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Abstract—The theory of direct particle interaction proposed in our previous works is further developed.
In this theory, the electromagnetic interaction is primary whereas the emergence of particle masses and
gravity are its consequences. The equation of motion is generalized to arbitrary velocities of the selected
particle (rather than small ones). With the introduction of an effective metric, a correspondence between
this theory and General Relativity (GR) is established. It is shown that the theory reproduces GR effects
associated with the Schwarzschild and Friedmann metrics: planetary perihelion shift, light deflection by
a massive body, gravitational redshift and cosmological redshift. However, a general correspondence with
GR is achieved under some restrictions (at sufficiently low speeds, small components of the gravitational
potential, but sufficiently large accelerations). In the theory, there is a parameter with the dimension of
acceleration, approximately equal to 7× 10−10 m/s2 and close to the parameter a0 in modified Newtonian
dynamics (MOND). Perhaps our theory can serve as a theoretical basis for MOND.
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1. INTRODUCTION

In our papers [1, 2], a theory was proposed in
which the origin of mass and gravity are conse-
quences of the electromagnetism. We took as a basis
the theory of direct electromagnetic interaction be-
tween particles, constructed by Tetrode [3] and further
developed by Wheeler and Feynman [4, 5]. In [3], both
retarded and advanced electromagnetic interactions
were considered. Moreover, in the equation of motion
of charged particles, both the retarded and advanced
interactions entered symmetrically. This presented a
significant difficulty, since the advanced interaction is
not observed in known experiments. Another diffi-
culty of the theory [3] was that the equation of motion
did not contain the force of radiative friction. The
subsequently developed version of the theory [4] was
to a large extent equivalent to Maxwell’s electrody-
namics and became known as the Wheeler–Feynman
absorber theory. The key idea of [4] can be ascribed
to Mach’s principle in its general formulation: the
interaction of particles in a certain local region is
associated with the dynamics of all particles in the
Universe. The Universe was considered in [4] as
an absolute absorber, due to which only retarded
forces remained in the equation of motion and there
appeared the radiation friction force.

In our papers [1, 2] the requirement of absolute
nature of the absorber was weakened: the Universe
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was considered as an absolute absorber only approx-
imately. The non-absolute nature of the absorber
leads to important new results: the emergence of
particle masses and gravity are consequences of the
electromagnetic interaction. Moreover, the cosmo-
logical coincidences (the known numerical relations
involving the number of particles N inside the Hubble
sphere) were obtained in [2] as a consequence of the
theory. However, when deriving the equation of mo-
tion of charged particles, a number of approximations
were used, among which was the assumption that the
velocities of the particles in question were small. In
this paper, we propose a more consistent relativistic
version of the theory.

Our theory is based on the variational principle in
the background of Minkowski space. The action of
the system of electromagnetically interacting parti-
cles has the form

S = −
∑

i

∑

k<i

eiek
c

×
∫ ∫

uμi ukμδ(s
2(i, k))dsidsk, (1)

where uμi = dxμi /dsi is the 4-velocity of particle num-
ber i, ei is its charge, c is the speed of light, and
the delta function of the squared interval between
events on the world lines of particles i and k may be
presented in the form

δ(s2(i, k))
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=
1

2rik
[δ(ctik − rik) + δ(ctik + rik)]. (2)

In our theory, the mass is not introduced initially, it is
an emergent property of particles: the corresponding
term in the equation of motion appears as a conse-
quence of the advanced interaction. In the nonrela-
tivistic limit, instead of Newton’s second law m�a =
�F , we get an equation of the form 0 = 1

2
�F ret + 1

2
�F adv,

and after taking into account Mach’s principle, this
equation is converted to the form 0 = �F ret − const ·�a,
where the constant is determined by all particles of the
Universe and plays the role of mass of the particle in
question.

For convenience, we can introduce a quantity
corresponding to the electromagnetic field potential.
Consider some point of the world line of particle i.
The expression for the potential created at this point
by another particle k can be written as

Aμ(i, k) = ek

∫
ukμδ(s

2(i, k))dsk . (3)

However, the “field” is, in this theory, an auxiliary
construction, while real is, by assumption, a direct
interaction of particles which could be in principle
described without invoking this notion. The poten-
tial determined by Eq. (3) is half-retarded and half-
advanced:

Aμ(i, k) =
1

2
Aret

μ (i, k) +
1

2
Aadv

μ (i, k), (4)

where Aret
μ (i, k) is the Lienard–Wichert retarded po-

tential, while Aadv
μ (i, k) is a similar advanced poten-

tial, which differs from the retarded one in that it is
determined by the existence and motion of particle k
in the future with respect to the moment of its impact
on particle i rather than in the past. As a result of
varying the action (1) (see the details in [1, 2]), we
obtain the set of equations of motion (one for each
particle) of the simple form

0 =
ei
c
uνi

∑

k �=i

(
1

2
F ret
μν (i, k) +

1

2
F adv
μν (i, k)

)
. (5)

A further development of the theory in [1, 2] was
to express the advanced interactions through the
retarded ones and to arrive at such an equation of
motion of particle i that would include only retarded
forces. In other words, we sought to construct a
deterministic theory where the acceleration of any
particle at any given time would be determined by the
motion of all particles in the past rather than in the
future. This can be done only in some approxima-
tions. In this paper we continue to develop the theory
in the spirit of classical determinism. To express the
advanced interactions through the retarded ones, it is

necessary to take into account Mach’s principle, i.e.,
the influence of the entire Universe on the interaction
of any two particles i and j. To do that, the theory
must initially contain some ideas about the Universe
as a whole. Let us recall the related postulates that
we adopted in [2]:

1. Basic assumptions about the Universe.
The Universe is homogeneous and isotropic on large
scales, of the order of the distance R, roughly equal
to the radius of the Hubble sphere in the Standard
cosmological model. Moreover, the Universe is static,
and the mean density of matter in it does not change
with time. On scales smaller than R, there are super-
clusters of galaxies whose positions relative to each
other do not change with time. There is no expansion
of the Universe in this model. The theory is based
on the background Minkowski space, and there are
reference frames in which large “units” of matter,
such as superclusters of galaxies, can be considered
to be at rest. We will call such reference frames
Newtonian, following Dicke’s paper [6].

2. A finite radius of action of the electro-
magnetic interaction. For each particle i, there
is a sphere of radius R, to be called an R-sphere.
The interaction of particle i with other particles inside
the R-sphere obeys Eq. (5), whereas the interaction
with particles outside the R-sphere is stochastic and,
being averaged over time (on a certain time scale),
yields zero. The number of particles N inside the
R-sphere of any particle i can be regarded constant.
When considering systems of small size (of the order
of the Solar system or galaxy) , we can assume that all
particles of this system have one common R-sphere.

The introduction of a finite radius of the electro-
magnetic interaction and the concept of the R-sphere
allows us to develop the method of accounting for
the advanced interaction described by Wheeler and
Feynman [4]. Consider particle i, for which we want
to obtain an equation of motion in which the leading
interactions are expressed in terms of the lagging
ones. Let us rewrite Eq. (5) as

0 =
eiu

ν
i

c

∑

k �=i

F ret
μν (i, k)

+
eiu

ν
i

c

(
1

2
F ret
μν (i, i) −

1

2
F adv
μν (i, i)

)

− eiu
ν
i

c

∑

k

(
1

2
F ret
μν (i, k)−

1

2
F adv
μν (i, k)

)
. (6)

Here, the first term is the usual retarded interac-
tion of classical electrodynamics, while the second
term gives the force of radiation friction in accordance
with Dirac’s paper [7]. In the third term, summing
is carried out over all particles, including i. The
expression in parentheses of this term, as noted in [4],
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is a solution of Maxwell’s equations without sources,
but it is uniquely determined by the motion of all par-
ticles in the Universe. Drawing an analogy with field
electrodynamics, it can be said that it describes elec-
tromagnetic “waves” coming into the R-sphere from
outside and passing through it without re-emission.

To calculate the sum in the third term in (6),
we considered in [2] two types of processes, called
S-processes and P-processes. In the first type: an
isolated particle i has a delayed effect on another
particle k. This effect contributes to the acceleration
of particle k, resulting in that k has a reciprocal
advanced effect on particle i (we take into account
the linearity of the equations and the possibility to
single out, from the total acceleration of particle k, a
part induced by i). The corresponding contribution
to the sum in the third term in (6) will be denoted as
Sμν(i, k). The second type: some particle j exerts a
retarded influence on another particle k. This effect
contributes to the acceleration of k, and, as a result, k
exerts an advanced influence on the selected particle
i. The corresponding contribution to the sum in
the third term in (6) is denoted by Pμν(i, k, j). The
calculations were carried out in [2] in the Newtonian
reference frame, in which particle i, at the initial time
t = 0, is located at the origin, and it was assumed
that the world lines of all particles are specified at
t ∈ (−∞; 0).

In the present paper, we restrict ourselves to
considering S-processes and calculate Sμν(i, k) for
the relativistic case, and, instead of considering
P-processes (and more complex chains of inter-
actions), we use the hypothesis that the advanced
interactions can be expressed through the retarded
ones. In fact, we have already used this hypothesis
in [1], but there we restricted ourselves to considering
the nonrelativistic approximation.

Let us start the calculation of Sμν(i, k). To begin
with, consider an idealized situation where only two
particles i and k are present in the entire space. Let
the world line of particle k intersect the future light
cone of particle i at point xμk (which corresponds to
the three-dimensional radius vector �rk and the time
instant tk). Let wkμ be the 4-acceleration acquired
by particle k due to the delayed action of particle i.
Being accelerated, particle k at the instant tk emits
electromagnetic “waves.” The divergent spherical
wave corresponding to the retarded interaction will
sooner or later leave the R-sphere of particle i. But
−1/2 from the field strengths in this wave enters into
the expression for Sμν(i, k). This means that, from
outside of the R-sphere of particle k comes a converg-
ing spherical wave corresponding to the advanced
interaction. At the time t = tk, this wave collapses
at the point xμk , and at t = 0 this wave passes through

particle i. This gives the following calculation algo-
rithm for Sμν(i, k):

Step 1. Calculate the retarded influence on particle
k at the instant tk from i. The result is well known: it
is the retarded field of a particle moving by a specified
law, which has the following covariant form:

F ret
μν (k, i) =

ei
(xσkuiσ)

2
(wiμxkν − wiνxkμ)

+
ei(x

σ
kwiσ − 1)

(xσkuiσ)
3

(uiνxkμ − uiμxkν), (7)

where wiμ = duiμ/dsi is the 4-acceleration of parti-
cle i.

Step 2. Calculate the acceleration acquired by
particle k due to the retarded interaction calculated
at Step 1. Since this interaction is purely retarded,
we can use the equation of motion of conventional
electrodynamics. Neglecting the radiative friction as
compared to the external force acting on k, we have:

wkμ =
eiek

mkc2(x
σ
kuiσ)

2
(wiμxkσu

σ
k − uσkwiσxkμ)

+
eiek(x

σ
kwiσ − 1)

mkc2(x
σ
kuiσ)

3
(uσkuiσxkμ − uiμxkσu

σ
k) . (8)

Step 3. Apply to the point with the radius vector
�rk one more vector equal to �rk, and calculate, at the
end of this vector, the retarded field fμν created by
particle k at the expense of the acceleration calculated
at step 2. The required field acting on the particle
i at the moment t = 0 is Sμν(i, k) = −1

2fμν . After
transformations we get:

Sμν(i, k) =
eie

2
k

2mkc2(x
σ
kuiσ)

2(xσkukσ)
2

×
(
xkσu

σ
k (wiμxkν − wiνxkμ)

+ (xσkwiσ − 1) (uiνxkμ − uiμxkν)
)
. (9)

Substituting (9) into (6) and using that uρiwiρ = 0,
we obtain that, in the equation of motion of particle i,
emerges the following term:

−eiu
ν
i

c
Sμν(i, k) = − e2i e

2
k

2mkc3x
σ
kukσx

λ
kuiλ

wiμ

− e2i e
2
ku

ν
i (x

σ
kwiσ − 1)

2mkc3(x
σ
kukσ)

2(xσkuiσ)
2

× (uiνxkμ − uiμxkν) . (10)

The term containing wiμ, after its transfer to the left-
hand side of the equation of motion (6), will play
the role of a product of the mass of particle i by its
4-acceleration vector and the speed of light.
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We have considered an idealized situation where
only two particles i and k are present in the whole
space. But in [2] we have shown that the expression
for Sμν(i, k) does not change if there are many other
particles inside the R-sphere of the particle i besides
k. In this case, the main contribution to the sum∑

k �=i Sμν(i, k) is made by distant particles, those
whose sufficiently large part of radiation leaves the
R-sphere of particle i.

Next, we must find the sum (10) over all particles
k �= i. Let us first consider only distant particles
located at distances of the order of R from particle i.
Let us pass from (10) to an approximate expression
following from the symmetry of the R-sphere. Due
to this symmetry, one can put xσkukσ = R. In the
first term in (10) one can also put xλkuiλ = R (the
latter can be checked by direct integration by the
angle between the three-dimensional vectors �vi and
�rk). Therefore, the first term is presented as a product
of the 4-acceleration by a relativistic invariant equal
to a product of mass by the speed of light. The second
term (10) has a more complex structure, and we will
thus far leave it in its general form. Then by summing
(10) over all distant particles k ∈ R we obtain the
expression:

−eiu
ν
i

c

∑

k∈R
Sμν(i, k) = −

∑

k∈R

e2i e
2
k

2mkc3R2

×
(
wiμ +

(1− xσkwiσ)(xkμ − uiμuiνx
ν
k)

(xσkuiσ)
2

)
. (11)

The expression k ∈ R under the sign of sum means
summing over distant particles (those at distances of
order R), which may be approximately replaced by
integrating over the angles in spherical coordinates.
From (11) follows an expression for the mass of an
arbitrary particle i

mi =
∑

k �=i

e2i e
2
k

2mkc4R2
. (12)

Within this paper, we will suppose that all particles
have charges of the same absolute value e and the
same mass m, which in this case is determined by the
expression

m =
e2
√
N√

2c2R
. (13)

Let us now consider a small region of the Universe,
whose linear dimensions are much smaller than the
characteristic scale R, and calculate the contribution
of these “nearby” particles to the third term in (6).
To do that, we use the approach outlined in [1] and
generalize it. Let us denote the sum of advanced
potentials at some point of the world line of particle i,

created by all other particles k �= i, by the symbol
Ãadv

μ . Let {K} be the set of intersection points of the
future light cone of particle i with the world lines of
all particles k �= i, and K be the point from this set
belonging to the world line of particle k. In accor-
dance with the deterministic nature of the developed
theory, the value Ãadv

μ can be represented as a function
of many variables: the retarded potentials created at
all points K by all other particles j, j �= k for the
point K. Suppose that the desired function is decom-
posable into a Taylor series with tensor coefficients,
and in some approximation one can restrict oneself to
the linear term in this decomposition. Then for the
quantity Ãadv

μ one can write

Ãadv
μ =

∑

K

∑

j �=k

QμσA
ret σ(k, j), (14)

where Qμσ are the tensor coefficients of the decom-
position. Note that particle i is included in the set of
particles j �= k (in [1], instead of the set of particles
j �= k, only one particle i was considered). Due to the
isotropy and homogeneity of the Universe, the tensor
expansion coefficients were chosen in [1] in the simple
form

Qμσ = qημσ, (15)

where q is a certain number, and ημσ is the metric ten-
sor of Minkowski space. The results of our paper [2]
have confirmed this assumption and, in addition, have
allowed us to calculate q. It has turned out that
q ≈ 1/

√
N .

Let us single out from the set of all particles k
a subset of “nearby” particles (the contribution of
“distant” particles to the equation of motion has al-
ready been taken into account). We introduce two
tensors (analogs of the 4-potential Aμ and the elec-
tromagnetic field tensor Fμν), which do not include
the charge of particle j:

Gret
μ (k, j) =

1

ej
Aret

μ (k, j)

=

∫
ujμδ(s

2(k, j))dsj =
ujμ

(xσj − xσk)ujσ
, (16)

Gret
μν(k, j) =

∂Gret
ν (k, j)

∂xμj
−

∂Gret
μ (k, j)

∂xνj
. (17)

Then Eq. (14) is rewritten as

Ãadv
μ =

ej√
N

∑

K

∑

j �=k

ημσG
ret σ(k, j). (18)

Let us substitute to (6) the expression (11) and the
advanced electromagnetic field tensor F̃ adv

μν , calcu-
lated through the potential (18). Taking into account
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the expression (13) for the mass, we find that the
equation of motion of particle i takes the form

mic

(
wiμ +

∑

k∈R

(1− xσkwiσ)(xkμ − uiμuiνx
ν
k)

(xσkuiσ)
2

)

=
eiu

ν
i

c

∑

k �=i

F ret
μν (i, k) + f rad

μ

+
e2iu

ν
i

c
√
N

∑

n �=i

Gret
μν(n, i)

+
eiu

ν
i

c
√
N

∑

n �=i

∑

j �=i,n

ejG
ret
μν(n, j), (19)

where the sum in n is the sum over “nearby” par-
ticles, and f rad

μ is the radiative friction force. For
clarity, we have divided all particles j into j = i and
all others j �= i, n. The term corresponding to j = i
does not depend on the sign of the charge of particle i
(it is proportional to the square of the charge). In
the nonrelativistic approximation considered in [1, 2],
this term describes the attraction force and can be
interpreted as the gravitational force. Let us note
that the last two terms of the equation contain the
tensor Gret

νμ(n, j) rather than Gret
νμ(j, n). This equation

of motion is the basic equation of our theory, which
we will further analyze.

Note that Eq. (19) may be considered as the equa-
tion of motion of not only a single particle, but also
of a macroscopic body if we assume that all particles
of this body have the same velocity. This assumption
is valid if we consider averaging of velocities over a
sufficiently large period of time, which allows us to
neglect the thermal motion of particles of the body.
The tensor Gret

μν(n, j) can be presented as

Gret
μν(n, j) =

wiμ(xnν − xjν)− wiν(xnμ − xjμ)

((xσn − xσj )ujσ)
2

+
(xσn − xσj )wjσ − 1

[(xσn − xσj )ujσ]
3

× [ujν(xnμ − xjμ)− uiμ(xnν − xjν)] . (20)

The coordinates xnμ are coordinates of the points
K belonging to the future light cone of the selected
particle i. Due to this circumstance, the current
version of the theory is not fully deterministic. Indeed,
to calculate the acceleration of particle i, we need to
know the positions of the surrounding n particles in
the future. However, we can circumvent this difficulty
for two practically important cases: (a) considering
the motion of charged particles in the gravitational
field of one massive body, and (b) considering the

Universe as a whole, when some sufficiently large
structural elements are assumed to be stationary in
the Newtonian reference frame. In both these cases,
massive bodies can be approximately considered to
be at rest, and the coordinates of their constituent
particles xnμ to be known in the future.

Consider the left-hand side of Eq. (19). At “large”
accelerations �a of particle i, the first term dominates
in the outer brackets, and the left-hand side passes
into the usual product of mass by acceleration. A
sufficient condition for the acceleration �a to be large
can be written as follows:

a > a0 =
c2

R
≈ 7× 10−10 m/s2. (21)

To verify that, it is necessary to take into account
the inequality c2/R > vc/R. It implies that if the
absolute value of the acceleration is much larger than
c2/R, then it is also much larger than the similar
terms containing vc/R. Here we notice an interesting
fact: the acceleration determined by Eq. (21) has
the same order of magnitude as the acceleration a0
in Modified Newtonian Dynamics (MOND), see [8–
14]. For galaxies whose main part of the mass is
concentrated in the nucleus, the acceleration a0 sets
the characteristic distance scale

r0 ≈
√

GM

a0
, (22)

where M is the mass of the particular galactic nu-
cleus, and G is the gravitational constant. At dis-
tances from the nucleus larger than r0, deviations
from Newton’s laws in the observed rotation curves
are obtained. To explain the rotation curves of the
galaxies, the Dark Matter hypothesis has been intro-
duced, an alternative to which is MOND. To date,
MOND is an empirical theory for which no funda-
mental basis has yet been found. The fact that our
theory has a characteristic acceleration scale (21)
suggests that perhaps our theory can serve as a theo-
retical basis for MOND.

In the current version of the theory, it has not
yet been possible to reproduce the rotation curves of
galaxies predicted by MOND. Perhaps this is related
to the unresolved issues that we will list at the end
of the paper. We will note thus far that the very fact
of emergence, in this theory, of a parameter with the
dimension of acceleration close to a0 of MOND is of
interest. In the remaining part of this paper we will
consider the case of large accelerations, a � a0.

2. CORRESPONDENCE WITH GENERAL
RELATIVITY

In this section we discuss the question of how the
current version of our theory relates to GR. Consider
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the motion of a body whose total electric charge ei is
zero (but the mass mi is not zero, since the mass is
proportional to the sum of the squares of charges of
the particles that make up the body). The mass of a
macroscopic body in this paper will be considered to
be equal to the mass of a particle (13) multiplied by
the number of particles in this body. We also assume
that the acceleration of the body is quite large (a �
a0). Then, for a macroscopic body i, the equation of
motion takes the form

micwiμ =
micRuνi

N

∑

n

(
wiμxnν − wiνxnμ

(xσnuiσ)
2

+
(xσnwiσ − 1) (uiνxnμ − uiμxnν)

(xσnuiσ)
3

)
, (23)

where we have put for brevity xiμ = 0.
Let us compare this equation with the equation

of motion in the theory of gravity developed by Gra-
novsky and Pantyushin [15, 16], Piragas and Zhda-
nov [17, 18] and Turygin [19]. The theory developed in
these papers is a theory of direct gravitational inter-
action of particles in background Minkowski space,
and its conclusions approximately coincide with those
of GR in the first order with respect to the gravita-
tional constant G. However, in this theory, gravity
is considered as a separate interaction, not related to
the electromagnetic one. In this section, we modify
the gravitational potential introduced in these papers
according to the idea of the induced nature of gravity,
and establish a connection with our theory. Let us
first consider the gravitational potential of the kind
introduced in [15] and [19]:

hμν(i, n) =
∑

n �=i

Gmn

c2

×
∫
(2unμunν − ημν)δ(s

2(i, n))dsn, (24)

where G is the gravitational constant, ημν is the
Minkowski metric (a more general case of the back-
ground metric was considered in [19]). The poten-
tial defined by Eq. (24) is half-retarded and half-
advanced. Let us now introduce another potential,
whose some properties will coincide with those of the
potential (24), and pay attention to the above equation
(18) for the advanced electromagnetic potential Ãadv

μ .
The sources for it are the surrounding particles k �= i,
however, instead of the charge and 4-velocity ek and
ukμ of particle k, this potential includes the character-
istics ei and uiμ of particle i. Let us introduce a similar
gravitational potential instead of (24): we take the
advanced part of (24) and replace the 4-velocity unμ
of particles n with the 4-velocity of particle i, without

replacing the coordinates xnμ. The new potential will
take the form

ϕμν(i, n) =
∑

n �=i

Gmn

2c2
· 2uiμuiν − ημν
(xσi − xσn)uiσ

, (25)

where xσn are the coordinates of the intersection point
of of the future light cone of particle i and the world
line of particle n.

The gravitational potential ϕμν defined in this way
identically satisfies the condition similar to that of the
Lorentz gauge,

∂

∂xμ

(
ϕμν −

1

2
ημνϕ

)
= 0, (26)

where ϕ = ϕμνη
μν , and the derivatives of ϕμν(x, n)

are calculated at an arbitrary point of space with the
coordinates xμ, not necessarily lying on the world line
of particle i (the 4-velocity uiμ is then not subject to
differentiation). Also, this potential identically satis-
fies the equation

ηαβ
∂2

∂xα∂xβ

(
ϕμν −

1

2
ημνϕ

)
=

8πG

c4
T̃μν , (27)

where T̃μν is a tensor which is a modification of the
energy-momentum tensor Tμν of a system of point
masses. The tensor T̃μν for particle i at an arbitrary
point X of space is defined as

T̃μν(X) =
∑

n �=i

∫
mnδ

4(X −Xn)uiμuiνdsn, (28)

where δ4(X −Xn) is the four-dimensional delta
function of the coordinate differences xσ − xnσ of an
arbitrary point X and a point Xn on the world line of
particle n.

Let us introduce, for particle i, the effective metric
gμν defined by

gμν = ημν + ϕμν . (29)

Then, for the contravariant metric tensor, the follow-
ing relation holds:

gμν = ημν − ϕμν . (30)

We would like to stress that for each particle i there is
its own effective metric gμν . There is no contradiction
in this, since the effective metric serves in our theory
as an auxiliary quantity, not a characteristic of space.
Note that if the velocities of all particles are negligible
as compared to the speed of light, then the effective
metrics for them are approximately the same (and
then we can talk about a single metric).
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In what follows we will suppose that the metric gμν
is introduced for a selected particle i (the index i in
the notation gμν is omitted for brevity). We define the
Christoffel symbols for the metric gμν as

Γλ
μν =

gλσ

2

(
∂gσν
∂xμ

+
∂gμσ
∂xν

− ∂gμν
∂xσ

)
. (31)

The thus defined metric gμν identically satisfies the
harmonic coordinate conditions (the de Donder–
Fock conditions) which can be written as

Γλ
μνg

μν = 0. (32)

Further on, one can introduce the Ricci tensor Rμν

and the scalar curvature R and show that for gμν the
equation similar to Einstein’s equation is identically
fulfilled (differing only in that the right-hand side con-
tains, instead of the energy-momentum tensor Tμν ,
the modified tensor (28)):

Rμν −
1

2
gμνR =

8πG

c4
T̃μν . (33)

In the effective metric gμν , the interval dŝ and
the velocity 4-vector ûμi of particle i are expressed
in terms of s and the 4-vector uμi in the Minkowski
metric using the relations

dŝ2 = gμνdx
μdxν = ds2 + ϕμνdx

μdxν , (34)

dŝ = ds

(
1 +

1

2
ϕμνu

μuν
)
, (35)

ûμ = uμ
(
1− 1

2
ϕμνu

μuν
)
. (36)

In GR, the equation of motion for monopole ob-
jects is the geodesic equation

gμλŵiλ = −Γμ
αβû

α
i û

β
i . (37)

But it can be shown that Eq. (37) coincides, in the
first order in the constant G, with the equation of
motion (23) in our theory if it holds

Gmimn

2c
=

e2i
c
√
N

. (38)

Since in the current version of the theory all particles
have the same absolute value of charge e and the

same mass m = e2
√
N√

2c2R
, Eq. (38) is rewritten in the

form

G =
4c4R2

e2N
√
N

. (39)

This equation differs from Eq. (32) in our paper [2]
only by a numerical coefficient of the order of unity,
which is in both cases approximate. Thus we have
shown that in our theory massive electrically neutral

particles move in the same way as is predicted by
GR, in the case of small velocities, small gravitational
potentials, but not small accelerations (the acceler-
ation must be larger by order of magnitude than a0
determined by Eq. (21)). In particular, our theory
describes the effect of planetary perihelion shift.

The effect of a massive body on the electro-
magnetic interaction of two charged bodies. One
of the classical GR tests is the deflection of light rays
by massive bodies. Let us look how this effect can
be described in our theory. To do that, we rewrite the
equation of motion (19) in the form

mic

(
duiμ
dsi

+
∑

k∈R

(1− xσkwiσ)(xkμ − uiμuiνx
ν
k)

(xσkuiσ)
2

)

=
eiu

ν
i

c

∑

j �=i

⎛

⎝F ret
μν (i, j) +

∑

n �=i,j

ej√
N

Gret
μν(n, j)

⎞

⎠

+ f rad
μ +

e2i u
ν
i

c
√
N

∑

n �=i

Gret
μν(n, i). (40)

Consider the tensor in parentheses in the right-hand
side of (40), denoting it by F̂μν(i, j):

F̂μν(i, j) = F ret
μν (i, j) +

∑

n �=i,j

ej√
N

Gret
μν(n, j). (41)

This tensor consists of two terms, the first of which
describes a direct electromagnetic influence of the
charge j on the charge i, while the second one de-
scribes an indirect effect of j on i through an inter-
mediate particle n, i.e., the effect of particles n in
electromagnetic interactions of particles j and i. It
is natural to assume that the deflection of light by a
massive body can be described as a contribution of
a third body into the electromagnetic interaction of
two charged bodies. Let us show that it is really the
case in our theory. It is easy to verify that the tensor
F̂μν(i, j) identically satisfies the equation

∇νF̂μν(i, j) =
1√−g

(.
√−gF̂μν(i, j))

∂xν

= −4π

c

∑

j �=i

∫
ejδ

4(Xi −Xj)ûjμdŝj , (42)

where ∇ν is a covariant derivative, and g is the de-
terminant of the metric tensor gμν . In the right-hand
side there is a product of −4π/c by the 4-vector of
current density created by point charges. Note that
ûjμdŝj = ujμdsj due to (35) and (36). But Eq. (42) is
nothing else but the second pair of Maxwell’s equa-
tions in space with the effective metric gμν . This
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means that in space with the metric gμν , light prop-
agates along null geodesics determined by the equa-
tion

kν∇νk
μ = 0, (43)

where kμ is the wave 4-vector. This, in turn,
means that our theory reproduces the effects of
deflection of light rays and gravitational redshift of
the Schwarzschild metric in GR if in the Newtonian
reference frame the velocity of particle i associated
with the radiation receiver is much smaller than the
speed of light (and the massive body n is at rest).
Similarly, our theory reproduces the cosmological
redshift (at least for galaxies, to which the distance1 l
is much smaller thanR). In terms of direct particle in-
teraction in Minkowski space, this effect is explained
by taking into account secondary electromagnetic
waves from massive bodies n distributed uniformly
in space on large scales. The case where l is, by
order of magnitude, not much smaller than R (distant
galaxies) is left for a further study.

Thus, in the case of small velocities, small gravita-
tional potentials but not small accelerations, all clas-
sical GR tests are reproduced in our theory: the plan-
etary perihelion shifts, deflection of light rays by mas-
sive bodies, the gravitational redshift and the cosmo-
logical redshift. The constructed theory is relativistic,
despite the fact that the coincidence of its conclusions
with GR is proved only under specified restrictions (in
particular, low velocities). The listed GR effects have
been well tested only for velocities much smaller than
the speed of light, so we can believe that our theory
is in agreement with GR. In addition, cosmological
coincidences are consequences of the theory, as noted
in [2].

In conclusion, let us enumerate the main ques-
tions that have remained unresolved in the current
version of the theory.

1. We assumed that all particles have the same
mass (13). This restriction is not critical if we con-
sider macroscopic bodies whose mass is approxi-
mately determined by the number of nucleons in their
atomic nuclei (and the proton and neutron masses
are almost the same). However, in particle physics,
the question of the mass spectrum of particles is one
of the fundamental unsolved questions. Perhaps our
theory can be useful for solving this question because
it contains a new idea about the mechanism of the
origin of mass.

2. We considered massive electrically neutral bod-
ies (denoted above by the symbol n), which were

1 One means the three-dimensional distance in Euclidean
space between the points of emission and absorption of light.

assumed to be at rest. The assumption of the im-
mobility of massive bodies is satisfactory if we re-
strict ourselves to the effects associated with the
Schwarzschild or Friedmann metrics (in the sec-
ond case, massive bodies are uniformly distributed in
space and are at rest from the viewpoint of Minkowski
space, unless an effective metric is introduced). The
question of whether it is possible to build a determin-
istic theory (or a theory suitable for calculations) in a
more general case, remains open.

3. The equation of motion (19) takes into ac-
count the “nearby” bodies separated from particle i
by distances much smaller than R. Therefore, the
cosmological redshift in the current version of the
theory is correctly described only for close galaxies.
There remains the question of what will happen if
this restriction is removed. The question of the very
nature of the appearance of the finite radius R of the
electromagnetic interaction also remains open.

4. The theory is largely based on the assumption
that the sum of the advanced potentials, denoted
as Ãadv

μ , can be represented as a function of many
variables—retarded potentials at points K. More-
over, we admit that this function is decomposable
into a Taylor series (in the neighborhood of zero)
and restrict ourselves to linear terms. Presumably,
due to these restrictions the current version of the
theory has not yet been able to reproduce the rotation
curves of galaxies predicted by MOND. It seems to
be of interest to investigate higher-order terms in this
decomposition. Moreover, it may turn out that in the
general case it is necessary to consider not a function
at points K, but a functional representing the sum of
integrals over segments of world lines of particles k �=
i. This is indirectly evidenced by the fact that in the
nonrelativistic case, considered in [2], finite segments
of the world lines of particles k �= i participate in the
gravitational interaction.
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