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Abstract—We consider two most popular definitions of velocities of remote objects in General Relativity.
Our work has two motivations. From a research point of view, we generalize the formula connecting
these two velocities in FRW metrics found by Chodorowski to arbitrary synchronous spherically symmetric
metrics. From a methodological point of view, our goal is to outline certain counter-intuitive properties of
the definitions in question, which would allow us to use them when it is reasonable and to avoid incorrect
statements, based on inappropriate use of the intuition.
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1. INTRODUCTION

The problem of interpretation of recession veloc-
ities has a long story. A seemingly trivial question
often led to mistakes and wrong interpretations, both
in scientific and pedagogical literature. A lot of strik-
ing examples have been collected in the paper [2],
including incorrect statements of such prominent re-
searchers as R. Feynman, W. Rindler, S. Weinberg
and others. The greater part of mistakes has been
connected with the fact that recession velocities can
exceed the speed of light, which is now considered as
a well established property following from the nonlo-
cal nature of the velocities of distant objects.

However, the approach of [2, 3] is not unique. In
fact, it used the Hubble law to define the velocities.
Apart from this definition (we will consider it in detail
later), there are other proposals, which lead to totally
different properties of the recession velocities. In
particular, the approach intensively popularized by
Synge in [4] never leads to superluminal velocities.
This may be considered as an unambiguous advan-
tage of such a definition, and its supporters usually
stress this point [1]. It was also stated that, un-
like cosmological recession velocities, this approach
(which is also explained later in our paper) can be
applied to arbitrary space-times.

We should say, however, that Synge’s definition
of the velocity has its own features which can be
considered as disadvantages (or, at least, counter-
intuitive properties). As for the claimed universal-
ity, the situation is more interesting. In the recent
methodological paper [7] it was shown that almost all
“cosmological” concepts (namely, those which do not

require spatial homogeneity) can work successfully
for static space-times (for example, black hole met-
rics) if we work in a synchronous coordinate system
(a system connected with a body freely falling into a
black hole). In particular, the Hubble law and the
recession velocities have their analogs in this picture
and are not bound to only cosmology.

The goal of the present paper is not to discuss
which definition is better. As both are mathematically
correct, both of them can be used in calculations.
Our goal is to discuss some features of these def-
initions which can be a source of errors since they
look “strange” as compared to the properties of the
velocity known from special relativity. In principle,
there exists a viewpoint (shared by some researchers
in extragalactic astronomy) that it is in general mean-
ingless to think about such immeasurable entities as
the distance and velocities of remote galaxies, and
we should use only measurable quantities like the
redshift. We think, however, that it is impossible to
forbid the question of how remote distant galaxies
are moving, as well as on their velocities relative to
us (this is especially important for students studying
general relativity), and it is better to consider correctly
different definitions of these entities with their proper-
ties (sometime unexpected). We hope that the present
paper may help in achieving this goal.

The structure of the paper is as follows: in Sec-
tion 2 we remind a reader on the definitions of the ve-
locity used in [2] and [1, 4]. In Section 3 we show that
these two velocities are connected by rather a simple
formula in any spherically symmetric metric. This
result generalizes the relation found for FRW metrics
in [1]. In Section 4 we write down explicit relations for
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cosmological and spherically symmetric black hole
space-times, showing the counter-intuitive features
of the velocities in question (note that for different
space-times different properties may be considered to
be “counter-intuitive”). In Section 5 we summarize
our results and conclusions.

2. TWO DIFFERENT WAYS
FOR VELOCITIES OF REMOTE OBJECTS

We begin our consideration of the first definition
of the velocity in a cosmological context, where this
definition appears naturally. The FRW metric written
in the usual form

ds2 = dt2 − a2(t)(dr2 + r2dΩ2)

(where r is the comoving radial coordinate, and dΩ is
the angular element), admits a particular foliation of
space-time by the hypersurfaces t = const such that
the corresponding spatial slices are homogeneous.
This property is so convenient for this foliation to
be used everywhere where possible, often without a
particular attention. Note, however, that a realistic
observer which moves with respect to the frame of
constant r would see an inhomogeneous Universe, as
it is for Earth-based astronomers, observing a dipole
anisotropy of the Cosmic Microwave Background.
Nevertheless, it is much easier to work in the frame
with homogeneous spatial slices, passing to other
frames only when it is absolutely necessary.

Having this foliation, it is natural to introduce the
proper distance to a remote object defined as d = ar
(assuming that the observer is located at the origin,
r = 0) and the corresponding velocity as v = ḋ = ȧr
for an object being at rest with respect to the frame
considered. These two simple formulas give us the
Hubble law v = Hd, which in the FRW Universe
is an exact relation. For other proposals for FRW
cosmology see, e.g., [5, 6].

This definition of the velocity looks rather natu-
ral, however, we can immediately see some unusual
features. Since the Hubble law v = Hd in the FRW
metrics is exact, we can apply it to remote objects
with arbitrary large d. To justify that, we need to
consider a universe without a particle horizon. Such
models exist, and in these models the unboundedness
of d for objects seen by an observer at r = 0 ultimately
leads to the unboundedness of the velocity v.

If we consider objects with nonzero peculiar ve-
locities, we can see a further deviation from things
familiar from special relativity. Indeed, it is reasonable
to define v = d(ar)/dt = ȧr + ṙa. This means that if
we introduce the recession velocity vr = ȧr, existing
due to the nonstationary nature of the metrics, and
the peculiar velocity vp = ṙa existing due to motion of
the object with respect to the FRW frame, we get v =

vp + vr, the classical Galilean law, independently of
the values of the velocities. This leads to relations like
c/2 + c/2 = c (or, even 2c/3 + 2c/3 = 4c/3!) which
can shock any person familiar with special relativity.

On the other hand, recession velocities have a
“natural” additivity property. Namely, suppose we
have an observer located at r = 0, the first emitter
located at r1 and the second emitter located at r2. It is
evident from the definition that the recession velocity
of the second emitter v2 is equal to the recession ve-
locity of the first emitter v1 plus the recession velocity
v12 of the second emitter with respect to the first one
(since the coordinate r is an additive variable, and the
scale factor is fixed as it corresponds to a fixed time).
We will see that such a “natural” property does not
hold for other definitions of the velocity.

As is shown in [7], the definition considered here
can be easily generalized to non-cosmological situ-
ations, if we use a synchronous coordinate system.
In the absence of homogeneity, it is not in general
convenient to put an observer at the origin of the co-
ordinate system, so let the position of an observer be
at r1 and the emitter at r2. It is known that in a syn-
chronous system the coordinate lines are geodesics,
so considering a frame in which local observers have
a fixed radial coordinate, we can define

d =

∫ r2

r1

√
grrdr (1)

and

v =
d

dt

∫ r2

r1

√
grrdr = vfl + vloc. (2)

The velocity naturally decomposes to a part orig-
inating from the fact that the metric is not stationary
(an analog of the recession velocity with the Hubble
flow),

vfl =

∫ r2

r1

d

dt

√
grrdr, (3)

and a part originating from changes of the radial
coordinate (an analog of the peculiar velocity in cos-
mology)

vloc =
√

grr(r2)dr2/dt. (4)

(The above was written for the situation when the ob-
server has a smaller radial coordinate than the emitter.
This is natural in cosmology, where the observer is
usually considered to be located at the origin of the
coordinate system. However, in black hole space-
times we can meet the opposite situation where the
observer is located on the upper limit r2, then we
define vloc =

√
grr(r1)dr1/dt and so,

v =
d

dt

∫ r2

r1

√
grrdr = vfl − vloc
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in order to set vloc to a positive value if it is directed
towards increasing r.)

We now turn to another proposal for the velocity,
which uses completely different ideas. Intuitively, let
us “transfer” the velocity from a distant point to the
location of an observer. The parallel transport on a
Riemannian manifold is a well-defined mathematical
operation. However, we cannot apply it directly to
velocities since they are 3-dimensional objects. We
can make the parallel transport of 4-vector using
the appropriate connections (general relativity in its
standard form uses Levi-Civita connections, we use
them in the present paper and will later comment
another choice), so, to start the procedure, we take
the 4-velocity of a distant object and transport it to
the observer point. Then, we restore the 3-velocity
using the transported 4-velocity and the 4-velocity of
the observer.

One property of such a definition is clear: any
3-velocity obtained by this procedure is subluminal
(a hypothetical superluminal 3-velocity would corre-
spond to an imaginary 4-velocity vector which cannot
be a result of parallel transport of any real 4-velocity
vector). However, the procedure is still not fixed com-
pletely since for the Levi-Civita connection the result
of parallel transport depends on the path. Which path
is better to specify? One proposal is to choose a null
geodesic between the emitter and the observer. This
proposal does not require any additional structures
like a particular foliation of space-time. In this sense,
it can be applied to any space-time. Moreover, the
3-velocity defined in this way is exactly the velocity
which produces in flat space-time the same red-
shift as the observer sees in curved space-time—this
rather simple fact can be given to students for an
exercise.

(Informal hint: let us express the redshift through
the energy ratio of emitted and observed photons, 1 +
z = (kμU

μ)e/(kμU
μ)o. Then transport the emitter

values to the point of observation. The scalar product
does not change, as for individual meaning of the
variables, note that the wave vector at the point of
emission (kμ)e is transported along null geodesics
and thus gives the wave vector at the point of observa-
tion (kμ)o. As for the 4-velocity of the emitter, it gives
some transported value Ũμ. After that, the standard
formula expressing z through the 3-velocity Ṽ can
be obtained precisely in the same way as in special
relativity.)

There are, however, arguments against this
choice. Usually in physically interesting situations we
assume some foliation by hypersurfaces of constant
time. The emitter sent the light at some time t1 which
is earlier than the time when the observer received it
t2. This means that the velocity obtained by parallel

transport along the light path has a meaning of an
average (in some sense) velocity in between t1 and
t2 (see [1]). To construct a velocity at particular
time t, we need to transfer the 4-velocity along the
line t = const —if we consider only radial motion,
the line of parallel transport is fully specified. Explicit
calculations of such a velocity for a FRW Universe
have been performed in [1], where it was shown
that it is connected with the Hubble law velocity
(which we denoted here as vfl) by the simple formula
v = tanh(vfl). In the next section we generalize this
result to any synchronous frame and nonzero peculiar
velocities.

Before making calculations, we would like to point
out conceptual differences between these types of
velocities. If the Hubble law velocity is approximately
constant and is expressed, say, in kilometers per sec-
ond, this tells us that some distance changes by vfl
kilometers during one second (or, very close to this
value, if we decide to be more pedantic). As for the
velocity defined via parallel transport (regardless of
a particular path used), no physical object covers v
kilometers per second. The 4-velocity of an object
being transported along any line different from the
world line of this object loses any connection with it.
Strictly speaking, the transported 4-velocity is not a
4-velocity of any physical object. This leads to some
counterintuitive features of transported velocities, as
we shall see later.

Parallel transport of the 4-velocity vector Uα =
dxα/dλ along a curve parametrized by λ is defined by
the differential equation

dUα

dλ
+ Γα

βγU
β dx

γ

dλ
= 0. (5)

The initial conditions are the components of the emit-
ter 4-velocity vector.

For the Levi-Civita connection the Christoffel
symbols are:

Γα
βγ =

1

2
gαδ(∂γgβδ + ∂βgγδ − ∂δgβγ). (6)

We will consider here only radial motion, so U2 =
U3 = 0 and θ = const, φ = const.

For parallel transport along the constant time
curve t = const, we have the following. Denoting
(xμ) = (x0, x1, x2, x3), x0 = t = const, x2 = θ =
const, x3 = φ = const, the equation (5) takes the
form

dUα

dx1
= −Γα

β1U
β. (7)

Let us now consider parallel transport along a null
geodesic. Time is increasing along the null geodesic,
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so we can write x0 = x0(x1) (other coordinates are
constant). Then we rewrite (5):

dUα = −Γα
β0U

βdx0 − Γα
β1U

βdx1

= −Γα
β0

dx0

dx1
Uβdx1 − Γα

β1U
βdx1,

which gives

dUα

dx1
= −Γα

β0
dx0

dx1
Uβ − Γα

β1U
β. (8)

Using the condition dS = 0, we obtain
√
g00dx

0 = ±
√
−g11dx

1. (9)

This gives

dUα

dx1
= −

(
±

√
−g11
g00

Γα
β0 + Γα

β1

)
Uβ. (10)

We should use “−” if the emitter has a larger radial
coordinate r than the observer, and “+” in the oppo-
site situation.

Now we need to recover the 3-velocities from
the transported 4-velocity in a particular observation
frame. In the present paper, we will consider only
observers which are at rest with respect to the
used coordinate frame, so the corresponding tetrad
defining the frame is not boosted and not rotated. In
our case this relation is given by

V =
U1′

U0′
=

√
−g11(t0, r0)

g00(t0, r0)

U1

U0
, (11)

where

U0′ =
√

g00(x0)U
0 =

1√
1− V 2

,

U1′ =
√
−g11(x0)U

1 =
V√

1− V 2
. (12)

are the tetrad components of the 4-velocity vector.

3. CONNECTING VELOCITIES

We remind the reader that several years ago
Chodorowski showed that, in FRW cosmological
metrics, the two velocities defined in the previous
section are connected by a very simple formula if we
use parallel transport along a line with t = const. The
goal of this section is to show that this relation is still
valid in any spherically symmetric metrics if we use a
synchronous coordinate system.

In the spherically symmetric case and pure radial
motion, the 4-velocity can be expressed in a paramet-
ric form which we will use in this section. Namely,
using the condition UμU

μ = 1, which now gives

g00(U
0)2 + g11(U

1)2 = |g00|(U0)2 − |g11|(U1)2 = 1,

one can write
√
g00U

0 = coshα,
√

|g11|U1 = sinhα. (13)

So, the 4-velocity vector depends now on the sin-
gle parameter α, which changes in some way along
the curve of 4-velocity transport;

√
g00U

0 = U0′ and√
|g11|U1 = U1′ are the tetrad components of the

4-velocity. Therefore, the 3-velocity in the reference
frame in question is V = tanh(α) < 1 and never ex-
ceeds the speed of light.

If the emitter is at rest with respect to the coordi-
nate system used, the parameter α at the beginning of
the parallel transport path (we will use the subscript
(∗) to mark initial values) is α∗ = 0. For an emitter
with a nonzero peculiar velocity vloc we easily get
from the definition of α that the initial value is equal
to α∗ = tanh−1 vloc. During the parallel transport,
the vector (U0′ , U1′) undergoes a hyperbolic rotation.
This rotation can be written as follows:⎛

⎝U0′

U1′

⎞
⎠ =

⎛
⎝cosh(Δα) sinh(Δα)

sinh(Δα) cosh(Δα)

⎞
⎠

⎛
⎝U0′

∗

U1′
∗

⎞
⎠

=

⎛
⎝cosh(Δα) sinh(Δα)

sinh(Δα) cosh(Δα)

⎞
⎠

⎛
⎝cosh(α∗)

sinh(α∗)

⎞
⎠

=

⎛
⎝cosh(α∗ +Δα)

sinh(α∗ +Δα)

⎞
⎠ . (14)

To relate α with the connection coefficients, we
need the infinitesimal form of (14). An infinitesimal
rotation by the angle δα can be written as⎛

⎝U0′

U1′

⎞
⎠+ δ

⎛
⎝U0′

U1′

⎞
⎠ =

⎛
⎝ 1 δα

δα 1

⎞
⎠

⎛
⎝U0′

U1′

⎞
⎠

=

⎛
⎝cosh(α+ δα)

sinh(α + δα)

⎞
⎠ , (15)

or

δU0′ = U1′δα = U1′ dα

dλ
δλ,

δU1′ = U0′δα = U0′ dα

dλ
δλ. (16)

Thus, we get a system of differential equations:

dU0′

dλ
= U1′ dα

dλ
= U1′ ∂α

∂t

dt

dλ
+ U1′ ∂α

∂r

dr

dλ
,

dU1′

dλ
= U0′ dα

dλ
= U0′ ∂α

∂t

dt

dλ
+ U0′ ∂α

∂r

dr

dλ
. (17)
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Considering U0′ =
√
g00U

0 , U1′ =
√

|g11|U1 , we
can rewrite it in the form

dU0

dλ
= − 1

√
g00

∂
√
g00

∂t
U0 dt

dλ
− 1

√
g00

∂
√
g00

∂r
U0 dr

dλ

+

√
|g11|√
g00

∂α

∂t
U1 dt

dλ
+

√
|g11|√
g00

∂α

∂r
U1 dr

dλ
,

dU1

dλ
= − 1√

|g11|
∂
√

|g11|
∂t

U1 dt

dλ

− 1√
|g11|

∂
√

|g11|
∂r

U1 dr

dλ
+

√
g00√
|g11|

∂α

∂t
U0 dt

dλ

+

√
g00√
|g11|

∂α

∂r
U0 dr

dλ
. (18)

This system of equations coincides with the sys-
tem (5), which, for spherical symmetry, simplifies and
has the form

dU0

dλ
= −Γ0

00U
0 dt

dλ
− Γ0

01U
0 dr

dλ
− Γ0

10U
1 dt

dλ

− Γ0
11U

1 dr

dλ
,

dU1

dλ
= −Γ1

10U
1 dt

dλ
− Γ1

11U
1 dr

dλ
− Γ1

00U
0 dt

dλ

− Γ1
01U

0 dr

dλ
. (19)

Equating the same terms with Uμ dxν

dλ , we get the
following two equations:√

|g11|√
g00

∂α

∂t
= −Γ0

10,

√
|g11|√
g00

∂α

∂r
= −Γ0

11, (20)

and other equations are equivalent to these two (this
can be easily verified using the fact that the connec-
tion we use is the metric connection).

Using these equations, one can integrate α along
the curve, find α(λ) and then get the corresponding
velocity:

V = tanh(α(λ)) = tanh

⎛
⎝α∗ +

λ∫

λ∗

dα

dλ
dλ

⎞
⎠

= tanh(tanh−1(±vloc) + Δα).

At this point we can argue that the choice of the
Weitzenböck connection (zero curvature and nonzero
torsion, see details, e.g., in [8]) used for the formula-
tion of the Teleparallel Equivalent of General Relativ-
ity [9] is not good for describing parallel transport.

We remind the reader that, unlike the Levi-Civita
connection which is determined solely in terms of the
metric, the definition of the Weitzenböck connection
needs an additional structure in the form of a tetrad
field. We have

Γα
βγ = hA

α∂γh
A
β, (21)

where hAα is a tetrad field:

gαβ = ηABh
A
αh

B
β, (22)

ηAB = diag(1,−1,−1,−1). (23)

Usually the tetrad field hAα is assumed to be di-
agonal. However, if so, and the metric is diagonal
as well, then it can be easily verified that Γ0

10 =
Γ0

11 = Γ1
00 = Γ1

01 = 0. It means that α and then
the 3-velocity always remains constant during the
transport. So, it gives us that the recession velocities
of distant galaxies are zero.

From this point we return to the Levi-Civita con-
nection and consider only it. If the transport is along
the curve t = const, we need only one equation for
dα/dr. In the particular case of a synchronous met-
rics we can use it to get a general relation between
the velocities defined by two different methods of Sec-
tion 2.

In a synchronous metric g00 = 1. We denote for
brevity −g11 = g1(t, r).

Using (6), we calculate the Christoffel symbols:

Γ0
01 = 0, Γ0

11 =
1

2

∂g1
∂t

,

Γ1
01 =

1

2g1

∂g1
∂t

Γ1
11 =

1

2g1

∂g1
∂r

. (24)

Choosing in (24) and (20) the equations with
−Γ0

11 and equating them, we get that

dα

dr
= − 1

2
√
g1

∂g1
∂t

= −
∂
√
g1

∂t
.

It the emitter has a larger radial coordinate r than the
observer, we have

α(robs)− α(r∗) = Δα = −
robs∫

r∗

d
√
g1

dt
dr

= −
r1∫

r2

d
√
g1

dt
dr =

r2∫

r1

d
√
g1

dt
= vfl. (25)

Hence,

V = tanh
(
tanh−1(vloc) + vfl)

)
(26)

—it is the velocity of recession from the observer— if
the emitter is receding from the center, it is receding
from the observer as well. For the particular case of
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the emitter with zero peculiar velocity, we have a very
similar expression, relating these two velocities: V =
tanh(vfl). This formula was obtained in [1] for the
Friedman metric. Now we can see that it is valid for
any synchronous spherically symmetric metric and
that the result can be generalized to nonzero peculiar
velocities of the emitter with the modification of this
formula given by (26).

And when the emitter has a smaller radial coordi-
nate r than the observer,

α(robs)− α(r∗) = Δα = −
robs∫

r∗

d
√
g1

dt
dr

= −
r2∫

r1

d
√
g1

dt
= −vfl, (27)

and

V = tanh
(
tanh−1(vloc)− vfl)

)
. (28)

Note that this velocity V is positive if it is directed
to larger values of the radial coordinate r and negative
in the opposite case. If, however, we want to define
the velocity of recession Vrecession seen by the observer
looking “inside” in the direction of the emitter, we
need to attribute a positive sign to the velocity if it
is directed inward and a negative sign if it is directed
outward. Thus

Vrecession = −V = tanh
(
vfl − tanh−1(vloc)

)
,

if the emitter is receding from the center of the coor-
dinate system, it is approaching the observer.

Note, that if vloc = 0, we have the same formula in
both cases: Vrecession = tanh(vfl).

Thus, we have obtained that in any spherically
symmetric synchronous metrics the recession veloc-
ity defined through parallel transport is expressed
through a hyperbolic tangent of the velocity defined
as a derivative.

4. SOME PARTICULAR EXAMPLES

In this section we consider certain important met-
rics and show what the results of the preceding sec-
tion mean for known physical situations.

4.1. Cosmological Metric

We start with FRW cosmology. Since cosmo-
logical recession velocities are very well known both
from their apologists (see, e.g., [2]) and critics (see,
e.g., [1]), we mostly concentrate on the properties of
the transported velocity. It seems that this concept is
almost totally ignored by adherents of the other pro-
posal, so that, ironically, any critical considerations of

this concept are less presented in the methodological
literature than the criticisms of the “standard” reces-
sion velocities.

The FRW metric has the form

ds2 = dt2 − a2(t)
(
dr2 +R2

0S
2(r/R0)dθ

2

+R2
0S

2(r/R0) sin
2 θdφ2

)
, (29)

where S(r) = (sin r, r, sinh r) for closed, flat and hy-
perbolic models, respectively.

We start with parallel transport along a t = const
radial line. First, consider the transport of a 4-velocity
of an object in the Hubble flow (no peculiar velocity).
The 4-velocity of the emitter is

U∗ = (1 , 0 , 0 , 0). (30)

The set of equations for the parallel transport has the
form

dUα

dx1
= −Γα

β1U
β. (31)

The first and second equations, after substitution of
the corresponding Christoffel symbols, give

dU0

dx1
= −aȧU1,

dU1

dx1
= − ȧ

a
U0. (32)

The solution of this system is

U =

(
cosh

[ ȧ
a
d
]
,
1

a
sinh

[ ȧ
a
d
]
, 0 , 0

)

=
(
cosh[Hd] ,

1

a
sinh[Hd] , 0 , 0

)
. (33)

So that

V = tanh(Hd) = tanh vfl, (34)

where we use d = ar to denote the physical distance
to the emitter. This result was first obtained in [1].
From this formula we immediately see that the ad-
ditivity, mentioned in the introduction, does not hold
for transported velocities. If one source is located at
the comoving coordinate r1, and the second one at
r2, then recession velocity of the second object Hd2 is
equal to the recession velocity of the first object Hd1
plus the recession velocity of the second object with
respect to the first one H(d2 − d1). As the transported
velocity is connected with the recession velocity by
Eq. (36), the additivity of transported velocities is
absent simply because tanh(v) is not a linear func-
tion. Moreover, expressing this function in terms of
exponentials, it is easy to show that these velocities
should satisfy the special-relativistic rule v = (v1 +
v2)/(1 + v1v2) instead of the simple Galilean rule v =
v1 + v2.
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Now we consider an object with nonzero peculiar
velocity. The 4-velocity of the object in question is

U∗ =

(
1√

1− v2loc

,
1

a∗
vloc√
1− v2loc

, 0 , 0

)
. (35)

After a parallel transport we get

U =

(
cosh

[ ȧ
a
d+ tanh−1(vloc)

]
,

1

a
sinh

[ ȧ
a
d+ tanh−1(vloc)

]
, 0 , 0

)

=

(
cosh[Hd+ tanh−1(vloc)],

1

a
sinh[Hd+ tanh−1(vloc)] , 0 , 0

)
. (36)

For the corresponding 3-velocity we obtain

V = tanh[Hd+ tanh−1(vloc)]

= tanh[vfl + tanh−1(vloc)], (37)

as it should be.
If we subtract the transported Hubble flow velocity

from this result, we should get a naive analog of the
peculiar velocity. Note, however, that this “peculiar
velocity” is not equal to vloc, and, moreover, it depends
on the distance to the object. Vice versa, a peculiar
velocity as an intrinsic property of an emitter is not
equal to the difference between the transported ve-
locities of the object and that of the Hubble flow at
its location. Again, we should use here the velocity
addition formula of special relativity.

Now we consider parallel transport along the light
cone. Since the light equation of motion reads dt =
−adr, the system for parallel transport is

dU0

dt
= ȧU1,

dU1

dt
= − ȧ

a
U1 +

ȧ

a2
U0. (38)

Starting from

U∗ = (1 , 0 , 0 , 0), (39)

we have, using the equation of motion for light,

dU0

da
= U1,

dU1

da
= −1

a
U1 +

1

a2
U0. (40)

Solving this system for an object in the Hubble flow,
we get

U =

(
a2 + a2∗
2aa∗

,
1

2a∗
− a∗

2a2
, 0, 0

)

=

(
cosh

[
ln

a

a∗

]
,

1

a
sinh

[
ln

a

a∗

]
, 0 , 0

)
(41)

with the corresponding 3-velocity

V =
−a2 + a2∗
a2 + a2∗

= tanh
[ a

a∗

]
. (42)

This 3-velocity gives the cosmological redshift coin-
ciding with the relativistic Doppler formula

1 + z =

√
1 + V

1− V
=

a

a∗
, (43)

as it should be for this particular definition of velocity.
For completeness, we also write down the

3-velocity of an object with peculiar motion:

V = tanh[ln
a

a∗
+ tanh−1 vloc], (44)

which gives the redshift

1 + z =

√
1 + V

1− V
=

a

a∗

√
1 + vloc

1− vloc
. (45)

4.2. Spherically Symmetric Black Hole Metric

In this subsection we consider static, spherically
symmetric black hole metrics. We start to consider
this metric in stationary coordinates. This case is not
covered by the general result of the preceding section
(since it is valid only for synchronous coordinates),
however, a stationary coordinate system is the most
popular one for black hole description, so we consider
it first. As the coordinate system is not synchronous,
we have no natural method of define an analog of the
Hubble flow. On the contrary, there is no problem in
defining transported velocities.

The static spherically symmetric metric in station-
ary coordinates looks like

ds2 = f(r)dt2 − 1

f(r)
dr2 − r2dθ2

− r2 sin2 θdφ2. (46)

The equations for parallel transport along t = const
are

dU0

df
= − 1

2f
U0,

dU1

df
=

1

2f
U1. (47)

For an emitter at rest (r = const), the 4-velocity is

U∗ =

(
1√
f∗ , 0 , 0 , 0

)
. (48)

If the emitter moves with respect to the stationary
frame in a radial direction with the local velocity vloc,
its 4-velocity is

U∗ =

(
1√
f∗

1√
1− v2loc

,
√

f∗ vloc√
1− v2loc

, 0, 0

)
.

(49)
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Solving the system, we get that in both cases
√

fU0 =
√

f∗U0
∗ ,

U1

√
f
=

U1
∗√
f∗ , (50)

and

U0′ = U0′
∗ = const, U1′ = U1′

∗ = const, (51)

which means that the resulting 3-velocity coincides
with vloc.

This result looks like being trivial. However, if we
consider transport along a light line, we get a kind
of counter-intuitive result (though not unexpected, as
we will soon see). Indeed, since the equation for the
light propagation gives us fdt = ±dr (the upper sign
is used if the observer has a larger radial coordinate r
than the emitter, and the lower sign in the opposite
case), and we get the following equations for parallel
transport:

dU0

df
= ∓ 1

2f2
U1 − 1

2f
U0,

dU1

df
= ∓1

2
U0 +

1

2f
U1. (52)

Now, the solution for the 4-velocity of an emitter “at
rest” is

U =

(
1√
f
cosh

[
ln

√
f

f∗

]
,

∓
√

f sinh

[
ln(

√
f

f∗ )

]
, 0 , 0

)
, (53)

which gives us the 3-velocity

V = ∓ tanh

[
ln

√
f

f∗

]
. (54)

The velocity of recession from the observer is

Vrecession = ∓V = tanh

[
ln

√
f

f∗

]

(where we should use the lower sign if the emitter has
a larger radial coordinate r than the observer, and the
upper sign in the opposite case).

We see that after adopting the procedure of parallel
transport along a lightlike curve we get a nonzero
velocity of an object being at rest with respect to a
stationary coordinate system when observed by an
observer which is also at rest. Obviously, the proper
distance between an observer at rest and an emitter
at rest in stationary coordinates does not change with
time. However, the nonzero transported 3-velocity
in this situation is not unexpected because, as we
noted above, this velocity coincides with the velocity

corresponding to the observed redshift if interpreted
as a standard relativistic Doppler effect. Indeed, it is
possible to show that the velocity found induces the
Doppler shift equal to

1 + z =

√
1∓ V

1± V
=

√
1 + Vrecession

1− Vrecession
=

√
f

f∗ (55)

(with the same sign convention as above), so the
usual gravitational redshift is interpreted as a Doppler
shift.

The situation where two rest particles in stationary
coordinates (so that nothing changes in time at all!)
have a nonzero mutual velocity is a good illustration
of the point mentioned in the introduction: when the
velocity vector undergoes a parallel transport, it is no
longer a velocity vector of some physical object, but it
can rather be considered as an abstract mathematical
vector.

For completeness, we note that for a particle mov-
ing in a radial direction,

U∗ =

(
1√
f∗

1√
1− v2loc

,

√
f∗ vloc√

1− v2loc

, 0, 0

)
, (56)

and the resulting 3-velocity is

V = tanh

[
tanh−1(vloc)∓ ln

√
f

f∗

]
, (57)

with the expected form of the redshift

1 + z =

√
1 + Vrecession

1− Vrecession
=

√
1∓ V

1± V

=

√
f

f∗

√
1∓ vloc

1± vloc
. (58)

We now return to synchronous coordinates, so
that we will consider particles freely falling into a
black hole. The coordinates associated with such
particles generalize the well-known Lemâitre coordi-
nates for Schwarzschild space-time and have the line
element

ds2 = dτ2 − (1− f)dρ2 − r2dθ2

− r2 sin2 θdφ2. (59)

It can be derived from the static coordinate after mak-
ing the coordinate transformations

ρ = t+

∫
dr

f
√
1− f

, (60)
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τ = t+

∫
dr

f

√
1− f . (61)

The role of r in the Lemâitre metrics becomes clear if
we calculate the proper distance

d =

ρ2∫

ρ1

dρ
√

|gρρ| =
ρ2∫

ρ1

dρ
√

1− f = r2 − r1

(here we assume that r2 > r1).
Thus, for the velocity of a “freely falling flow,” an

analog of the Hubble flow in which particles with
ρ = const are participating—we can try to take v =
dr/dτ = −

√
1− f . This velocity v reaches the speed

of light at the horizon and continues to grow with de-
creasing r. In a Schwarzschild black hole it diverges
at the singularity.

However, in contrast to the FRW cosmology, now
the position of an observer is important since there is
no spatial homogeneity. If the emitter is located at
r1, and the observer at r2, then their relative velocity
is equal to |v(r1)− v(r2)|. It is the relative velocity
which an observer should attribute to a distant point
to measure how the proper distance between him/her
and the emitter changes with time. The properties
of the relative velocity require special attention to
avoid possible confusions. We start with the case of
zero peculiar velocities—let both the observer and the
emitter have constant ρ. First of all, if the emitter
crosses a horizon, its velocity with respect to any
observer located at final r is subluminal since v(rg) =
1 and v(r2) is nonzero and positive. Remember, on
the contrary, that any horizon-crossing object has
the velocity with respect to a stationary coordinate
system equal to the speed of light independently of
the velocity of an observer from outside. The rela-
tive velocity v(r1)− v(r2) reaches the speed of light
somewhere inside the horizon, depending on the po-
sition of the observer r2. On the other side, if we
include peculiar velocities, the overall velocity can
be superluminal even for both the observer and the
emitter located outside the horizon. For example, the
light beam at the point r1 propagating inward, from
the viewpoint of an observer at r2, has the velocity c+
v(r1)− v(r2) which is superluminal for any observer
with r2 > r1.

As for the transported velocities, the calculation
is straightforward, and the results match with the
general results obtained in the previous section. After
substituting the appropriate Christoffel symbols, we
get the relevant equations for a transfer along τ =
const in the form

dU0

dρ
= −1

2

df

dρ
U1,

dU1

dρ
=

(
df

dρ

)
U1 − U0

2(1 − f)
. (62)

For the emitter at rest in the Lemâitre frame U∗ =
(1 , 0 , 0 , 0), the solution is

U0 = cosh[
√

1− f −
√

1− f∗],

U1 =
sinh[

√
1− f −

√
1− f∗]√

1− f
, (63)

which gives us the 3-velocity

V = tanh[
√

1− f −
√

1− f∗] = tanh[∓vfl]

in accordance with (26).
In a similar way, the 4-velocity of an emitter with

nonzero peculiar velocity is

U∗ =

(
1√

1− v2loc

,

1√
1− f∗

vloc√
1− v2loc

, 0 , 0

)
, (64)

and the solution of the system gives

U0 = cosh[
√

1− f −
√

1− f∗ + tanh−1(vloc)],

U1 =
sinh[

√
1− f −

√
1− f∗ + tanh−1(vloc)]√
1− f

,

V = tanh[
√

1− f −
√

1− f∗ + tanh−1(vloc)]

= tanh[∓vfl + tanh−1(vloc)], (65)

as it should be.
For the transport along the light line we should use

τ = τ(ρ) and dτ = ±
√
1− fdρ, and since f(τ, ρ) =

f(τ(ρ), ρ), then
df

dρ
=

∂f

∂ρ
± ∂f

∂τ

∂τ

∂ρ
=

∂f

∂ρ
(1∓

√
1− f)

(where the upper sign is for the case when the ob-
server has a larger radial coordinate).

Now the system for parallel transport takes the
form

(1∓
√

1− f)
dU0

df
= −1

2
U1,

(1∓
√

1− f)
dU1

df
=

(1∓
√
1− f)U1 − U0

2(1 − f)
. (66)

The resulting 4-velocity for the emitter at rest is

U0 = cosh

[
ln

1∓
√
1− f

1∓
√
1− f∗

]
,

U1 =
1√
1− f

sinh

[
∓ ln

1∓
√
1− f

1∓
√
1− f∗

]
(67)

and the recession velocity is

Vrecession = ±V = tanh

[
ln

1∓
√
1− f

1∓
√
1− f∗

]
. (68)
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The Doppler shift corresponding to this velocity is

1 + z =

√
1∓ V

1± V
=

1∓
√
1− f

1∓
√
1− f∗ . (69)

Note the difference between the redshift expressed
through the function f for the observer and emitter at
rest with respect to the stationary coordinate system
(60) and with respect to the freely falling coordinate
system (75).

For completeness, a nonzero peculiar velocity
leads to the resulting 4-velocity

U0 = cosh

[
∓ ln

1∓
√
1− f

1∓
√
1− f∗

+ tanh−1(vloc)

]
,

U1 =
1√
1− f

sinh

[
∓ ln

1∓
√
1− f

1∓
√
1− f∗

+ tanh−1(vloc)

]
, (70)

to the 3-velocity

V = tanh

[
∓ ln

1∓
√
1− f

1∓
√
1− f∗ + tanh−1(vloc)

]
,

(71)

and the corresponding redshift

1 + z =

√
1∓ V

1± V
=

1∓
√
1− f

1∓
√
1− f∗

√
1∓ vloc

1± vloc
. (72)

5. CONCLUSIONS

In the present paper we have considered two dif-
ferent definitions of the velocities of remote objects
in general relativity. Since both are mathematically
correct (if the foliation of space-time in question by
hypersurfaces of constant time is given), it is pos-
sible to use them in appropriate situations without
any problems. However, it is necessary to remem-
ber that the properties of these velocities may look
strange in comparison with “usual” velocities in clas-
sical physics and even in special relativity, and using
intuition instead of calculations might be dangerous.

The main feature which distinguishes the GR sit-
uation from that in special relativity in the first case
considered in the present paper—the velocity defined
as the derivative of the proper distance to the object
with respect to the proper time of the observer—
is the possibility for the velocity to be superluminal.
This fact has been discussed many times in the cos-
mological situation, and superluminal cosmological
recession velocities are now accepted by the scientific
community. In the present paper, we show that this

situation is not strictly connected with cosmology,
but appears in any synchronous coordinate system.
The FRW frame, being synchronous, is the most nat-
ural for homogeneous and isotropic cosmology, so not
surprising is that this property is well known in a cos-
mological situation. However, the same picture ap-
pears in black hole space-times if we use the Lemâitre
synchronous frame to define t = const hypersurfaces.
It is also curious that not only a free fall inside the
event horizon can be superluminal, but even the mo-
tion of a particle located outside the horizon, but
having a nonzero peculiar velocity with respect to the
Lemâitre frame and directed inward can be super-
luminal as well. The same situation in cosmology
(when the resulting velocity of a particle which has
a big enough peculiar velocity directed outward can
exceed the speed of light even if the particle is located
within the Hubble sphere) is also possible, though it
seems to look less counterintuitive (possibly because
the Hubble sphere is obviously observer-dependent
in contrast to the black hole horizon). The other
“strange” feature of the velocity in question is that
it can be subluminal for a particle crossing the event
horizon and reach the speed of light somewhere inside
the horizon (depending on the observer’s position).

The other definition of the velocity discussed in
the present paper—the velocity defined by parallel
transport of the initial 4-velocity of the emitter using
the Levi-Civita connection—is free from such super-
luminal properties by definition. Since the result of
parallel transport depends on the path, the velocities
defined by the transport along the line of constant
time and along the light geodesic will be different.
The former case matches our intuition about the ve-
locity “now.” We show that it is connected with the
velocity defined as a derivative by a simple formula.
As for the latter case, the velocity defined in this way
allows us to interpret any redshift in the presence
of gravity as a Doppler kinematic shift. This can
be counter-intuitive, for example, in stationary black
hole metrics, where a stationary emitter has a nonzero
“velocity” with respect to a stationary observer.

We hope that our treatment of some “strange”
features of the velocities will help in using these both
definitions correctly in the appropriate physical situa-
tions.
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