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Abstract—f(R, T ) gravity is a widely used extended theory of gravity introduced by Harko et al., which is
a straightforward generalization of f(R) gravity. The action in this extended theory of gravity incorporates
well-motivated functional forms of the Ricci scalar R and the trace of the energy momentum tensor T .
The present manuscript aims at constraining the most widely used f(R, T ) gravity model of the form
f(R+ 2λT ) to understand its coherency and applicability in cosmology. We communicate here a novel
method to find a lower bound on the model parameter λ � −1.9× 10−8 through the equation relating the
cosmological constant (Λ) and the critical density of the universe (ρcr).
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1. INTRODUCTION

The cosmological constant (Λ) problem is one
of the major unsolved mysteries concerned with the
dissimilarity between the tiny observed value of the
cosmological constant and the extremely large value
of zero point energy. Based on the Planck energy
cutoff along with other factors, the disaccord is as
high as 120 orders of magnitude [1], a predicament
often quoted as [2] “the worst theoretical prediction
in the history of physics.” After the discovery of the
expansion of the universe by E. Hubble in 1929 [3], it
was expected that the rate of expansion must be slow-
ing down owing to the attractive nature of gravity.
Nonetheless, measurements of the intrinsic bright-
ness of distant Type Ia supernovae [4, 5] showed that
the expansion is in fact accelerating. This mysterious
component which fuels the expansion at an ever in-
creasing rate accounts for nearly 70% of the energy
budget of the universe and is termed Dark Energy
(DE). There are three different kinds of DE models.
These are: quintessence (−1 < ω < 0), phantom en-
ergy (ω < −1) and the cosmological constant (ω =
−1), where ω represents the equation-of-state (EoS)
parameter. Current observations suggest ω ≈ −1 [6].

Due to the lack of any observational evidence for
the existence of any DE candidates (for a detailed
reference of various DE candidates, one may refer
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to [7]), researchers were inspired to modify the geo-
metric sector of the field equations, where the Ricci
scalar R in the action is replaced by various generic
functions of f(R) [8], f(T ) [9], where T is the torsion
scalar, f(R,T ) [10] where T is the trace of the energy-
momentum tensor, and f(G) [11], where G is the
Gauss–Bonnet invariant.

Due to some fascinating features of f(R,T ) grav-
ity and robustness is solving the cosmological issues,
it is often employed in the literature [12]. f(R,T )
gravity is also reported to clearly narrate the tran-
sition from the matter-dominated to late-time ac-
celerated phase of expansion [13]. f(R,T ) gravity
models have been applied to scalar field models [14],
anisotropic models [15, 16], dark matter [17], dark
energy [18], bouncing cosmology [19, 20], gravita-
tional waves [21–23], super-Chandrasekhar white
dwarfs [24], massive pulsars [25, 26], wormholes [27–
39], baryogenesis [40, 41], Big-Bang nucleosynthe-
sis [42], growth rate of matter fluctuations [43] and
in varying speed of light scenarios [44]. In [45], the
authors investigated the causes of irregular energy
density in f(R,T ) gravity.

The present paper reports a pioneering method for
constraining the model parameters of f(R,T ) gravity
from the equation relating the cosmological constant
(Λ) and the critical density of the universe (ρcr). Ac-
cording to the Friedmann solutions [46], the critical
density is a particular density at which the universe
is flat or Euclidean, and as a result, the curvature
parameter vanishes [47]. The ratio of the current value
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of the density of the universe to the current value of
critical density is called the density parameter Ω0 =
ρ/ρcr. This is a very important cosmological param-
eter which determines the evolution and the ultimate
fate of the universe [47]. For Ω0 = 1, the universe is
flat, while for Ω0 > 1 the universe is closed, and it
is open for Ω0 < 1. Since the current observations
suggest Ω0 � 1, this indicates that the universe is
approximately flat and apparently infinite, ergo favors
the inflationary paradigm.

The paper is organized as follows: In Section 2 we
provide a summary of f(R,T ) gravity. In Section 3
we introduce the framework to constrain the model
parameter of f(R,T ) gravity. In Section 4 we present
our conclusions.

2. OVERVIEW OF f(R,T ) GRAVITY

The action in f(R,T ) gravity is given by

S =
1

16πG

∫ √
−g [f(R,T ) + Lm] d4x, (1)

where Lm denotes the matter Lagrangian. The
stress-energy-momentum tensor of matter fields
reads

Tμν =
−2√−g

δ(
√−gLm)

δgμν
. (2)

Varying the action (1) with respect to the metric
yields

Πμνf
1
,R(R,T ) + f1

,R(R,T )Rμν −
1

2
gμνf(R,T )

= (Tμν +Θμν) + κ2Tμν − f1
,T (R,T ), (3)

where

Πμν = gμν�−∇μ∇ν , (4)

Θμν ≡ gαβ
δTαβ

δgμν
, (5)

and f i
,X ≡ dif/dXi. The field equations (3) reduce to

the standard GR form when f(R,T ) ≡ R.

Contracting Eq. (3) with the inverse metric gμν ,
one obtains the trace of the field equations as

3�f1
,R(R,T ) + f1

,R(R,T )R − 2f(R,T )

= κ2T − (Θ + T )f1
,T (R,T ). (6)

Consider a spatially flat FLRW metric as

ds2 = dt2 − a(t)2[dx2 + dy2 + dz2], (7)

where a(t) represents the scale factor. Assuming the
universe to be dominated by a perfect fluid, the matter

Lagrangian density can be assumed as Lm = −p.
Applying this to Eqs. (3) and (6), we obtain

κ2 + f1
,T (R,T )

f1
,R(R,T )

ρ+
1

f1
,R(R,T )

[
pf1

,T (R,T )

− 3ṘHf2
,R(R,T ) +

1

2
(f(R,T )

−Rf1
,R(R,T ))

]
= 3H2, (8)

κ2 + f1
,T (R,T )

f1
,R(R,T )

p+
1

f1
,R(R,T )

[
R̈f2

,R(R,T )

+ Ṙ2f3
,R(R,T )− 1

2

(
f(R,T )−Rf1

,R(R,T )
)

− pf1
,T (R,T ) + 2HṘf1

,R(R,T )

]

= −3H2 − 2Ḣ, (9)

where dots represent time derivative, H is the Hubble
parameter, ρ is the density, and p the pressure with
T = ρ− 3p.

We set the f(R,T ) functional form to be

f(R,T ) = R+ 2λT. (10)

Substituting (10) into (8), we obtain the first modified
Friedmann equation as

H2 =
8πG

3
(8π + 3λ) ρ− 2

3
λωρ, (11)

where ω = p/ρ is the EoS parameter. Current obser-
vations suggest ω � −1 [6].

3. THE FRAMEWORK TO CONSTRAIN λ

In this section we will propose a framework to put
bounds on the model parameter λ from the equation
relating the cosmological constant (Λ) and the critical
density of the universe (ρcr).

We start by substituting ω = −1 in (11) to obtain

(8π)2G

3
ρ+ λρ

(
8πG +

2

3

)
= H2. (12)

Since 8πG � 2
3 , we neglect the 8πG term, which

simplifies the above equation to obtain

H2 =
1

3
ρ
[
2λ+ (8π)2G

]
. (13)

The Friedmann equation in standard GR with the
cosmological constant Λ is given by [48, 49]

H2 =
8πG

3
ρ+

Λc2

3
. (14)
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Since the left-hand sides of Eqs. (13) and (14) are the
same, we can equate them to obtain

Λc2 = 2λρ+
[
(8π)2G− 8πG

]
. (15)

Equation (15) can further be simplified to the reduced
form

Λ ≈ ρ

c2
[2λ+ 192πG] . (16)

Now, the cosmological constant Λ is defined as [50]

Λ = 3

(
H0

c

)2

ΩΛ, (17)

where H0 is the present value of the Hubble parame-
ter, and ΩΛ is the dark energy density parameter. As
mentioned in the introduction, at the present epoch
the total density parameter Ω0 = ρ/ρcr � 1 [51], we
can therefore substitute ρ with the critical density ρcr
in (16). This further yields

3

(
H0

c

)2

ΩΛapprox
3H2

0

8πGc2
[2λ+ 192πG] . (18)

Now, the critical density ρcr can be defined as [46]

ρcr =
3H2

0

8πG
. (19)

Simplifying (18) we finally obtain

ΩΛ =
1

8πG
(2λ+ 192πG) . (20)

Observational Constraint: the Planck satellite
data reported ΩΛ = 0.6889 ± 0.0056 [51]. This im-
poses a lower bound on the model parameter λ �
−1.9× 10−8.

4. CONCLUSIONS

f(R,T ) gravity is a modified theory of gravity
where the Ricci scalar R in the action is replaced by
a generic function of R and T , where T denotes the
trace of the energy-momentum tensor. As a result,
the emergent theory can resolve the major cosmolog-
ical enigmas such as the current accelerated phase of
the universe without requiring dark energy. f(R,T )
gravity is also reported to clearly narrate the transi-
tion from matter-dominated to late-time accelerated
phase of the universe expansion [13].

However the functional form of f(R,T ) can be
arbitrary, and any number of model parameters can be
included, which can be fine-tuned to fit the observa-
tions. Hence we aimed in this paper to constrain the
model parameter λ for the simplest minimal coupled
model f(R,T ) = R+ 2λT through the equation re-
lating the cosmological constant (Λ) and the critical
density of the universe (ρcr). We report a lower bound
on λ � −1.9× 10−8.

From the analysis we establish the idea that the
parameter λ is trivial and has no significant impor-
tance in cosmological models. It will be interesting to
apply this method to constrain the model parameters
of other f(R,T ) gravity models and to investigate
their cosmological viability.
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