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Abstract—The hybrid metric-Palatini theory of gravity (HMPG), proposed in 2012 by T. Harko et al.,
is known to successfully describe both local (solar-system) and cosmological observations. We discuss
static, spherically symmetric vacuum solutions of HMPG with the aid of its scalar-tensor theory (STT)
representation. This scalar-tensor theory coincides with general relativity with a conformally coupled scalar
field (which can be canonical or phantom), therefore the known solutions of this theory are re-interpreted
in terms of HMPG. In particular, in the case of zero scalar field potential V (φ), such that both Riemannian
and Palatini Ricci scalars are zero, generic asymptotically flat solutions either contain naked singularities
or describe traversable wormholes, and there are only special cases of black hole solutions with extremal
horizons. There is also a one-parameter family of solutions with an infinite number of extremal horizons
between static regions. Examples of analytical solutions with nonzero potentials V (φ) are also described,
among them black hole solutions with simple horizons which are generic but, for canonical scalars, they
require (at least partly) negative potentials. With phantom scalars there are “black universe” solutions
that lead beyond the horizon to an expanding universe instead of a singularity. Most of the solutions under
consideration turn out to be unstable under scalar monopole perturbations, but some special black hole
solutions are stable.
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1. INTRODUCTION

General relativity (GR) that has recently cele-
brated its century, is known to still successfully de-
scribe all local observational effects. It is however,
unable to completely account for large-scale phe-
nomena, facing the so-called Dark Matter and Dark
Energy problems. There are two alternative ways in
addressing these problems: one is still to adhere to
GR but to introduce so far unobserved forms of matter
like WIMPs (weakly interacting massive particles)
as Dark Matter, and a cosmological constant or a
“quintessence” scalar field, etc., as Dark Energy [1].
An alternative approach is to modify GR itself, con-
sidering more general Lagrangian functions (for in-
stance, f(R)), introducing new degrees of freedom
(e.g., scalar or vector fields), extra dimensions or/and
geometric quantities such as torsion and nonmetric-
ity [2, 3].

The hybrid metric-Palatini gravity (HMPG) the-
ory, proposed in [4], is one of such theories. This the-
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ory assumes the existence of the Riemannian metric
gμν along with an independent connection Γ̂α

μν . The
total action reads [4]

S =
1

2κ2

∫
d4x

√
−g[R+ F (R)] + Sm, (1)

where R = R[g] is the scalar curvature derived from
gμν , while F (R) is a function of the scalar R =
gμνRμν obtained with the Ricci tensor Rμν built in
the standard manner from the connection Γ̂α

μν ; also,
g = det(gμν), κ

2 is the gravitational constant, and
Sm is the action of nongravitational matter.

Thus HMPG combines the metric and Palatini
approaches to gravity and is an extension of f(R) the-
ories. This theory has been shown to agree with the
classical gravitational tests in the Solar system [5],
rather well describes the dynamic properties of galax-
ies and galaxy clusters, thus approaching an expla-
nation of the dark matter problem [6], and is able to
create models of the accelerating Universe without
a cosmological constant [7], see reviews [8, 9] for a
more detailed description of HMPG and its achieve-
ments. Noether symmetries in HMPG were studied
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in [10], while a relationship of HMPG with R2 gravity
in different formulations is discussed in [11]. A further
generalization of HMPG, with an arbitrary function of
both R and R, is suggested in [12], see recent results
obtained in this theory in [13–15].

The present paper continues the study of static,
spherically symmetric solutions of HMPG, began in
[16], where the simplest case F (R) ∝ R was consid-
ered. In this case, the HMPG theory is equivalent
to GR with a conformally invariant scalar field that
can be either canonical or phantom; the phantom
case, which seems to appear more naturally from
HMPG (since then dF/dR > 0), was discussed in
[16]. Here we briefly reproduce the results of [16], add
a discussion for the canonical φ field, and also present
two simple analytically solvable cases of fields with
nonzero potentials that correspond to more complex
F (R) than F ∼ R.

The paper is organized as follows. The next sec-
tion discusses the basic features of the STT represen-
tation of HMPG [4, 8]. Section 3 is devoted to static,
spherically symmetric solutions in the massless case
(V (φ) = 0) for both canonical and phantom φ fields.
Section 4 discusses analytical solutions with V (φ) �=
0, also with canonical and phantom fields. In all cases
we pay special attention to globally regular solutions
and solutions containing Killing horizons, in particu-
lar, possible black hole solutions with nonzero poten-
tials. Section 5 is a brief consideration of the stability
of all HMPG solutions discussed in this paper under
radial (monopole) perturbations. Section 6 contains
some concluding remarks.

2. BASIC FEATURES OF HMPG
AND ITS SCALAR-TENSOR

REPRESENTATION

Variation of (1) with respect to the independent
connection Γ̂α

μν leads to the conclusion [ 8, 17] that

Γ̂α
μν is the Levi-Civita connection corresponding to

a metric conformal to gμν , namely hμν = φgμν , with
the conformal factor φ = FR ≡ dF/dR. It shows that
this theory actually contains, in addition to gμν , only
one dynamic degree of freedom expressed in the scalar
field φ. As shown in [4, 8], the whole theory admits
a reformulation as a scalar-tensor theory with the
gravitational part of the action

Sg =

∫
d4x

√
−g

×
[
(1 + φ)R− 3

2φ
(∂φ)2 − V (φ)

]
, (2)

where1 the potential V (φ) is related to f(R) by

V (φ) = RFR − F (R). (3)

The theory with the action (2) evidently be-
longs to the Bergmann–Wagoner–Nordtvedt class
of STT [18–20] in which the gravitational action is

Sg =

∫
d4x

√
−g

×
[
f(φ)R+ h(φ)(∂φ)2 − V (φ)

]
, (4)

with arbitrary functions f(φ), h(φ), and V (φ). In our
case, V is given by (3), while

f(φ) = 1 + φ, h(φ) = − 3

2φ
. (5)

The general action (4) admits a well-known trans-
formation [19] to the Einstein conformal frame in
which the scalar field is minimally coupled to the
metric (while the formulation (4) is called the Jordan
conformal frame). The transformation reads [19]

ḡμν = f(φ)gμν ,
dφ

dφ̄
= f(φ)|D(φ)|−1/2,

D(φ) = f(φ)h(φ) +
3

2

(
df

dφ

)2

, (6)

and results in

Sg =

∫
d4x

√
−ḡ

[
R̄+ nḡμν φ̄,μφ̄,ν −

V (φ)

f2(φ)

]
, (7)

where bars mark quantities obtained from or with
the transformed metric ḡμν , while the factor n =
signD(φ) distinguishes canonical scalar fields (n =
+1) with positive kinetic energy from so-called phan-
tom fields (n = −1) with negative kinetic energy.

In the theory (2) we have D = −3/(2φ) and n =
−signφ, so that

φ = − tanh2
φ̄√
6

(n = +1, −1 < φ < 0), (8)

φ = tan2
φ̄√
6

(n = −1, φ > 0). (9)

1 Unlike [4, 8, 17] etc., we are using the metric signature
(+−−−), hence the plus sign before (∂φ)2 = gμνφμφν

corresponds to a canonical field and a minus to a phantom
field. We will also safely omit the factor 1/(2κ2) at the
gravitational part of the action since only vacuum configu-
rations, where Sm = 0, will be considered. The Ricci tensor
is defined as Rμν = ∂νΓ

α
μα − . . ., so that, for example, the

scalar curvature is positive in de Sitter space-time. We also
use the units in which c = G = 1 (c being the speed of light
and G the Newtonian gravitational constant).
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Thus, depending on the sign of φ, the theory splits
into canonical and phantom sectors, and the emer-
gence of the latter looks more natural since in this
case all three metrics gμν , ḡμν and hμν = φgμν have
the same signature. Let us also note that values of φ
smaller than −1 lead to a negative effective gravita-
tional constant and are thus manifestly nonphysical.

The substitution φ = −nχ2/6 converts the action
(2) to the form

Sg =

∫
d4x

√
−g

[
(1− nχ2/6)R

+ n(∂χ)2 −W (χ)
]
, (10)

with W (χ) = V (φ). The action (10) describes GR
where the source of gravity is a conformally coupled
scalar field (as mentioned in [8]), which has the usual
sign of kinetic energy if φ < 0 (n = 1) and is of phan-
tom nature if φ > 0 (n = −1). Conformally coupled
scalar fields have been considered in a great number
of studies, beginning with those of Penrose [21] (a
massless conformally invariant field) and Chernikov
and Tagirov [22] (massive conformally coupled fields).
The theory (10) with a phantom scalar was also dis-
cussed in [23] as a possible alternative to GR in
astrophysical and cosmological applications.

In the massless case, V (φ) ≡ W (χ) = 0, the field
equations due to (2) or (10) imply that all vacuum
solutions (such that Sm = 0) have both zero Ricci
scalars, R = R = 0 (see [17]). A general inverse
result is also valid [16]:

Let there be a vacuum solution with R ≡ 0 and
a non-constant scalar field in a theory (4), with
V ≡ 0, then this STT reduces either to GR with
a conformally coupled scalar field (which may
be canonical or phantom) or to pure conformal
scalar field theory.

The transition (6) is well known as a method of
finding exact or approximate solutions to the field
equations due to (4) since the equations due to (7)
are simpler than those due to (4). An Einstein-
frame solution having been found, its Jordan-frame
counterpart is easily produced by a transformation
inverse to (6).

There is, however, an important subtle point: if
the function f(φ) in (4) turns to zero or infinity at
some value of φ, it may happen that a singularity in
the Einstein-frame manifold ME with the metric ḡμν
transforms into a regular surface in the Jordan-frame
manifold MJ with the metric gμν (or vice versa), and
MJ should then be continued beyond this surface.
Such a phenomenon, termed conformal continua-
tion [24, 25], has been observed in special cases of a
number of scalar-vacuum and scalar-electrovacuum
solutions, in particular, those of GR with conformally

coupled scalar fields [26, 27] and in the Brans-Dicke
theory [30, 31] (the so-called cold black holes).

All static, spherically symmetric solutions with
V ≡ 0 are well known, but since they admit a new
interpretation in terms of HMPG, it makes sense to
discuss them from this viewpoint, it is done in Sec-
tion 3. A large number of scalar-vacuum solutions
with V �≡ 0 are also known (see, e.g., [34–38] and
references therein), and we will discuss some of them
in the context of HMPG in Section 4.

A question of interest is: suppose we have found
a solution of STT with some V (φ), then, what is the
corresponding HMPG? In other words, given V (φ),
can we determine F (R)?

For the case V (φ) ≡ 0, Eq. (3) gives simply
F (R) = const · R. For V (φ) �≡ 0, since φ = FR, the
relation (3) is a Clairaut equation (see, e.g., [39])
whose solution consists of a regular family that
contains only linear functions,

F (R) = HR− V (H), H = const, (11)

and the so-called singular solution which is an enve-
lope of the regular family and may be presented in a
parametric form:

F (R) = φR− V (φ),

R = dV/dφ. (12)

This issue is discussed in more detail in [17].

3. SOLUTIONS FOR V (φ) ≡ 0

In the case V (φ) ≡ 0, solutions to the Einstein-
minimally coupled scalar equations can be written in a
unified form for canonical and phantom scalars using
the harmonic coordinate condition [26]

α(u) = 2β(u) + γ(u), (13)

in terms of the general static, spherically symmetric
metric in ME

ds2E = e2γdt2 − e2αdu2 − e2βdΩ2,

dΩ2 = dθ2 + sin2 θdϕ2. (14)

The solution reads

φ̄ = C̄u+ φ̄0, γ(u) = −hu,

e−β(u)−γ(u) = s(k, u) :=

⎧⎪⎨
⎪⎩
k−1 sinh ku, k > 0

u, k = 0

k−1 sin ku, k < 0,

h, k, C̄, φ̄0 = const, (15)

where, without loss of generality, the radial coordinate
u is defined at u > 0 (u = 0 corresponds to flat spatial
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infinity), while the integration constants h, k, and C̄
(the scalar charge) are constrained by the relation

2k2signk = 2h2 + nC̄2, (16)

where, as before, n = +1 corresponds to a canonical
field and Fisher’s solution [40], and n = −1 to its
phantom counterpart [41, 42] (sometimes called the
“anti-Fisher” solution). The metric (14) now reads

ds2E = e−2hudt2 − e2hu

s2(k, u)

[
du2

s2(k, u)
+ dΩ2

]
. (17)

As follows from (16), with n = +1 we have k > 0,
hence there is a single branch, whereas for a phan-
tom scalar the solution splits into three branches
according to (15), with qualitatively different proper-
ties. Their detailed descriptions may be found, e.g., in
[43, 44].

3.1. The Canonical Sector

According to the above-said, the Jordan-frame
metric and the scalar field φ in the theory (2) with
V (φ) = 0 and φ < 0 (n = +1) may be presented
as [26]

ds2J = cosh2 ψ

{
e−2hudt2

− k2e2hu

sinh2 ku

[
k2du2

sinh2 ku
+ dΩ2

]}
, (18)

φ(u) = tanh2 ψ, ψ := φ̄/
√
6 = Cu+ ψ0, (19)

where the notation ψ = φ̄/
√
6 has been introduced

for convenience, C = C̄/
√
6, ψ0 = φ̄0/

√
6, and the

constant k is expressed via C and h:

k =
√

h2 + 3C2. (20)

The solution is defined at u > 0 so that u = 0 cor-
responds to spatial infinity, near it, the spherical
radius r =

√−g22 behaves as r ∼ 1/u, and the
Schwarzschild mass is2

mJ = h− C tanhψ0. (21)

2 If we write the general static, spherically symmetric metric in
the form (14) with an arbitrary radial coordinateu, this metric
is asymptotically flat at some u = u0 if [43]

eβ(u) ≡ r(u) −−−−→
u→u0

∞, |γ(u0)| < ∞,

eβ−α|β′| −−−−→
u→u0

1.

Then, comparing (14) with the Schwarzschild metric, it is
easy to obtain a general expression for the Schwarzschild
mass at u = u0 :

m = lim
u→u0

eβγ′/β′.

In particular, for the (anti-)Fisher metric (17) we havem = h
at u0 = 0.

At the other end of the u range, as u → ∞, there are
three kinds of behavior:

• C < h: we have g00 → 0, and r → ∞. It is a
naked attracting singularity located beyond a
throat, the kind of singularity called a “space
pocket” by P. Jordan [45].

• C > h: in this case, g00 → ∞ and r → 0,
so this is a naked singularity at the center,
repulsive for test particles.

• C = h > 0: both g00 and r tend to finite limits,
so that u = ∞ is a regular sphere, and a con-
tinuation beyond it is necessary.

To extend the solution for C = h beyond u = ∞, let
us put

y = coth hu, u =
1

2h
ln

y + 1

y − 1
. (22)

The metric becomes

ds2J =
(y + y1)

2

1− y21

[
dt2

(y + 1)2

− h2

y4
(y + 1)2(dy2 + y2dΩ2)

]
, (23)

where y1 = coth(ψ0/C). The sphere u = ∞ ↔ y =
1 is now manifestly regular. We obtain:

• y → ∞ is flat spatial infinity.

• y1 < 0 ⇒ y = −y1 > 0 is a naked attracting
singularity at the center (r → 0).

• y1 > 0 ⇒ y → 0 is one more flat infinity, and
the whole configuration is a traversable worm-
hole.

• y1 = 0 ⇒ y = 0 is a double horizon. Passing
on to the coordinate r = h(y + 1), we obtain

ds2J =

(
1− h

r

)2

dt2

−
(
1− h

r

)−2

dr2 − r2dΩ2, (24)

which is the well-knownblack hole solution
with a scalar charge and a conformal scalar
field [27, 28], sometimes called the BBMB
black hole solution.

One can notice that the substitution (22) loses its
meaning at y < 1. Accordingly, the relation (8),
that is, φ = − tanh2 ψ, is also meaningless at φ <
−1. Instead, after the conformal continuation, we
have [25] in the Einstein frame another copy of the
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Fisher solution, where, instead of (8), φ = − coth2 ψ,
and the conformal factor in (18) is sinh2 ψ. At the
transition surface y = 1, the field φ crosses the critical
value φ = −1, and beyond it, at φ < −1, there is an
“antigravitational” region, with a negative effective
gravitational constant, where, in other words, the
graviton becomes a ghost [46].

We see that the solutions with V ≡ 0 and n =
+1 generically contain naked singularities, while the
only existing black hole and wormhole solutions are
special, emerge due to conformal continuations, and
each of them contains an “antigravitational” region.

3.2. The Phantom Sector

Assuming φ > 0, n = −1, we obtain, quite simi-
larly to (18),

ds2J = cos2 ψ

{
e−2hudt2

− e2hu

s2(k, u)

[
du2

s2(k, u)
+ dΩ2

]}
, (25)

φ(u) = tan2 ψ, ψ := φ̄/
√
6 = Cu+ ψ0. (26)

For the integration constants k, h, and C we now
have

k2signk = h2 − 3C2. (27)

We see that signk is not fixed, and accordingly the
solution splits into three branches.

Let us assume, without loss of generality, |ψ0| <
π/2. Then, as before, the metric (25) is asymptotically
flat at u = 0 (r ≡ √−g22 → ∞ where r ∼ 1/u),3 and
the Schwarzschild mass is

m = h+ C tanψ0. (28)

Other properties of the solution depend on the sign of
k, taking into account the definition of s(k, u) in (15).

Branch A: k > 0.The metric reads

ds2J = cos2 ψ

{
e−2hudt2

− k2e2hu

sinh2 ku

[
k2du2

sinh2 ku
+ dΩ2

]}
,

ψ = ψ0 + Cu. h2 = 3C2 + k2. (29)

The only difference from (18) is the conformal fac-
tor cos2(Cu+ ψ0) instead of cosh2(Cu+ ψ0), which
drastically changes the metric behavior. Indeed, as
u grows from zero, ψ(u) ultimately reaches the value
where cosψ = 0 where, according to Eq. (9), φ → ∞.

3 The conformal factor cos2 ψ is not normalized to unity at
u = 0 if ψ0 �= 0, which, however, does not affect the further
description.

1.2

0.6

0.4 C1 C3 C2

sin �k� u

1 2 3 4

1.01.01.0

0.80.80.8

0.20.20.2

Fig. 1. The behaviors C1, C2, C3 of the metric (31) is
illustrated by the corresponding curves. We assume |k| =
1; curves C1–C3 plot cosψ for C = 0.7 and different ψ0.
Curve C1 corresponds to a naked singularity, C2 to a
wormhole, and C3 to a black hole.

This happens where Cu+ ψ0 → π/2 if C > 0 and
where Cu+ ψ0 → −π/2 if C < 0. Other quantities
involved in the metric are there evidently finite. Thus
it is a naked central (since r → 0) singularity, and it is
attractive for test particles due to g00 → 0.

Branch B: k = 0. In this case, the solution has the
form

ds2J = cos2 ψ

[
e−2hudt2 − e2hu

(
du2

u4
+

dΩ2

u2

)]
,

ψ = ψ0 + Cu, h2 = 3C2. (30)

As in Branch A, the coordinate u ranges from zero to
the value where cosψ = 0 (say, ψ = π/2) and φ = ∞,
and we observe a central attractive singularity.

Branch C: k < 0. Now the solution reads

ds2J = cos2 ψ

[
e−2hudt2 − k2e2hu

sin2 ku

×
(

k2du2

sin2 ku
+ dΩ2

)]
,

ψ = ψ0 + Cu, h2 = 3C2 − k2. (31)

The solution behavior crucially depends on ψ0 at
given k, C and depends on which of the quanti-
ties sin |k|u or cosψ will be the first to vanish as u
grows beginning from zero. For asymptotic flatness
we should assume that at u = 0 the factor cos2 ψ is
nonzero, hence |ψ0| < π/2 without loss of generality.
Then, three possible behaviors should be singled out,
see Fig. 1 (we assume for certainty C > 0).

C1: (π/2− ψ0)/C < π/|k|. The solution termi-
nates at u = us = (π/2 − ψ0)/C, where cosψ = 0,
and u = us is a naked central singularity quite similar
to the one in branches A and B.

C2: (π/2− ψ0)/C > π/|k|. The solution termi-
nates at u∗ = π/|k| where sin ku = 0, corresponding
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HYBRID METRIC-PALATINI GRAVITY 217

r = ∞

r = ∞

r = ∞

r = ∞

Fig. 2. Carter–Penrose diagram for a regular black hole
with the metric (31). The diagram infinitely extends up
and down.

to the second flat spatial infinity, where the radius r
infinitely grows while gtt and φ remain finite, and the
Schwarzschild mass is there equal to

m∗ = −ehu∗(h cosψ∗ + C sinψ∗) (32)

(ψ∗ = ψ0 + Cπ/|k| < π/2 is the value of ψ at u =
u∗). Such a wormhole solution is only quantita-
tively different from its anti-Fisher and Brans-Dicke
analogs, see, e.g., [26, 29].

C3: (π/2 − ψ0)/C = π/|k|. In this intermedi-
ate case, at u = u1 = π/|k| vanish both sin |k|u and
cosψ, the spherical radius r =

√−gθθ is finite but
φ = ∞. Near u = u1, the metric behaves as

ds2J = C2

[
e−2hu1Δu2dt2 − e2hu1

du2

Δu2

− e2hu1dΩ2

]
, (33)

where Δu = u1 − u. Consequently, u = u1 is a dou-
ble (extremal) horizon, and the metric should be con-
tinued beyond it.

The condition (π/2− ψ0)/C = π/|k| leads to
ψ0 = π(1/2 − C/|k|), thus C < |k|, hence the plot
of cosψ is wider than that of sin ku. Therefore, as
u further grows (describing the region beyond the
horizon), the next zero of sin ku (u = u2 = 2π/|k|)
is reached before a zero of cosψ. The value u = u2
corresponds to the second flat spatial infinity, in full
similarity with wormhole solutions. This space-time
is also globally regular but is now only one-side
traversable due to emergence of the horizon. Figure 2
shows the corresponding Carter–Penrose diagram.

This black hole solution has much in common
with the one with the metric (24) [26–28]. Both
black holes are described by special solutions to the

Einstein-scalar equations, both are asymptotically
flat and extremal (with zero Hawking temperature),
and in both cases the supporting scalar fields turn to
infinity on the horizon, whereas the effective stress-
energy tensors T ν

μ are finite there (as is evident from
finiteness of the Einstein tensor components Gν

μ).
Also, in both cases the scalar curvature is zero in the
whole space, and the solutions are obtained from their
Einstein-frame counterparts using conformal contin-
uations [25, 26].

However, the solution (24) has a singular center
r = 0 (the geometry is the same as that of the extreme
Reissner–Nordström space-time), while the space-
time (31) is globally regular and has no center at all.

It happens that none of the static, spherically
symmetric solutions of the theory (2) with V ≡ 0 have
simple horizons with finite Hawking temperature,
which contradicts the results announced in [17].

A geometry with infinitely many horizons.
There is a one-parameter family of solutions of
interest obtained if we put

C = |k|, ψ0 = −π/2 (34)

(thus abandoning the asymptotic flatness require-
ment). We then have cos2 ψ = sin2 ku, and the
Jordan-frame metric reads

ds2J = sin2 kue−2hudt2

− k2e2hu
(

k2du2

sin2 ku
+ dΩ2

)
, (35)

where h = ±k according to (27). This metric, with
u ∈ R, describes a space-time unifying an infinite
number of static regions (each described by a half-
wave of the function sin ku), separated by double
horizons located at each u = πn/|k|, with any inte-
ger n. In this case, the Jordan-frame manifold MJ
unifies a countable number of Einstein-frame man-
ifolds ME, each of the latter representing an anti-
Fisher wormhole whose both infinities turn into hori-
zons in MJ. Another example of a manifold obtained
by infinitely many conformal continuations was ob-
tained in [25], using a solution for a conformally cou-
pled scalar field φ with a nonzero potential U(φ) and
the normal sign of kinetic energy. In that example,
the transition from one region to another occurred
through ordinary surfaces Strans of finite radius, there
were no horizons, and the whole MJ was either com-
pletely static (shaped as an infinitely long tube with
a periodically changing radius) or completely cosmo-
logical (forming a (2 + 1) cosmology with a periodi-
cally changing scale factor). In the present case, all
transitions surfaces Strans are double horizons, and
the structure is aperiodic due to the factors e±hu in
(35). The corresponding global structure is shown in
Fig. 3.
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Fig. 3. Carter–Penrose diagram of the manifold MJ with
the metric (35). The diagram occupies the whole plane.
The thick broken line shows a horizon corresponding to a
particular value of u = nπ/|k|, n ∈ N.

Another example of a manifold with infinitely many
horizons [51] has been obtained for a family of phan-
tom dilaton-Einstein–Maxwell black holes.

4. SOLUTIONS FOR V (φ) �≡ 0

Before discussing particular examples, it makes
sense to recall some general theorems concerning
scalar-vacuum space-times with V (φ) �≡ 0. Owing
to such theorems, one can say much about the possi-
ble behavior of solutions to the field equations even
being unable to solve them analytically. Many of
these results concern the properties of minimally cou-
pled scalar fields, for example, no-hair theorems (see,
e.g., [48] for a recent review) indicating the conditions
that exclude the existence of horizons, and global
structure theorems [49] telling us about possible reg-
ular solutions and a maximum possible number of
horizons. In particular, if V (φ) ≥ 0, an asymptotically
flat black hole with a nontrivial canonical scalar field
is impossible [50]. On the other hand, by [49], spher-
ically symmetric scalar-vacuum space-times cannot
contain more than two horizons, and this number is
only one for asymptotically flat configurations. This
result holds for both canonical and phantom scalars
with any V (φ).

For Jordan-frame space-times, conformal to those
with minimally coupled scalar fields, most of the the-
orems are preserved without changes if the conformal
factor f(φ) in (6) is everywhere finite and regular
since (at transitions to either side) a flat infinity maps
to a flat infinity, a horizon maps to a horizon, and
the potential V (φ) preserves its sign. The situation
changes if f(φ) is somewhere zero or infinite, then
the mapping can change the nature of singularities,
if any, and conformal continuations can emerge. The

above examples show that such continuations can be
numerous, up to an infinite number, as we saw in the
Jordan-frame metric (35). In particular, the number
and nature of horizons in MJ may be different from
that in ME, including the possible number of simple
horizons. It is, however, important that conformal
continuations can only emerge at special values of
integration constants [25].

As in the above massless case (V ≡ 0), HMPG
solutions with nonzero potentials split into the ca-
nonical and phantom sectors, in which the conformal
factors 1/f(φ) = 1/(1 + φ) have the forms cosh2 ψ
and cos2 ψ, respectively. The first one is able to blow
up and the second one to vanish, so in both cases
the nature of solutions in MJ can be quite different
from that in ME. We will briefly analyze the behavior
of such solutions in some particular cases of V (φ)
admitting analytical solutions, known from the liter-
ature [34, 35, 37].

4.1. V �≡ 0, the Canonical Sector

Example 1 . This solution (in the Einstein frame)
has been obtained by the inverse problem method [34]
for a minimally coupled scalar field in the metric

ds2E = A(x)dt2 − dx2

A(x)
− r2(x)dΩ2 (36)

(that is, (14) under the so-called quasiglobal coordi-
nate condition α+ γ = 0) by assuming

r(x) =
√

x2 − a2, (37)

where a plays the role of a length scale. Let us assume
a = 1, thus expressing all quantities in terms of this
arbitrary length scale. Since one of the Einstein
equations for the action (7) reads

2r′′/r = −nφ̄′2, (38)

and since now r′′/r = −(x2 − 1)−2 < 0, we are deal-
ing with a canonical scalar field, n = +1. Using, as
before, ψ = φ̄/

√
6, we obtain the asymptotically flat

(as x → ∞) solution in the form [34]

A(x) = 1− 3mx+
3

2
(x2 − 1) ln

x+ 1

x− 1
, (39)

ψ(x) =
1

2
√
3
ln

x+ 1

x− 1
+ ψ0, ψ0 = const, (40)

U(ψ) =
3m

x2 − 1

[
6x+ (3x− 1) ln

x+ 1

x− 1

]
, (41)

where U(ψ) is the Einstein-frame potential according
to (7):

U(ψ) = V (φ)/(1 + φ)2 (42)
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Fig. 4. The function A(x) according to (39) for m =
0.1, 0.2, 1/3, 0.5, 0.7 (upside down). It has a simple zero
if m > 1/3, the solution then describes a black hole. All
solutions have a singularity at x = −1, where r = 0.

(in (41) it is a function of x, but its ψ dependence is
easily restored by substituting x = x(ψ) determined
from (40)). In this solution, x → ∞ is flat spatial in-
finity, m is the Schwarzschild mass, and the valuex =
1 corresponds to the spherical radius r = 0, which is a
naked central singularity if m ≤ 1/3 and a singularity
hidden under an event horizon if m > 1/3, see Fig. 4.

In the “massless” case, m = 0, we have A ≡ 1,
U ≡ 0, and the present solution coincides with the
case h = 0 of the solution (18), (19), though ex-
pressed using another radial coordinate.

The potential U is proportional to m, it is every-
where negative, singular at x = 1 and rapidly van-
ishes at infinity:

U(x) ∼ ln(x− 1)

x− 1
as x → 1,

U(x) ≈ − 8m

5x5
as x → ∞. (43)

The Jordan-frame metric is
ds2J = cosh2 ψds2E . (44)

The conformal factor cosh2 ψ is well-behaved at x >
1, tends to a constant at large x (so that the met-
ric ds2J is also asymptotically flat), and blows up as
x → 1:

cosh2 ψ ≈ cosh2 ψ0 +
sinh(2ψ0)√

3x
, x → ∞,

cosh2 ψ ∼ (x− 1)−1/
√
3, x → 1. (45)

Meanwhile, in the same limit x → 1,
A(x) ≈ 1− 3m+ 3m(x− 1)[ln 2− 1− ln(x− 1)].

Thus the conformal factor cannot regularize the met-
ric at x = 1: it enhances the singularity if m �= 1/3

(for example, gtt remains finite in the Einstein frame
but blows up in Jordan’s) and only modifies it if m =
1/3. As a whole, the conformal factor only deforms
the metric at x > 1 but does not change it qualita-
tively. We conclude that the HMPG solution with the
potential according to (42), that is,

V (φ) = U(ψ)f2(φ) = U(ψ)/ cosh4 ψ (46)

describes a black hole with a simple horizon in the
case m > 1/3. The black hole mass is equal to m in
the Einstein frame, while in Jordan’s we have

mJ = m coshψ0 −
1√
3
sinhψ0. (47)

They coincide if ψ0 = 0.
Example 2. Another Einstein-frame solution with

the metric (36) has been obtained in [37] with the so-
called separability approach but can also be found in
full similarity with (37)–(41) by assuming

r(x) =
√

x(x+ a), (48)

where a again plays the role of a length scale and can
be put equal to unity. The solution now reads

A(x) = 1− 6m(2x+ 1)

+ 12mx(x+ 1) ln
x+1

x
, (49)

ψ(x) =
1

2
ln

x+ 1

x
+ ψ0, (50)

U(ψ) = − 12m

x(x+ 1)

[
− 3(1 + 2x)

+ (1 + 6x+ 6x2) ln
x+ 1

x

]
. (51)

The properties of this solution are quite similar to
those of (37)–(41). The canonical nature of the scalar
field is assured by the fact that r′′/r = −1/[4x2(x+
1)2] < 0. The solution has a naked singularity at
x = 0 if m ≤ 1/6 and describes a black hole with a
simple horizon if m > 1/6, and the plots of A(x) for
different m look almost the same as in Fig. 4. The
conformal factor cosh2 ψ deforms the metric but does
not remove the singulatities.

4.2. V �≡ 0, the Phantom Sector

Consider an analytic solution for a minimally cou-
pled phantom scalar ψ [35], also obtained by the
inverse problem method. Now we assume

r(x) =
√

x2 + a2, (52)

and, as before, put a = 1 as an arbitrary length scale.
The inequality r′′/r = (x2 + 1)−2 > 0 confirms the
phantom nature of ψ and hence the original scalar φ.
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Fig. 5. The metric function A(x) (a) and the potential U(φ(x)) (b) for the Einstein-frame solution (36), (53)–(55), m =
−0.1,−0.05, 0.05, 0.1 (bottom-up for A(x), upside down for U(x)). As x → −∞, the metric is asymptotically de Sitter if
m > 0 and AdS if m < 0.

Then, with the Einstein-frame metric (36), we have
the solution [35]

A(x) = 1 + 3mx− 3m(x2 + 1)arccotx, (53)

ψ(x) =
1√
3
arctan x+ ψ0, (54)

U(ψ) =
6m

x2 + 1

[
− 3x+ (3x2 + 1)arccotx

]
. (55)

In this solution, x ∈ R, x → ∞ is flat infinity, and m
has the meaning of the Schwarzschild mass. The
behavior of the solution as x → −∞ is different, de-
pending on the sign of m:

• m < 0 : A ∼ x2, U → const < 0—the solu-
tion describes a wormhole with an AdS limit
at the “far end.”

• m = 0 : A → 1, U ≡ 0—it is the simplest
(Ellis) twice asymptotically flat wormhole with
zero mass [26, 42] (A ≡ 1, U ≡ 0).

• m > 0 : A ∼ −x2, U → const > 0—we ob-
tain a regular black hole with a de Sitter ex-
pansion far beyond the horizon instead of a
singularity (a “black universe” [35, 36]).

The behavior of A(x) and U(x) is shown in Fig. 5.

In Jordan’s frame we have the metric

ds2J = cos2 ψ

[
A(x)dt2 − dx2

A(x)
− r2(x)dΩ2

]
, (56)

and the geometry crucially depends on the value ofψ0.
The range of ψ is

Range (ψ) =

(
ψ0 −

π

2
√
3
, ψ0 +

π

2
√
3

)
, (57)

its length is π/
√
3 < π, smaller than π, length of

the segment where cosψ > 0. The spatial asymp-
totic value x → ∞ corresponds to ψ = ψ1 = ψ0 +

π/(2
√
3), and the Schwarzschild mass is there

mJ = m cosψ1 −
1√
3
sinψ1. (58)

If cosψ �= 0 in the whole range (57) (for example, if
|ψ0| < π(

√
3− 1)/(2

√
3) ≈ 0.663), then the confor-

mal factor cos2 ψ is everywhere positive and regular, it
then only deforms the metric ds2E but does not change
it qualitatively.

Otherwise, the conformal factor cos2 ψ, in general,
creates a singularity at some finite x = xs. It destroys
wormhole solutions, producing a central attracting
singularity instead of their regular far end; a similar
singularity is created instead of a horizon in black
universe solutions if x = xs belongs to a static re-
gion or is precisely a horizon; it is like a big bang
(or crunch) if it happens to be in a nonstatic region
beyond the horizon. Lastly, if ψ0 = π/2− π/(2

√
3),

so that ψ1 = π/2, then the conformal factor destroys
the asymptotic flatness of the solution.

We conclude that in the phantom sector all three
kinds of solutions are generic: black hole ones, worm-
hole ones and those with naked singularities. The
black hole solutions can be regular (black-universe
type) or singular beyond the horizon, depending on
the value of ψ0.

5. STABILITY

Since the transition (6) to the Einstein frame may
be viewed as simply a change of variables in the
differential equations, it can be applied to the per-
turbed field equations on equal grounds with those
for static configurations. This enables us to use the
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existing results of the studies of small perturbations
of scalar-vacuum space-times with minimally cou-
pled scalar fields, see, e.g., [44, 52–59]. The Jordan
frame perturbations obey the same equations as in the
Einstein frame, but only expressed in other variables.
However, the Jordan-frame stability inferences may
be different since the boundary conditions should now
be formulated according to the physical requirements
inherent to MJ.

Let us discuss the stability properties of the so-
lutions described above with respect to purely radial
(monopole) perturbations. The experience indicates
that these perturbations are, in a clear sense, the most
dangerous for configurations with scalar fields: if a
system is unstable, it is most probably a monopole
mode that implements this instability. A physical
reason for that is that the effective potentials for all
other perturbations contain centrifugal barriers which
are positive and therefore favorable for stability.

5.1. Perturbation Equations
It is well known that in static, spherically symmet-

ric scalar-vacuum space-times, monopole perturba-
tions of the whole system are governed by the scalar
field perturbations δφ(u, t), or those of the Einstein-
frame field, δψ(u, t), representing the only dynamic
degree of freedom. These perturbations obey a single
linear equation whose coefficients depend on the pa-
rameters of the background static system, while the
metric perturbations δα, δβ, δγ (in terms of the metric
(14)) can be found from the solutions of the “master
equation” for δψ. The master equation for a spectral
component of the perturbation, δψ = Ψ(u)eiωt, in the
Schrödinger-like canonical form is,

d2Y

dz2
+

(
ω2 −Weff(z)

)
Y = 0. (59)

In this equation, z is the so-called tortoise radial
coordinate such that du/dz = eγ−α, where u is an
arbitrary radial coordinate in the metric (14). The
unknown function in (59) is Y (z) = Ψ(u)eβ , while
the effective potential W (z) has the form [44, 57, 58]

Weff(z) = e2γ
[
3nψ′2

β′2 (U − 2e−2β) +
ψ′

β′Uψ

+
n

12
Uψψ

]
+ e2γ−2α[β′′ + β′(β′ + γ′ − α′)], (60)

where the index ψ denotes d/dψ, the prime denotes
d/du (u is again an arbitrary coordinate in (14)), and
U = U(ψ) = V (φ)/(1 + φ)2, see (42). It should be
stressed here that the notations α, β, γ refer to the
metric (14) written in the Einstein frame.

Solving this equation with appropriate boundary
conditions, we find a spectrum of eigenvalues ω2 of

this boundary-value problem, and, as usual, if there
are ω2 < 0, we can conclude that the background
configuration is unstable under linear monopole per-
turbations since there is a time-dependent perturba-
tion growing as e|ω|t. To assert that the instability is
inherent to the configuration itself rather than caused
by energy pumping from outside, it is also necessary
to verify that there is no energy flow into the system
through the boundaries. However, this requirement
does not lead to any new restrictions for our system:
indeed, quite similarly to the reasoning in [52], at flat
infinity the energy flux is zero for any admissible solu-
tion to (59), while at the other end the flow direction
is controlled by the arbitrary sign in a solution to (59)
and can always be chosen so that the energy leaks
outward.

We will discuss the stability properties of the con-
figurations enumerated above, using as much as pos-
sible the previous results available in the literature.

At flat spatial infinity, where both fields φ and ψ are
regular, we naturally require both δφ → 0 and δψ →
0. In what follows we assume that this requirement is
always applied, and focus on boundary conditions on
the other end of the range of the radial coordinate.

5.2. Stability: the Canonical Sector

1. V (φ) ≡ 0, solution (18), (19), the conformally
mapped Fisher solution in the general case (C �= h).
At the singularity u → ∞ we have φ → −1, and due
to its fixed value it is natural to require δφ → 0 for
meaningful perturbations. Since φ = − tanh2 ψ, for
ψ this requirement transforms to δψ = o(e2ψ), where
ψ → ∞, whereas the instability of Fisher’s solution
was established under the much stronger boundary
condition |δψ/ψ| < ∞ [52]. The present condition
δψ = o(e2ψ) is much weaker, therefore, the pertur-
bations which grow with time in Fisher’s solution,
thus implementing its instability, manifestly satisfy
the new, weaker boundary conditions, and we con-
clude that the solution (18)–(20) is unstable.

2. V (φ) ≡ 0, solution (23), y0 > 0 (a wormhole).
This solution is unstable as proved in [60, 61]. The
instability is related to the existence of a negative
pole Weff(z) ≈ −1/(4z2) at the transition sphere z =
0 (u = 1) of the conformal continuation. This leads
to the existence of negative eigenvalues ω2 of the
corresponding boundary-value problem.

3. V (φ) ≡ 0, solution (23), y0 < 0 (a naked sin-
gularity beyond the transition surface of conformal
continuation).The instability conclusion follows from
the same reasoning as in the previous case.

4. V (φ) ≡ 0, solution (24) (black hole). This
solution is stable as proved in [63], although previ-
ously [62] the opposite result was announced.
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Fig. 6. The potential Weff(x) for the solution (39)–(41) with naked singularities, m = 0.1, 0.25, 1/3. The inset shows a more
detailed behavior of Weff(x) for m = 1/3 near x = 1.

5. V (φ) �≡ 0, solution (36), (39)–(41), m ≤ 1/3
(a naked singularity). For this case, the shape of
the effective potential (60) is shown in Fig. 6, and it
asymptotically behaves as follows:

Weff = −2m

x3
+

−3 + 4m2

x4
+O(x−5),

x → ∞, (61)

Weff = −(3m− 1)3

4(x− 1)2
+

27m2 − 3

4(x− 1)
+O

(
ln2(x− 1)

)
,

x → 1. (62)

Thus for m < 1/3 the potential Weff → −∞, but
Weff ∼ ln(x− 1)2 for m = 1/3. On the other hand,
the “tortoise” coordinate z =

∫
dx/A(x) is found as

follows for x → 1:

z ≈ x− 1

1− 3m
, m < 1/3,

z ≈ − ln | ln(x− 1)| → −∞, m = 1/3. (63)

For m < 1/3 we obtain that Weff ≈ −1/(4z2) as z →
0; it is precisely the same behavior as for Fisher’s
solution discussed above in item 1. Since the appro-
priate boundary condition as z → 0 is here also the
same, we can conclude that this solution with a naked
singularity in HMPG is unstable.

The case m = 1/3 is the most complicated. In
this solution, again, φ → −1 as x → 1, hence the
boundary condition for perturbations is

δφ = o(1) ⇒ δψ = o
(
(x− 1)−1/

√
3
)
,

Y = o
(
(x− 1)1−1/

√
3
)
→ 0. (64)

On the other hand, in the limit x → 1 we obtain z →
−∞, more precisely,

z ≈ − ln | ln(x− 1)| ⇒ x− 1 ≈ exp(−e|z|),

Weff ≈ 1

4
ln2(x− 1) ≈ 1

4
e2|z|. (65)

Solving Eq. (59) with this asymptotic form of Weff
under the assumption ω2 = −S2 < 0, we obtain a
linear combination of modified Bessel functions:

Y (z) ≈ C1IS(e|z|/2) + C2I−S(e|z|/2), (66)

where both terms grow at large negative z as
exp(−|z|/2 + e|z|/2) → ∞. It follows that pertur-
bations with imaginary frequencies (ω2 < 0) cannot
satisfy the boundary condition (64), and consequently
this solution is stable.

6. V (φ) �≡ 0, solution (36), (39)–(41), m > 1/3 (a
black hole). As follows from (39) and (60), at m >
1/3 there is a simple horizon at some x = xh > 1,
where A = 0, A′ > 0, and Weff = 0, see Fig. 7. More-
over, it turns out that Weff < 0 at x > xh. Mean-
while, z(xh) = −∞ since the integral

∫
dx/A(x) log-

arithmically diverges there. It follows that Weff < 0
in the whole range of z, which inevitably leads to
the existence of eigenvalues E < 0 of the quantum-
mechanical eigenvalue problem with Eq. (59), where
it is required that Y (x) should be quadratically inte-
grable.

Let us determine the boundary condition for the
function Y in Eq. (59) at x = xh in our HMPG model.
The horizon x = xh is some intermediate point, where
−1 < φ < 0, so we have no reason to require there
anything more than finiteness of δφ, and since φ =
− tanh2 ψ, finiteness of δψ . Furthermore, since Y =
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Fig. 7. Generic behavior of Weff(x) for the black hole solution (39)–(41), m > 1/3 (a), and comparison of Weff(x) with A(x)
(b, c).

eβδψ where eβ = r(xh) is finite, the boundary condi-
tion at x = xh (z → −∞) is simply |Y | < ∞, much
weaker than would follow from quadratic integrability
of Y . It is therefore clear that the “wave function”
corresponding to ω2 < 0 as a quantum-mechanical
“energy level,” satisfies our boundary conditions and
can implement instability of the black hole models
under study.

5.3. Stability: the Phantom Sector

1. V (φ) ≡ 0, solution (25)–(27) (the conformally
mapped “anti-Fisher” solution). All branches A–C
of the solution in ME contain throats z = z0 (where
β′ = 0) even though not all of them correspond to
wormholes, and, due to β′ in the denominator, the
potential Weff(z) for all of them contains a pole, where
Weff(z) ≈ 2/(z − z0)

2 . This singularity admits regu-
larization by a suitable Darboux transformation, after
which Weff(z) is replaced by a new potential Wreg(z)
that is finite and regular in the whole range of u (or
z) and is thus suitable for studying boundary-value
problems for Eq. (59), as described in detail in [44,
54, 56, 59].

The potential Wreg(z) has different forms for dif-
ferent branches of the solution (25)–(27). We will
not present them here, referring to [44] for details. It
has turned out that all branches of the anti-Fisher
solution are unstable [44, 54], as a result of the ex-
istence of a potential well in Wreg(z). To make clear
whether or not this conclusion can be extended to the
Jordan frame (hence to HMPG), for which Wreg(z)
is the same, we must determine the corresponding
boundary conditions and compare them with those
applicable in the Einstein frame.

In branches A and B (k ≥ 0), the solution in ME
exists in the range u > 0 that corresponds to z ∈ R,
and an unstable mode is found [44] under the bound-
ary conditions δψ → 0 as z → ±∞. However, in MJ,
owing to the factor cos2 ψ in the metric, the range of u
only extends from zero to a singular point us such that

ψ = Cus + ψ0 = π/2, and the range of z is truncated
at zs = z(us) and reduces to z ∈ (zs,∞). Therefore,
the instability conclusion cannot be directly extended
to MJ, and a separate new study is necessary, which
is beyond the scope of this paper. We can forecast
that the results will depend on the solution parame-
ters, including ψ0. Let us only try to formulate the
appropriate boundary condition at the singularity. We
have there cosψ = 0, and, since it is a regular point in
ME, we have in its neighborhood

cosψ ∼ |u− us| ∼ |z − zs|,
φ = tan2 ψ ∼ (z − zs)

−2.

Next, since φ → ∞ at the boundary, a reasonable
condition seems to be |δφ/φ| < ∞, so δφ is al-
lowed to behave as (z − zs)

−2. But since dφ/dψ =
2 sinψ/ cos3 ψ, we have δφ ∼ δψ/ cos3 ψ, and our
boundary condition further translates to

|δψ| ∼ cosψ ∼ z − zs ⇒
|Y |

z − zs
< ∞. (67)

In obtaining that, we took into account that us is a
regular point in the solution in ME, where, in particu-
lar, eβ is finite, hence Y ∼ eβδψ ∼ δψ. Thus it is the
condition (67) that should be applied in the boundary-
value problem for Eq. (59).

The same situation is found for branch C1, in
the cases where a singularity also occurs due to
cosψ = 0.

In the wormhole case C2, the Jordan-frame solu-
tion is simply a finite deformation of its counterpart
in ME, therefore, all boundary conditions for pertur-
bations are the same, and the instability conclusion
from [44, 54] extends to our HMPG model.

In the black hole case C3, we must formulate the
condition on the horizon, which now corresponds to
eβ ∼ |z| → ∞ in ME, and simultaneously cosψ ∼
1/|z| → 0, φ → ∞. Therefore, if we again require
|δφ/φ| < ∞, we obtain then, as in (67), |δψ/ cos ψ| ∼
|zδψ| < ∞. In its turn, it follows |Y | ∼ eβδψ ∼
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Table 1. HMPG solutions: Stability under monopole perturbations

Solution Description Results

Canonical, V ≡ 0, (18), (19) Mapped Fisher’s solution, naked singularity Unstable

Canonical, V ≡ 0, (23), y0 > 0 Wormhole with a conformal scalar field Unstable

Canonical, V ≡ 0, (23), y0 < 0 Naked singularity after a conformal continuation Unstable

Canonical, V ≡ 0, (24) Black hole with a conformal scalar field Stable

Canonical, V �≡ 0, (36)–(41), m < 1/3 Naked singularity, similar to Fisher’s Unstable

Canonical, V �≡ 0, (36)–(41), m = 1/3 Naked singularity of special kind Stable

Canonical, V �≡ 0, (36)–(41), m > 1/3 Black hole with a simple horizon Unstable

Phantom, V ≡ 0, (25)–(27), A, B, C1 Naked singularity due to cosψ = 0 Uncertain∗

Phantom, V ≡ 0, (25)–(27), C2 Wormhole with a phantom conformal scalar field Unstable

Phantom, V ≡ 0, (25)–(27), C3 Black hole with a phantom conformal scalar field Unstable

Phantom, V ≡ 0, (34), (35) A single static region among infinitely many horizons Unstable

Phantom, V �≡ 0, (53)–(56) Naked singularity due to cosψ = 0 Uncertain∗

Phantom, V �≡ 0, (53)–(56) Wormhole with an AdS or Minkowski far end Unstable

Phantom, V �≡ 0, (53)–(56) Black universe, generic configuration Unstable

Phantom, V �≡ 0, (53)–(56) Black universe, horizon at minimum of r(x) Stable
∗ See comments around Eq. (67).

|zδψ| < ∞. Thus, again, the boundary conditions
in MJ turn out to be less restrictive than they were
in ME where the instability was established, and we
conclude that this result is extended to our HMPG
black hole model.

Lastly, in the solution (34), (35) with infinitely
many horizons, any region between adjacent horizons
is bounded by the same kind of surfaces as just dis-
cussed, with the corresponding “weakened” bound-
ary conditions, and it is straightforward to conclude
that it is also unstable.

2. V (φ) �≡ 0, solution (53)–(56) (the conformally
mapped solution from [35] describing wormholes and
black universes). The following situations are pos-
sible.

(i) Solutions in which the conformal factor cos2 ψ
only deforms the Einstein-frame solution in a regular
manner. In these cases, all the stability results ob-
tained for ME remain valid in MJ. More specifically:
all wormhole solutions are unstable, while among
the black-universe solutions there is a stable subset,
in which the horizon coincides with the sphere of
minimum radius (that is, xh = 0, where x = xh is the
horizon), in all other cases the external static region
x > xh of a black universe is unstable [56]. These
instabilities exist due to potential wells of finite depth
in Wreg(z), see the beginning of Subsection 5.3.

(ii) Solutions describing black universes in ME,
“spoiled” by a singularity x = xs < xh due to cosψ =
0, i.e., there is a big-bang-like singularity located in
the T-region beyond the horizon. The stability results
for the external region x > xh remain the same as in
item (i).

(iii) Solutions with naked singularities x = xs in
a static region due to cosψ = 0, which are possible
at any value of x in wormhole solutions or with any
xs > xh in black-universe solutions in ME. In all
such cases, the situation looks the same as previously
discussed for V ≡ 0: we have a truncated range xs <
x < ∞, with the boundary condition (67) at x = xs,
and a separate study is necessary to find out the exact
(in)stability conditions.

The stability results are summarized in Table 1.

6. CONCLUDING REMARKS

We have considered exact analytical vacuum
static, spherically symmetric asymptotically flat so-
lutions of HMPG, using its scalar-tensor represen-
tation, with both zero and nonzero potentials V (φ),
on the basis of known solutions of GR with minimally
and conformally coupled scalar fields. All configura-
tions split into two large classes, one corresponding
to a canonical scalar field (−1 < φ < 0), the other to
a phantom one (φ > 0).
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It has been stated that in the case V ≡ 0 most of
the HMPG space-times contain naked singularities,
and a generic family of solutions in the phantom
sector, as could be expected, describes traversable
wormholes. As to possible black holes, it turns out
that that there are only two special families (one in
the canonical sector and another in the phantom one)
that describe extremal black holes (hence having zero
Hawking temperature), and the one with a phantom
scalar is globally regular. Such results substantially
disagree with those of [17], where the same problem
was studied numerically with equations written in the
Jordan frame, and black hole solutions with simple
(finite-temperature) horizons were found. The reason
for this disagreement is yet to be understood.

To obtain examples of exact solutions with V �≡ 0,
we have used the previously obtained solutions of GR
in which black hole subsets (this time with simple
horizons) are generic. Naturally, in the canonical sec-
tor this can only happen with at least partly negative
potential V (φ) since the well-known no-hair theorem
from GR [50] (on nonexistence of black holes with
variable minimally coupled scalar fields with nonneg-
ative potentials) directly extends to the Jordan frame
as long as the corresponding conformal factor is well-
behaved. Here we again disagree with [17] where a
number of HMPG black hole solutions were obtained
numerically, and some of them with V > 0. Further
studies are probably necessary in order to explain this
contradiction.

In the phantom sector, generic black hole solu-
tions are of black-universe type [35, 36], there are
also wormholes with flat or AdS asymptotics at the
far end. And, with both zero and nonzero poten-
tials, there emerge a new kind of singularities due to
vanishing of the conformal factor cos2 ψ; depending
on the solution parameters, such singularities may
be located in a static region (it is then a singular
attracting center) or beyond a black hole horizon (it
is then like a big bang or big crunch).

It has turned out that most of the solutions un-
der study are unstable under spherically symmetric
monopole perturbations. Some of these instability
results have been extended from their counterparts
known in GR (but certainly taking into account the
boundary conditions formulated in the Jordan frame),
some others have been obtained anew, see their sum-
mary in Table 1. Only some special solutions prove to
be stable, including the well-known black hole with
a massless conformal scalar field [27, 28, 63] and a
conformally mapped black universe with a horizon at
the minimum radius [35, 56].

In conclusion, let us mention some possible di-
rections of continuation or extensions of the present
study. First of all, in the case of zero potential

(V = 0) it is straightforward to obtain similar so-
lutions with electromagnetic fields Fμν , by analogy
with previous studies in scalar-tensor theories [26,
32]. With nonzero potentials, similar configurations
with electromagnetic fields can also be treated both
analytically and numerically, e.g., on the basis of
known GR solutions [47, 57]. Another trend of in-
terest is a consideration of similar problems in the so-
called extended HMPG containing functions f(R,R)
of two curvatures [12, 13, 64], whose scalar-tensor
representation contains two interacting scalar fields.
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