red-
shift and fails in according observational cosmology
to some fundamental theory of physical interactions.
Among the flaws of this model, there is the lack of final
probes, at a fundamental level, for dark energy and
dark matter candidates which frustrates the possibil-
ity to reduce ΛCDM to some self-consistent scheme,
despite the fact that it is a fair “snapshot” of the
present status of the universe.

These facts motivate the search for other mod-
els, among which alternative theories of gravity that
should reproduce the successes of ΛCDM but should
be more appropriate in describing the cosmological
dynamics [12].

Specifically, the large amount of dark energy mod-
els depend on the implied assumption that Einstein’s
GR is the correct theory of gravity indeed. Yet, its co-
gency on cosmological scales and large astrophysical
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scales has never been tested but only expected [13],
and it is therefore imaginable that both cosmic speed-
up and missing matter, respectively, dark energy and
dark matter, are nothing else but signals of a break-
down of GR at large scales.

In other arguments, GR could fail in giving self-
consistent pictures both at ultraviolet scales (early
universe) and at infrared scales (late universe), also
it is fairly working at the Solar System scales and in
the weak field. For these reasons, the “full” geometric
sector of GR has to be investigated considering also
the role of torsion. Such an “ingredient” has been
firstly considered by Cartan and then by Sciama and
Kibble in order to deal with spin in GR (see [14] for a
review).

Being spin as fundamental as the mass of the
particles, torsion was introduced in order to complete
the scheme that mass (energy) is the source of curva-
ture and spin is the source of torsion. Unfortunately,
torsion in the context of GR seems not to produce
models with observable effects since the gravitational
coupling is extremely weak in all torsion phenomena,
and only in the very early universe its effect could have
been significant.

However, it has been proven that spin is not the
only source for torsion. As a matter of fact, torsion
can be decomposed in three irreducible tensors, with
different properties. In [15], a systematic classifi-
cation of these different types of torsion and their
possible sources was discussed.
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In this article, we discuss the cosmological ap-
plications of the gravitational field with torsion, con-
sidering the possibility that the Big Rip, Big Crunch
and the singularity problem could be geometrically
interpreted by curvature and torsion. Examples in
which repulsive gravity and clustered structures could
be implemented considering torsion are present in the
literature [14, 16], and [17] but, in that case, GR has
been adopted, and the whole dark sector has not been
addressed.

When the parameterized absolute parallelism
(PAP) geometry is considered, the terms originated
by torsion can lead to an accelerated expansion. This
means that in the gravitational field with torsion
(GFT), torsion can be a geometric source for accel-
eration and solve the initial singularity problem.

The aim of the present article is to study the ef-
fect of torsion on the dynamics of the Friedmann–
Robertson–Walker (FRW) Cosmology.

To clarify the organization of the current manu-
script, the rest of the paper is developed as follows:
Section 2 is devoted to investigating the torsion ten-
sor and the equations of GFT. The period of the
revolution of a satellite in an equatorial orbit with
zero inclination is illustrated in Section 3. Section 4
is devoted to introducing the stability condition of a
satellite with zero inclination.

The motion of a satellite with a variable inclination
from the equatorial plane is discussed in Section 5.
In Section 6, the observational bounds on cosmic
torsion are discussed. Finally, concluding remarks
based on the main findings are outlined in Section 7.

2. THE TORSION TENSOR
AND GFT EQUATIONS

It is well known that the spin can be one of the
sources of torsion. In 1923, Cartan showed that
the intrinsic angular momentum (spin) could have
an important role in a geometric theory of space-
time like GR [18]. He showed that spin could create
torsion. This idea was considered also by Sciama [19]
and Kibble [20] and, more recently, by Hehl et al. [14]
and Trautmann et al. [21]. The path followed in this
stream of research was to extend GR to a theory
(the Einstein–Cartan–Sciama–Kibble, ECSK, the-
ory) in which spin is the source of torsion. In the
limit of zero spin distribution, the theory reduces to
standard GR.

The PAP is more comprehensive than the absolute
parallelism (AP) geometry and the Riemannian ge-
ometry, in the sense that it contains these geometries.
So, we used this generalized PP geometry to study
the evolution of the universe. The PAP geometry
is a generalized parallelism to include the contortion

effect in addition to the Christoffel symbol in Rieman-
nian geometry with a parameter (b). This geometry
gives a clearer explanation of the future of the uni-
verse. In this article, we are studying the effect of the
contortion term on the evolution of the universe. In
2000, Wanas created the PAP geometry; this geom-
etry describes gravity and torsion in specified quan-
tities. The PAP geometry contains the parameter b,
from which the effect of both gravity and torsion can
be determined on cosmological models. The structure
of the conventional AP geometry is defined in 4-
dimensions by a tetrad vector λγ

i (i = 1, 2, 3, 4 indi-
cates the vector number, and γ = 1, 2, 3, 4 indicates
the coordinate component). The covariant vector of
λγ
i is defined as [22]

λ γ
i λi α = δ γ

α and λ α
i λj α = δi j . (1)

One can define the following symmetric tensors:

gαβ = λiαλiβ, gαβ = λ α
i λ β

i , and

gβγg
αβ = δ α

γ . (2)

At any point of the AP space, we can define a
Riemannian space, in which the symmetric tensor (2)
plays the role of the metric tensor,

ds2 = gαβdx
αdxβ . (3)

The generalization of partial differentiation in Rie-
mannian space is given by a semi-colon as defined for
contravariant and covariant vectors are follows:

Aβ
;γ = Aβ

,γ +

{
β

αγ

}
Aα, (4)

Aβ;γ = Aβ,γ −
{

α

βγ

}
Aα, (5)

where {
γ

αβ

}
=

1

2
gγε(gαε ,β + gβε ,α − gαβ ,ε). (6)

In addition to the symmetric affine connection (6),
one can define a nonsymmetric connection Γγ

αβ as
follows:

Γγ
αβ = λγ

i λiα,β = −λiαλ
γ
iβ . (7)

It is a consequence of the absolute parallelism condi-
tion

λiα|β = λiα,β − Γγ
αβλiγ . (8)

Consequently, we have two different types of absolute
derivatives,

A
α
+

|β = Aα
,β + Γα

γ βA
γ , and (9)

A
α
−
|β = Aα

,β + Γα
βγA

γ . (10)

GRAVITATION AND COSMOLOGY Vol. 27 No. 1 2021



BIG RIP AND BIG CRUNCH 91

Using the affine connection (7), the torsion tensor
is defined as the antisymmetric part of the connection
in a coordinate basis as follows:

Λγ
αβ = Γγ

αβ − Γγ
βα = −Λγ

βα. (11)

A connection with torsion has the form

Ψγ
αβ = Γγ

αβ −
{

γ

αβ

}
= λ γ

i λi α ;β

= −λi αλ
γ
i ;β, (12)

where

Kγ
αβ = Γγ

αβ +

{
γ

αβ

}
, (13)

Ψγ
[αβ] =

1

2
(Γγ

αβ − Γγ
βα) =

1

2
Λγ
βα. (14)

It is clear that the skew part of the connection Γγ
αβ

and the symmetric part of the tensor Ψγ
αβ are

Γγ
[αβ] =

1

2
Λγ
αβ , (15)

Ψγ
(αβ) = Γγ

[αβ] −Kγ
βα. (16)

From these third-order tensors, one can define the
basic vector as follows:

Cα = Ψβ
αβ. (17)

Certain considerations lead to the following gen-
eral linear connection [23]:

∇γ
αβ =

{
γ

αβ

}
+ bΨγ

αβ , (18)

where b is a dimensionless parameter.
It is clear from this equation that we have para-

metrized the contortion (or equivalently the torsion)
term in a general connection of the AP geometry. The
parametrized connection represents simultaneously a
nonvanishing curvature and a nonvanishing torsion.
This result is contrary to what is obtained by some
authors [24]. For the entire values of (b), all its possi-
ble values lead to what is called the PAP geometry.

The general absolute derivative using the connec-
tion (18) is defined as [20]

Aα||β = Aα,β −∇γ
αβAγ , (19)

Aα
||β = Aα

,β −∇α
γβA

γ . (20)

Note that the double stroke (||) is reduced to a single
stroke (|) for the AP geometry and to a semicolon (;)
for Riemannian geometry, on taking b = 1 and b = 0,
respectively.

From equations (12), (18) and (19), one can prove
that

gαβ ||γ = 0. (21)

In this section, we are going to study the conse-
quences of the modified torsion gravitational effects
on the cosmological models, especially those caused
by torsion, the geometric effect of torsion in space-
time (analogously to mass causing the space-time
curvature). We will begin to deduce the field equa-
tions that describe this situation, we solve the field
equations that describe the cosmological models, and
then study the effect of torsion on them. The non-
commutation of covariant differentiation using the
parametrized connection (18) gives rise to the follow-
ing simultaneous nonvanishing parametrized torsion
and curvature tensor [23]:

B ε
μνσ = ∇ ε

μσ ,ν −∇ ε
μ ν , σ +∇α

μσ∇ ε
α ν −∇α

μν∇ ε
ασ

= R ε
μ ν σ + bL ε

μ ν σ, (22)

where the Riemann–Christoffel curvature tensor is

R ε
μ ν σ =

{
ε

μσ

}
, ν

−
{

ε

μν

}
, σ

+

{
α

μσ

} { ε

αν

}
−

{
α

μν

}{ ε

ασ

}
, (23)

and the parameterized anti-curvature tensor is [21]

Lμσ = (Ψα
μσ , α −Ψα

μα , σ)

+ b (Ψα
εαΨ

ε
μ σ −Ψα

εσΨ
ε
μα)

+

{
ε

μσ

}
Ψα

εα −
{

ε

αμ

}
Ψα

ε σ

+
{ α

αε

}
Ψε

μσ −
{ α

εσ

}
Ψε

μα. (24)

The tensor (24) is called the parametrized anti-
curvature tensor [25] for the following reasons:

(i) When b = 0, Eq. (22) turns into B ε
μ ν σ =

R ε
μ ν σ as in GR.

(ii) When b = 1, Eq. (22) turns into B ε
μ ν σ = 0, as

in AP geometry.

(iii) When b = 2, the curvature tensor (22) is trans-
formed to the inverse of the curvature tensor in
GR.

(iv) When b = n ≥ 2, Eq. (18) gives

∇γ
αβ = nΓα

αβ − (n− 1)

{
γ

αβ

}
. (25)

(v) The parameter b is defined as b = [(d/2)MF ],
where d is a number taking the values 0, 1,
2, . . .. for particles with quantum spin 0, 1/2,
1, . . ., respectively; M is the fine structure
constant (1/137), and F is a dimensionless

GRAVITATION AND COSMOLOGY Vol. 27 No. 1 2021



92 BAKRY, SHAFEEK

parameter depending on the size of the sys-
tem under consideration. The vanishing of b
switches off the antigravity in any system and
reduces any suggested theory, constructed in
the PAP geometry, to the conventional gravity
theory (e.g., the orthodox GR) [25].

Based on this, due to Eq. (25), we find that the
effect of torsion is more influential than attraction.

The tensor Bμν is the only tensor to be obtained
from (22) by contraction, which is defined as

Bμν = B ε
μ ν ε, (26)

and the corresponding scalar is given by

B = gμ νBμν . (27)

We chose the tensor (Bμν − 1
2gμ νB) to represent

the gravitational field with torsion, depending on the
property that its covariant divergence (||) vanishes
identically (as a result of the Bianchi identity)

Bλμ ν α ||η +Bλμ η ν ||α +Bλμαη ||ν = 0, (28)

which can be written concisely as follows:

B ε
σ[λμ || ν] = 0, (29)

where A[α,β,γ...] denotes antisymmetry.

One may interpret this geometrical property phys-
ically as the conservation of matter and energy; we
can use the Bianchi identity (28) to formulate the
torsion gravitational field GFT, in the following form:

Bμν −
1

2
gμνB = 8πTμ ν . (30)

The field equations (30) can be written in the alterna-
tive form

Bμν = 8π
(
Tμν −

1

2
gμ νT

)
. (31)

The energy-momentum tensor of a perfect fluid
[26] is given by

Tαβ = −(P + ρ)UαU β + Pgαβ, (32)

so that

T = −ρ+ 3P, (33)

where ρ is the energy density of matter in comoving
coordinates, and p is the fluid pressure.

One may note that if b = 0, the field equation
(31) can be reduced to Einstein’s famous field equa-
tions [27]. Now, we are going to apply GFT to the
structure of the AP geometry having homogeneity
and isotropy. Many researchers have used the gen-
eral tetrad giving the structure of the AP geome-
try having homogeneity and isotropy, which is given

by Robertson (1932) in spherical polar coordinates
(t, r, θ, φ) [28] as

λμ
0 = { 1, 0, 0, 0 } ,

λμ
1 =

{
0,

L+ sin θ cosφ

4S
,

L− cos θ cosφ− 4
√
Kr sinφ

4r S
,

− (L− sinφ+ 4
√
K r cos θ cosφ)

4rS sin θ

}
,

λμ
2 =

{
0,

L+ sin θ sinφ

4S
,

L− cos θ sinφ+ 4
√
Kr cosφ

4r S
,

L− cosφ− 4
√
K r cos θ sinφ

4rS sin θ

}
,

λμ
3 =

{
0,

L+ cos θ

4S
,
−L− sin θ

4r S
,

√
K

S

}
, (34)

where μ = 0, 1, 2, 3 represents the coordinate compo-
nents, L± = 4±Kr2, K is the curvature constant
= (−1, 0, 1), and S(t) is the scale factor.

The tensors (2) have the same properties of the
metric tensor as in Riemannian geometry. Conse-
quently, they can be used to define a Riemannian
structure associated with the AP structure. For com-
parison with the results of the orthodox GR, we re-
place the definition (2) with

gαβ = ηijλi αλi β, (35)

where ηij = diag (1,−1,−1,−1).
There, (35) defines a pseudo-Riemannian struc-

ture associated with the AP structure. The metric
tensor corresponding to the tetrad (34) and (35) is
given by

g00 = 1, g11 = −(4S/L+)2,

g22 = g11 r
2, and g33 = g11 r

2 sin2 θ, (36)

g00 = 1, g11 = −(L+/4S)2,

g22 =
1

g11r2
, and g33 =

1

g11r2 sin
2 θ

. (37)

The Riemannian space associated with the AP
space (34), (35) and (36), is the space having the
well-known FRW metric

ds2 = dt2

− 16S2(t)

L+2

[
dr2 + r2(dθ2 + sin2 θ dφ2)

]
. (38)
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The nonvanishing Christoffel symbols of the second
kind for the metric (38) are given by{

0

11

}
=

16SṠ

L+2
,

{
0

22

}
=

16 r2SṠ

L+2
,

{
0

33

}
=

16 r2 sin2 θ SṠ

L+2
,

{
1

11

}
= −2K r

L+
,

{
0

01

}
=

{
2

02

}
=

{
3

03

}
=

Ṡ

S
,

{
1

22

}
=

K2r5 − 16r

L+2
,

{
1

33

}
=

L−r sin2 θ

L+2
,

{
2

12

}
=

{
3

13

}
=

L−

rL+
,

{
2

33

}
= − sin θ cos θ,

{
3

23

}
= cot θ, (39)

where Ṡ = dS/dt.
The nonvanishing contortion components are

given by

Ψ1
01 = Ψ2

02 = Ψ3
03 = −Ṡ/S,

Ψ0
11 = −16SṠ/L+2,

Ψ2
22 = Ψ0

11 r
2, Ψ0

33 = Ψ0
11 r

2 sin2 θ,

Ψ2
13 = −Ψ2

31 = 4
√
K sin θ/L+,

Ψ3
21 = −Ψ3

12 = 4
√
K /(L+ sin θ). (40)

The nonvanishing symmetric torsion components are

Λ0
(11) = 16SṠ/L+2,

Λ0
(22) = 16 r2S Ṡ/L+2,

Λ0
(3 3) = 16r2 sin2 θS, Ṡ/L+2,

Λ1
(10) = Λ2

(2 0) = Λ3
(3 0) = −Ṡ/(2S). (41)

Substituting (39) and (40) into (26), we get after
some calculations

B00 = 3(b− 1)S̈/S, (42)

B11 =
−16(b − 1)

(
2(1− b)Ṡ2 + 2K(1 + b)S S̈

)
L+2

,

(43)

B22 = r2B11 B33 = r2 sin2 θ B11. (44)

Now, since the geometric structure used for this
study satisfies the cosmological principle (homo-
geneity and isotropy), we can use the comoving
coordinate system characterized by

U1 = U2 = U3 = 0, and U0 = 1. (45)

Substituting these values into (38), one gets

T 0 0 = ρ, T 1 1 = g1 1P,

T 2 2 = g2 2P, T 3 3 = g3 3P. (46)

Now, the field equations (31) are solved using (32),
(33), (41)–(45), and (46), and the resulting differen-
tial equations are

6(b− 1)S̈ = 8π(ρ+ 3P )S, (47)

(b− 1)
(
3(1 − b)Ṡ2 + 3K(1 + b)

)

= −8πρS2. (48)

For differential equations (47) and (48) the following
remarks are clear:

1. If b = 0, the equations are reduced to the Ein-
stein field equations in Riemannian geometry.

2. Equations (47) and (48) are in three un-
knowns: the scale factor S(t), the density ρ(t),
and the pressure P (t). To get exact solutions
for these equations, we must use an equation
of state, for example, P = ω ρ.

From Eq. (48) one gets

ρ =
(
3(1− b)2Ṡ2 + 3K(1− b2)

)
/(8π S2). (49)

Substituting from Eq. (49) into (47), one obtains

P = −(1− b)2Ṡ2 + 2(1− b)SS̈ +K(1− b2)

8π S2
.

(50)

In the following sections, we will use the previous
equations to study the physical development of the
universe. We start with a constant deceleration pa-
rameter as follows.

3. INFLATIONARY COSMOLOGICAL MODEL
WITH A CONSTANT DECELERATION

PARAMETER

In this section, we solve the differential equations
of GFT using the generalized variation law for Hub-
ble’s parameter to find the deceleration parameter q
and the scale factor S(t).

The special variation law for Hubble’s parameter is
given by [29, 30]

H =
Ṡ

S
= DS −m, (51)

where m and D are positive constants. From Eq. (51)
we get:

Ṡ = DS 1−m, (52)

S̈ = D2 (1−m)S 1−2m. (53)
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94 BAKRY, SHAFEEK

Integrating Eq. (52), one gets

S(t) = (Dt)1/m. (54)

The deceleration parameter q is defined as

q =
dH− 1

dt
− 1. (55)

Substituting from (52) and (53) into (49) and (50),
one finds

ρ =
3(1− b)2 D2S 2(1−m) + 3K(1− b2)

8π S 2
, (56)

P = − 1

8π S2

[
K(1− b2)

+ (1− b)(3 − b− 2m)D2S2(1−m)
]
. (57)

In this part, we shall deal only with the energy-
momentum tensors for dust and perfect fluids.

In the case of dust, the equation of state isP = 0,
and one studies three cases.

In the first case, where P = 0 and K = 0, Eq. (57)
can be written in the form

m = (3− b)/2. (58)

Substituting from (52) and (53) into (55), one gets

q = m− 1 = (1− b)/2. (59)

Also, using (59) and (54), one obtains

S(t) = (Dt)2/(3−b). (60)

In the second case, where P = 0 and K = −1,
Eqs. (57) and (59) give

m < (3− b)/2, q < (1− b)/2. (61)

In the third case, where P = 0 and K = 1,
Eqs. (57) and (59) lead to

m > (3− b)/2, q > (1− b)/2. (62)

In the case of radiation, the equation of state is
P = ρ/3, and from Eqs. (56) and (57) one gets

(m− 2 + b)D 2S 2−2m = K(1 + b). (63)

From this equation, one can study three cases.
In the first case, K = 0, Eq. (63) gives

m = 2− b, q = 1− b. (64)

Substituting from (64) into (54), one can obtain

S(t) = (Dt)1/(2−b). (65)

In the second case, K = −1, Eq. (63) gives

m < 2− b, q < 1− b. (66)

In the third case, K = 1, Eq. (63) leads to

m > 2− b, q > 1− b. (67)

It is worth mentioning that for b = 0, the cosmo-
logical models reduces to the ordinary models of GR.

From Eq. (56), we see that the condition of pos-
itive energy density depends on the value of b and
K; for (b = 0), closed and flat cosmological model
possible because they achieve this condition, while
an open cosmological model is impossible; this result
was reached by Bremen [29].

In the cases of (b = 2, 3, 4, · · · ), the effect of tor-
sion is greater than the effect of gravity.

Accordingly, the most accepted cosmological
model is the flat model because it is the only one
that achieves a positive energy density, that is why we
exclude the open and closed cosmological model. The
deceleration parameter is q = −1/2, −1, −3/2, · · ·
(in dust flat models), and q = −1, −2, −3, · · · . (in
radiation flat models).

Consequently, the GFT gives inflationary cosmo-
logical models with a constant deceleration parame-
ter.

These results are clear indications that the geo-
metric torsion can be an effective source for inflation.
But these kinds of models are not consistent with
cosmological observations.

This is why we use a variable deceleration param-
eter in the following sections (4 and 5).

In GR, the de Sitter model represents inflation
with a constant deceleration parameter.

4. THE BIG RIP MODEL

In this section, we suggest that the Hubble pa-
rameter of the universe is given by

H =
Ṡ

S
=

2

t (2m− at)
. (68)

Integrating (68), one obtains

S = S0

(
t

2m− at

)1/m

, (69)

where S0 is an integration constant.
From Eq. (69) one obtains

Ṡ =
2S

t (2m− at)
, (70)

S̈ =
4S (1−m + a t)

t2 (2m− at)2
. (71)

Substituting from (68) into (55), one obtains:

q = m− 1− at. (72)

The scale factor a related to the redshift z by the
expression [31]

1 + z =
Sz=0

S(t)
, (73)
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where Sz=0 is the present value of the scale factor.
One can also solve for the deceleration parameter

q as a function of the redshift. Using Eqs. (69) and
(73), one obtains,

q(z) = m− 1− 2maSm
z=0

(1 + z)m + aSm
z=0

. (74)

Substituting (69), (70), and (71) into (49) and
(50), one gets for the density and pressure:

ρ =
[
3K(1− b2)(2m− at)2+2/mt2

+ 12(1− b)2 t2/m
][
8π(2m− at)2t2+2/m

]−1
, (75)

P = −
[
4(1 − b)(3− b− 2m+ 2at)t2/m

+K(1− b2)(2m− at)2+2/mt2
]

×
[
8π(2m− at)2t2+2/m

]−1
. (76)

From (75) and (76) we obtain the equation-of-state
parameter ω = P/ρ as

ω = −
[
4(1− b)(3 − b− 2m+ 2at)t2/m

+K(1− b2)(2m− at)2+2/mt2
]

×
[
3K(1− b2)(2m− at)2+2/mt2

+ 12(1 − b)2 t2/m
]−1

. (77)

According to Eq. (72), the universe passes
through the following stages:

(i) The universe arises with (q = (m− 1) at tbb =
0),

(ii) The accelerating stage (q ≤ 0 at ta ≥ (m−
1)/a),

(iii) The strong exponential expansion stage (q ≤
−1 at tse ≥ m/a ),

(iv) The universe ends with (q = −(m+ 1) at
tend = 2m/a).

This event is a Big Rip behavior.
Now, one can discuss the physical behavior of the

Big Rip model and its observational validation. To
clarify how the linear disparity deceleration parameter
corresponds to the observable universe dynamics and
expects additional predictions of methods of variety,
let us choose m = 1.65, and a = 0.097 (compared
with Özgür Akarsu and Tekin Dereli [31]).
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Fig. 1. The scale factor versus cosmic time t : 0 → 33.
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Fig. 2. The Hubble parameter versus cosmic time
t : 0 → 33.

In Fig. 1 we plot the scale factor versus cosmic
time t. The universe starts with a Big Bang at tbb = 0,
S = 0, and ends at tbr = 34.0, S = ∞. In Fig. 2 we
plot the Hubble parameter H versus cosmic time t, it
diverges at the beginning and at end of the universe.
In Fig. 3 we plot the deceleration parameter q versus
cosmic time t. The deceleration parameter is initially
qbb = 0.56 and reaches qbr = −2.5 at the end of the
universe.

The universe enters into the accelerated expansion
phase attae = 6.7. These values are consistent with
the observational results. We also plot the decelera-
tion parameter q versus redshift z in Fig. 4, where one
may observe that the accelerated expansion begins at
z ≈ 0.6, consistent with the observational data.

In Figs. 5–7 we plot the energy density of the fluid
ρ versus cosmic time t. In the case b = 0, one can
observe that the condition (ρ ≥ 0) holds for the closed
and flat cosmological models but is violated for the
open cosmological models.

Hence, under the energy positivity condition, the
closed and flat cosmological models are possible,
while open ones are excluded.

In that case, Berman also reached the same con-
clusion in GR [29]. In the case b = 2, in GFT one
can observe that the condition (ρ ≥ 0) is adequate for
open and flat cosmological models, but a closed one
is impossible.

The energy density of the fluid diverges at the end,
which mean that the universe ends with a Big Rip.
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Fig. 3. The deceleration parameter versus cosmic time
t : 0 → 33.
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Fig. 4. The deceleration parameter q versus redshift, z :
0 → 2.
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Fig. 5. The energy density of the fluid ρ versus cosmic
time t : 0 → 33. (K = 1).
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Fig. 6. The energy density of the fluid ρ versus cosmic
time t : 0 → 33. (K = 0).

According to these results, we can only accept the
flat model. This outcome is consistent with the fact

3025201510

0.10

p 
(t

)

50
t

0.05

0

�0.05

K = 1, b = 0
K = 1, b = 2

Fig. 7. The energy density of the fluid ρ versus cosmic
time t : 0 → 33. (K = 1).
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Fig. 8. The pressure P versus cosmic time t : 0 → 33.
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Fig. 9. The pressureP (t) versus cosmic time t : 0 → 33.
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Fig. 10. The pressure P (t) versus cosmic time t : 0 →
33.

that the universe must be flat [32, 33]. In Figs. 8–10
we plot the pressure of the fluid P versus cosmic time
t. The pressure also diverges at the beginning and the
end of the evolution but exhibits different behaviors for
the closed, flat and open universes.

In Figs. 11–13 we plot the equation of state pa-
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Fig. 11. The equation of state parameter ω versus cosmic
time t : 0 → 33.
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Fig. 12. The equation of state parameter ω versus cosmic
time t : 0 → 33.
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Fig. 13. The equation of state parameter ω versus cosmic
time t : 0 → 33.

rameter ω versus cosmic time t. It shows different
behaviors for the closed, flat and open universes, but
converges to the same valueω = −1/3 at the very late
times of the universe.

In the next section, we will study the Hubble vari-
ation law which contains three parameters.

5. THE BIG CRUNCH MODEL

In the present section, we suggest the Hubble
variation law, such that,

H =
2(1− η)

(2m− at)(t− 2mη
a )

, H =
Ṡ

S
, (78)

where m and η are positive quantities.

From Eqs. (78) and (55), one gets a linearly vary-
ing deceleration parameter which contains the pa-
rameter (η) as

q =
m(1 + η)− at

1− η
− 1. (79)

where η �= 1. Equation (78) gives

Ṡ =
2S(1− η)

(2m− at)(t− 2mη
a )

, (80)

S̈ =
4S ((1− η)2 − 2m (1 − η2) + 2a t)

(2m− at)2(t− 2mη
a )2

. (81)

Accordingly, integrating Eq. (80), one finds

S = S0

(
t− 2mη/a

2m− at

)1/m

, (82)

where S0 is an integration constant.
Using Eqs. (73), (79) and (82), one gets

q(z) =
m(1 + η)

1− η
− 1

− 2maSm
z=0 + 2mη(1 + z)m

(1− η) ((1 + z)m + aSm
z=0)

(83)

From this equation, one can obtain for η = 0

q(z) = m− 1− 2maSm
z=0

((1 + z)m + aSm
z=0)

, (84)

and for η = 2,

q(z) = −3m− 1

+
2maSm

z=0 + 4m(1 + z)m

((1 + z)m + aSm
z=0)

. (85)

Substituting from (80), (81), and (82) into (49),
(50), we get, respectively,

ρ =
[
12(1− b)2(1− η)2(t− 2mη/a)2/m

+ 3K(1− b2)(2m− at)2+2/m(t− 2mη/a)2
]

×
[
8π(2m − at)2(t− 2mη/a)2+2/m

]−1
, (86)

P = −A

B
, (87)

where

A = 4(1 − b)(t− 2mη/a)2/m
[
(1− b)(1− η)2

+ 4at+ 2(1 − η)2 − 4m(1− η2)
]

+K(1− b2)(2m − at)2+2/m(t− 2mη/a)2,

and

B = 8π(2m− at)2(t− 2mη/a)2+2/m.
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Table 1. The deceleration parameter, the scale factor and the expansion scalar

The stage The state q(t) S(t) Θ

First half-age b = 0, η = 0, t : 0 → 2m/a m− 1− at

(
t

2m− at

)1/m
6

t(2m− at)

Big Rip η = 0 or η = 2, t = 2m/a −(1 +m) ∞ ∞

Second half-age η = 2, b = 2, t : 2m/a → 4m/a at− 3m− 1

(
t− 4m/a

2m− at

)1/m
6

(2m− at)(t− 4m/a)

Table 2. The singularity conditions in the Big Crunch model of the Universe

The stage The state
dΘ

dt
Singular interval

First half-age η = 0, t : 0 → 2m/a b = 0
12(at−m)

t2(2m− at)2
t < m/a

Big Rip η = 0 or η = 2, t = 2m/a Is not defined Is not defined

Second half-age η = 2, t : 2m/a → 4m/a b = 2
12(at− 3m)

(2m− at)2(t− 4m/a)2
t < 3m/a

The equation-of-state parameter is given by

ω = −A

C
(88)

where

C = 12(1 − b)2(1− η)2(t− 2mη/a)2/m

+ 3K(1− b2)(2m− at)2+2/m(t− 2mη/a)2.

The generalization of the expansion scalar Θ of the
universe in PAP is given by [34]

Θ = U α
|| α. (89)

Equation (89) gives [34],

Θ =
3(1− b)Ṡ

S
= 3(1− b)H. (90)

Substituting from (78) into (90), one obtains

Θ =
6 (1− b) (1 − η)

(2m− at)(t− 2mη
a )

. (91)

By differentiation of Eq. (91) with respect to cosmic
time, one obtains

dΘ

dt
=

12 (b− 1)
(
m(1− η2)− (1− η)at

)
(2m− at)2(t− 2mη

a )2
. (92)

We use Eq. (90) to study the singularity of the
universe. The Big Crunch model passes through
three stages, as explained below:

(i) The first half-age of the chronological age of
the universe (η = 0 and b = 0). The universe
starts with a Big Bang at tbb = 0, with qbb =
m− 1, enters into the acceleration stage q ≤ 0
at ta 1 ≥ (m− 1)/a, enters into a strong ex-
pansion stage q ≤ −1 at tse 1 ≥ m/a, enters
into the half-age stage at tha = 2m/a, with
qha = −(1 +m).

(ii) The Big Rip stage (η = 0 or η = 2, q = −(m+
1) and S(t) = ∞, at tbr = 2m/a. For the uni-
verse to move from the first stage to the second
one through the Big Rip, we assume that there
is a physical mechanism of probably quantum
nature that replaces the singularity with a reg-
ular maximum of the scale factor S(t). The
evolution of the universe is affected by this
physical mechanism at the second stage, as we
will explain in the following part of this article.

(iii) The second half-age of the chronological age
of the universe (η = 2). The behavior of this
stage is reverse to the first stage (contrac-
tion instead of expansion), the universe starts
this stage with thf = 2m/a, qha = −(1 +m).
A reversal is mainly caused by the changes
in pressure and torsion after a Big Rip, and
the particles with spin 1/2, 1, . . . correspond to
F = 548, 274, . . ., respectively. The universe
enters into a strong contraction stage (q ≤ 0)
at ta 2 ≤ (1 + 3m)/a and ends at tend = 4m/a
with qend = m− 1 such as the beginning.
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Fig. 14. The deceleration parameter q against cosmic
time t : 0 → 33 at η = 0, and t : 33 → 66 at η = 2.
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Fig. 15. The scale factor S(t) against cosmic time t :
0 → 33 at η = 0, and t : 33 → 66 at η = 2.

The scale factor S(t) starts with a Big Bang at
η = 0, tbb = 0 and S(t) = 0, enters into a divergent
case at tbr = 2m/a. It represents the Big Rip moment
and ends at η = 2, tend = 4m/a and S(t) = 0. One
sees that the deceleration parameter q and the scale
factor S(t) start and end with the same values.

To study the singularity of the universe for our Big
Crunch model, the actuality of the first singularity
mainly depends on the solution of Eq. (92). Specif-
ically, it depends on the resulting sign of the left-hand
side term. This issue can be studied using the normal
agreements of the singularity theorems of GR, i.e.,
the initial singularity is considered by the condition
dΘ/dt < 0 [35].

Accordingly, we have three cases presented in Ta-
ble 2.

From Table 2, one may see that the first half-age
of the universe is beginning with an initial singularity,
when b = 0 as in GR. In GFT (b = 2), the second
half-age of the universe is not free from an initial
singularity.

Now, by choosing m = 1.65 and a = 0.097 (com-
pared to Özgür Akarsu and Tekin Dereli [31]) to show
how the linearly changing deceleration parameter can
compete with the observed cosmic kinematics and
make other predictions.
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Fig. 16. The deceleration parameter q versus redshift z :
0 → 2.
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Fig. 17. The energy density of the fluid ρ versus cosmic
time. The curve is plotted by choosing (b = 0, η = 0) at
t : 0 → 33, and (b = 2, η = 2) at t : 33 → 66.
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Fig. 18. The energy density of the fluid ρ versus cosmic
time. The curve is plotted by choosing (b = 0, η = 0) at
t : 0 → 33, and (b = 2, η = 2) at t : 33 → 66.

In what follows, the kinematic analysis will be
displayed throughout Figs. 14–19.

In Fig. 14 the deceleration parameter q is depicted
versus cosmic time t. It is observed that the behavior
of q(t) in the second half-age is inverse to its behavior
in the first half of it. Moreover, the deceleration
parameter starts with qbb = 0.6 and ends at a Big
Rip with qbr = −2.5. In Fig. 15, the scale factor S
is plotted versus cosmic time t . As can be seen, the
universe in the first half-age starts with a Big Bang at
tbb = 0 and ends with a Big Rip at tbr = 34, entering
the initial state at the end of the second half-age.

In Fig. 16 one may note that in the first half-age of
the universe, the dynamic transition from deceleration
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Fig. 19. The energy density of the fluid ρ versus cosmic
time. The curve is plotted by choosing (b = 0, η = 0) at
t : 0 → 33, and (b = 2, η = 2) at t : 33 → 66.

to acceleration happens at z = 0.8. This stage agrees
with the (LVDP) model [31]. In Figs. 17, 18, 19,
the energy density of the fluid ρ versus cosmic time
t is plotted. It is observed that, in our proposed
model, the flat model is physically accepted. This is
happening due to the positivity of the energy density
of the matter. Meanwhile, the closed and open models
do not achieve this characteristic.

6. OBSERVATIONAL BOUNDS
ON COSMIC TORSION

The literature contains a number of proposals for
observational tests of torsion, the majority of which
work within our Solar system [36–42]. Here, we
will try to put cosmological bounds on the torsion
field by exploiting the fact that it “gravitates” and
therefore modifies the expansion dynamics of the host
universe. In the present section, we investigate the
effect of torsion on the cosmological solutions of the
GFT equations (47), (48). To facilitate comparison
with standard cosmology, we take K = 0. For this
case (47) and (48) reduce to

S̈/S = 4π(ρ0 + 3P0)/[3(b − 1)], (93)

(Ṡ/S)2 = 8π ρ0/[3(1 − b)2], (94)

which are the dynamic equations of FRW standard
cosmology, written in the context of the PAP geome-
try.

Now, using the contortion components (40) and
the basic vector (17), the only non-vanishing compo-
nents of the basic vector is

C0 = 3Ṡ/S, (95)

and from Eq. (95) one can get the scalar torsion κ
defined by [43],

κ =
√

gαβCαCβ = 3Ṡ/S = 3H, (96)

From this equation, one obtains

κ̇ = 3

(
S̈

S
− Ṡ2

S2

)
, (97)

and hence,

S̈

S
=

κ̇

3
+

κ2

9
. (98)

Let us assume that the dominant energetic con-
tent of the universe, after a Big Rip, is purely induced
by the torsion field κ, then the dynamic equations (93)
and (94) may be written in the form

S̈/S = 4π(ρκ + 3Pκ)/[3(b − 1)], (99)

(Ṡ/S)2 = 8π ρκ/[3(1 − b)2], (100)

where ρκ annd Pκ are the energy density and pressure
induced by the torsion field κ, respectively.

Substituting (96) and (98) into (99) and (100), one
gets

ρκ =
κ2

24π
, Pκ =

1

12π

(
κ̇+

κ2

6

)
. (101)

From Eq. (101), the equation of state for a perfect
fluid induced by the torsion field κ is

Pκ = −(ε− 1/3) ρκ, (102)

where

ε =
6 κ̇+ 2κ2

3κ2(1− b)
. (103)

Comparing the equation (102) with the equation of
state Pκ = ωρκ, one obtains

ω = 1/3 − ε. (104)

The three most common examples of cosmological
fluids with this ε are radiation (ε = 0), dust (ε = 1/3)
and the vacuum energy (ε = 4/3), which is mathe-
matically equivalent to a cosmological constant Λ. It
is well recognized that fluids with ε > 4/3 are usually
considered in the background of dark energy (DE),
since they give rise to accelerated expansion. Besides
the fluids with ε > 2/3, there have been proposed
in this article various scalar field models that can
be described by a time-dependent ε that can evolve
below 2/3, that is, quintessence −2/3 ≤ ε ≤ 4/3,
phantom ε ≤ 4/3, quintom that can evolve across the
cosmological constant boundary ε = 4/3.

Employing Eqs. (70) and (96), the value of the
scalar torsion κ is given by

κ =
6

t (2m− a t)
. (105)
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From Eqs. (105) and (102), the expressions for the
energy density and pressure read

ρκ =
3

2π t2 (2m− a t)2
, (106)

Pκ = −ρκ. (107)

By Eqs. (105)–(107), the Big Rip happens at tbr =
2m/a. In this case,

κ → ∞, ρκ(t) → ∞, Pκ(t) → −∞, (108)

where b = 0, and ε = 4/3.
From the above discussion, the Universe in-

evitable evolves to a Big Rip phase, which is one of
the possible fates of the Universe according to the
cosmological observations [44, 45]. Torsion plays an
important role in the evolution of the universe. In the
Big Rip model, the Universe has a finite lifetime. It
starts with a Big Bang at tbb = 0 with κ → ∞ and
ends at tbr = 2m/a with κ → ∞. The scalar torsion
reaches its minimum value at t = m/a. Finally, we
hope to extend on this topic in detail in our future
work.

7. DISCUSSION AND CONCLUSION

In Section 1, we presented a summary of the PAP
geometry, which is most suitable for physical appli-
cations, especially for constructing theories that re-
quire both torsion and curvature to describe different
interactions. For example, attempts to geometrize
strings [46], theories accounting for Dirac fields [47]
and theories gauging gravity [48], are among this
class of theories. In Section 2, the field equations
in GR are generalized in the PAP geometry. This
version of absolute parallelism is more general than
the conventional AP geometry. The generalization
regards the effect of torsion of the background grav-
itational field, the GFT obtained contains some extra
terms, depending on space-time torsion that would
have some effects on the cosmological models. Under
a certain condition, these models could be reduced
to the original models of GR without any need for a
vanishing torsion. However, we would like to point
out that the interaction of matter with space- time
curvature gives rise to an attractive force, while its
interaction with space-time torsion gives rise to a re-
pulsive one (anti-gravity) [25]. In Section 3, the effect
of torsion leads to inflationary cosmological models
with a constant deceleration parameter. In Section 4,
we suggested a special law for the deceleration pa-
rameter to study a Big Rip model. The model has a
different behavior, we note that the three models with
ω = −1/3 at t = m− 1 show that there is presently
an inflationary universe. We see that the closed and
open model are impossible since the condition of the
energy density (ρ = 0) is unreliable, but the flat case

is possible since the condition (ρ = 0) is satisfied in
this model, this result differs from GR. In Section 5,
we suggest here a Big Crunch model; the temporal
age of the universe can be divided into three stages:

• The first half-age of the Universe (b = 0, η = 0,
t : 0 → 34).

• The Big Rip stage at t = 34.

• The second half-age of the Universe (b = 2, η =
2, t : 34 → 68), the behavior at this stage is reverse
to the first stage.

Finally, in brief the results of the Big Crunch model
are displayed in Table 3.

From Table 3, the second half-age of the Universe
has an inverse physical behavior to the first half-age.
In our cosmological model, the first half-age begins
with a singular stage and ends with a nonsingular
stage. The second half-age of the universe is free from
an initial singularity.

In the early universe, torsion could play a relevant
role but then quickly disappears, as shown in GR,
when b = 0. As agreed in GFT when b = 2, the
torsion plays a relevant role in the second half-age
of the Universe. At that stage, the torsion causes
the Universe to restructure to the past. The torsion
effect on the energy density evolution, see Eq. (49),
carried by the parameter b, also depends on the matter
equation of state. Astronomical observations expect
a Big Rip to happen at late time [49–61]. Section 6
discusses the observational bounds on the presence
of torsion in the late Universe. But so far, no actual
observation can be found to make sure that the re-
sults are correct, excluding the data from SNIa, BAO
and CMB about the redshift. In our Big Rip and
Big Crunch models, we discussed the redshift, see
Eqs. (74), (84), (85), and Figs. 4 and 16. So far, our
results are consistent with astronomical observations
[48–53].

Our model can be considered as a generalization of
the special law of variation of the Hubble parameter,
which was used by many authors from the begin-
ning [29, 62, 63], Berman et al. [30], Özgür and
Tekin [31], Maharaj and Naidoo [64]. The model of a
Big Crunch that was suggested in this article closely
corresponds to the Periodic Universe with varying
deceleration parameter of the second degree [65]. Fi-
nally, after the Big Rip, quantitative mechanisms that
depend on the parameter b can be used to study the
evolution of the universe. This parameter represents
the spin value, as shown in Section 5, for more details
see [22, 23, 25]. In this article, we were trying to
combine quantum cosmology with well-known par-
ticle physics or basic theories. We hope that another
work in this field can be extended.
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Table 3. Evolution of the deceleration parameter and the scale factor with cosmic time for the Big Crunch model

The stage t q S The state

The first half-age, η = 0, and b = 0 0 0.65 0.0 Big Bang

6.7 0.0 0.49 acceleration

14.3 −0.73 5.2 acceleration

17.0 −1.0 7.1 strong expansion

27.3 −2.0 13.7 strong expansion

34.0 −2.6 ∞ Big Rip

Big Rip 34.0 −2.6 ∞ Big Rip

The second half-age, η = 2 and b = 2 34.0 −2.6 ∞ Big Rip

40.7 −2.0 13.7 strong contraction

51.0 −1.0 7.1 strong contraction

53.8 −0.73 5.2 accelerated contraction

61.3 0.0 0.49 accelerated contraction

68.0 0.65 0.0 Big Bang again
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