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Abstract—The existence of Lyra’s cosmology is studied with the least interaction between normal matter
and dark energy using Bianchi-III space-time in a nonsingular hybrid universe. The model explains the
phase transition of the universe from deceleration to acceleration in the presence of a perfect fluid and
naturewise anisotropic dark energy interacting very minimally to keep the energy-momentum tensors
conserved independently. We take the hybrid average scale factor as a = (tmeλt)1/n, where m,λ, n are
positive constants, which, with a time-varying deceleration parameter, describes both the early and late
time features of universe. The time-varying displacement β(t) of Lyra’s manifold used in the present model
correlates with the nature of the cosmological constant Λ(t). The physical and geometric properties of the
model for a nonuniformly accelerated universe are also discussed with a comparison with other models.
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1. INTRODUCTION

Different astronomical observation like SN Ia [1,
2], redshift survey [3], cosmic microwave background
radiation data [4, 5] almost suggest that the uni-
verse is at present expanding with acceleration and
thereby the equation-of-state (EoS) parameter ω =
p/ρ (where p is pressure and ρ is the density) shows
p+ ρ = 0 i.e., ω = −1, indicating the simplest dark
energy term as the vacuum energy which is math-
ematically equivalent to a cosmological constant Λ.
The recent detection of Integrated Sachs-Wolfe ef-
fect [6] also gives a strong and independent support
to dark energy. Principally, any physical field with
positive energy density along with negative pressure,
violating the strong energy conditions, may cause
dark energy as an effect of repulsive gravitation. The
paramount characteristic of dark energy is a constant
very slowly changing energy density with the expan-
sion of the universe, but its actual value is yet un-
known [7–14]. In 2006, Caldwell et al. [15] and later
on Yadav [16] suggested the idea of a transition of the
universe from a decelerating phase to an accelerating
one. Though the actual cause of such a sudden tran-
sition and the source responsible for the accelerated
expansion is still not known, but it lies in the detection
of a kind of repulsive force which is called dark energy.
Which, on detection, might be a disclosure to the
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gravitational effect of zero point energies of particles
and fields. Other simplest alternatives of dark energy
are:

(i) quintessence (ω ≥ −1 or p+ ρ ≥ 0 ),

(ii) phantom energy (ω ≤ −1 or p+ ρ ≤ 0 ),

(iii) quintom (crossing from a phantom region to a
quintessence region).

All the above are described by minimally coupled
scalar fields.

In anisotropic models, the generalization of the
EoS parameter of dark energy is characterized by the
EoS parameters taken separately on each spatial axis
consistent with the considered metric. Unlike the
Robertson-Walker metric, Bianchi-type metrics can
consider the anisotropy of the EoS parameter accord-
ing to their characteristics. The large-scale struc-
tures data [17] and type Ia supernovae [18, 19] obser-
vations do not rule out the possibility of an anisotropic
dark energy [20, 21]. Koivisto and Mota [22] have
shown that the accelerated expansion of the universe
driven by a field with an anisotropic equation of state
leads to introduction of three skewness parameters
quantifying the deviation of pressure from isotropy.
But such studies are based on the assumption that the
anisotropy in expansion is caused by an anisotropic
fluid in Bianchi type I space-time.

However, an anisotropic fluid must not essentially
promote the anisotropy in the expansion. Even such
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energy sources may support making the expansion
isotropic, as earlier mentioned by Akarsu and Kil-
inc [23] and also shown within a Bianchi type III
model [24, 25]. Thus even observing an isotropic
expansion of the present universe, the possibility of
dark energy with an anisotropic EoS cannot be ruled
out.

While FRW models are spatially homogeneous
and isotropic in nature, which establishes the isotro-
pic, homogeneous and expanding nature of the phys-
ical universe, the early universe is not believed to be
exactly uniform, and it has been sufficiently confirmed
through inferences of the CMB experiments, about
the spherical symmetry of the present evolving uni-
verse whose interior is entirely isotropic and homo-
geneous, but near the Big Bang singularity it had an
anisotropic structure. The WMAP data analysis sup-
ports the fact that the universe has a preferred direc-
tion, and it should reach a slightly anisotropic geom-
etry. Therefore, in view of the background anisotropy,
the models with anisotropic background are more
suitable to describe the early stages of the universe.

Bianchi type I models are among the simplest
models of an anisotropic universe that describe the
existence of anisotropy in its early stage. Kumar
and Singh [26] studied the minimal interaction of a
perfect fluid and anisotropic dark energy by applying
the special law of variation of Hubble’s parameter that
yields a constant value of the deceleration parameter.
Various authors studied Bianchi cosmic models in
different contexts like f(R,T ) gravity, bulk viscosity,
etc. [27–31].

In this paper we undertake a search for a transi-
tioning model in Bianchi-III space-time within the
framework of Lyra’s manifold. Akarsu et al. in
2014 [32] proposed a hybrid expansion law that pro-
vides an elegant explanation of a transition of the
universe from deceleration to acceleration. Lyra in
1951 [33] first proposed a scalar-tensor theory which
gives some important modifications of the Riemann
geometry by introducing a time-varying gauge func-
tion. Lyra’s modified theory becomes more useful and
attractive due its similar effects to Einstein’s theory.
Harfold in 1970 and 1972 [34, 35] found that the
time-varying vector field β(t) behaves similarly to the
cosmological constant Λ(t) in general relativity. Re-
cently, various authors (Sen and Vanstone, Bhamra,
Singh and Singh; Rahaman et al., Pradhan et al.,
Yadav, Yadav and Haque, Yadav and Bhardwaj, Bali
et al., Sahoo et al. [36–46] studied different cosmo-
logical models based on Lyra’s geometry in various
physical contexts.

Here we take a generalized form of the hybrid ex-
pansion law for the scale factors in Bianchi III space-
time with anisotropic dark energy, which is caused by
variability of the EoS parameters on account of three

skewness parameters δ, γ, and η along the x, y, and
z directions, respectively, and a perfect fluid by using
an approach similar to that of Kumar and Singh [26].
The so obtained explicit expressions for the cosmo-
logical parameters are new and different.

The paper is organized as follows: in Section 2, the
field equations are developed for Bianchi-III space-
time within Lyra’s manifold. In Section 3, the gen-
eralized hybrid expansion law is considered for solu-
tion of the field equations. In Section 4, we deter-
mine the cosmological parameters and describe the
consequences of energy conditions and cosmological
parameters with graphic analysis. In Section 5, we
discuss the stability condition and validation of the
derived model. In Sections 6, we discussed our re-
sults with make conclusions.

2. FIELD EQUATIONS

The anisotropic line element described by the
Bianchi type III metric is

ds2 = −dt2 +A2(t)dx2 + e−2αxB2(t)dy2

+ C2(t)dz2. (1)

Here, A(t), B(t), C(t) are the metric functions de-
scribing scales along the x, y, and z directions, re-
spectively, and α is a nonzero constant.

We define a = (ABC)1/3 as the scale factor for
the space-time described by (1). Hence, the average
Hubble parameter is expressed as

H =
ȧ

a
=

1

3

(
Ȧ

A
+

Ḃ

B
+

Ċ

C

)
. (2)

An overdot denotes the derivative with respect to
cosmic time t.

For the perfect fluid and anisotropic dark energy
components, the Einstein’s field equations in gravita-
tional units are

Rj
i −

1

2
gjiR+

3

2
φiφ

j − 3

4
gjiφkφ

k

= −T
(m)i
j − T

(de)i
j , (3)

where T
(m)i
j and T

(de)i
j stand for the energy momen-

tum tensors of the fluid and and dark energy, respec-
tively:

T
(m)
ij = diag[−ρ(m), p(m), p(m), p(m)], (4)

T
(de)
ij = diag[−ρ(de), p(de)

x , p(de)
y , p(de)

z ]

= diag[−1, ωx, ωy, ωz]ρ
(de)

= diag[−1, ω + δ, ω + γ, ω + η]ρ(de), (5)
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where p(m), ρ(m), ρ(de) are the pressure, and energy
densities of the perfect fluid and dark energy,. respec-
tively; px = (ω + δ(t))ρ(de), py = (ω + γ(t))ρ(de), and
pz = (ω + η(t))ρ(de) are the EoS parameters along
the spatial directions; δ(t), γ(t), and η(t) are skew-
ness parameters which are introduced to modify the
EoS parameters of the DE components, that quanti-
fies an anisotropic nature of DE. In Eq. (3), φi is the
displacement vector defined by

φi = (0, 0, 0, β(t)) . (6)

In a comoving coordinate system, the field equa-
tions (3) for the anisotropic Bianchi-III space-time
(1), along with Eqs. (4) and (5), can be written as

B̈

B
+

C̈

C
+

ḂĊ

BC
− 3

4
β2

= −p(m) − (ω + δ)ρ(de), (7)

C̈

C
+

Ä

A
+

ĊȦ

CA
− 3

4
β2

= −p(m) − (ω + γ)ρ(de), (8)

Ä

A
+

B̈

B
+

ȦḂ

AB
− α2

A2
− 3

4
β2

= −p(m) − (ω + η)ρ(de), (9)

ȦḂ

AB
+

ḂĊ

BC
+

ĊȦ

CA
− α2

A2
+

3

4
β2

= ρ(m) + ρ(de), (10)

α

(
Ȧ

A
− Ḃ

B

)
= 0. (11)

We have assumed that the perfect fluid and dark
energy components interact minimally [23, 47, 48].
Hence, the energy conservation equations for the
perfect fluid and the dark energy component can hold
independently.

The energy conservation equation T
(m)i
j = 0 for

the perfect fluid leads to

ρ̇(m) + 3
(
p(m) + ρ(m)

)
H = 0, (12)

while the energy conservation equation T
(de)i
j = 0 for

dark energy yields

ρ̇(de) + 3ρ(de)(ω + 1)H

+ ρ(de)(δHx + γHy + ηHz) = 0, (13)

and conservation of the right-hand side of Eq. (3)
leads to (

Rj
i −

1

2
gjiR

)
;j

+
3

2

(
φiφ

j
)
;j

− 3

4

(
gjiφkφ

k
)
;j
= 0. (14)

Equation (14) reduces to

3

2
φi

[
∂φj

∂xj
+ φlΓj

lj

]
+

3

2

[
∂φi

∂xj
− φlΓ

l
ij

]

− 3

4
gjiφk

[
∂φk

∂xj
+ φlΓk

lj

]

− 3

4
gji φ

k

[
∂φk

∂xj
− φlΓ

l
kj

]
= 0. (15)

Equation (15) is identically satisfied for i = 1, 2, 3.
For i = 4, Eq. (15) reduces to

3

2
β

[
∂(g44φ4)

∂x4
+ φ4Γ4

44

]
+

3

2
g44φ4

[
∂φ4

∂t
− φ4Γ

4
44

]

− 3

4
g44φ4

[
∂φ4

∂x4
+ φ4Γ4

44

]

− 3

4
g44g

44φ4

[
∂φ4

∂t
− φ4Γ4

44

]
= 0. (16)

Equation (16) leads to

3

2
ββ̇ +

3

2
β2

(
Ȧ

A
+

Ḃ

B
+

Ċ

C

)
= 0. (17)

3. THE GENERALIZED HYBRID
EXPANSION LAW

We assume the generalized hybrid expansion
law [32, 43, 47, 49, 50] for the scale factor as follows:

a =
(
tmeλt

)1/n
, (18)

where m ≥ 0, λ ≥ 0, and n > 0 are constants.
The DE conservation equation can be split into

two parts, one is the deviation-free part and the other
for deviations of the EoS parameter of T (de)

ij = 0,

ρ̇(de) + 3p(de) (ω + 1)H = 0, (19)

ρ(de)(δHx + γHy + ηHz) = 0. (20)

The dynamics of skewness parameters on x, y, z axes
are considered as

η(t) = α1 (Hx +Hy) , (21)

δ(t) = γ(t) = −α1Hz, (22)

where α1 is a proportionality constant. In view of
Eqs. (21)–(22), the solution of Eq. (19) is read as

ρ(de) = ρ
(de)
0 a−3(ω+1), (23)

where ρ
(de)
0 is a positive constant.
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4. SOLUTION OF THE FIELD EQUATION
AND ITS PHYSICAL SIGNIFICANCE

Integrating (11) and omitting the integration con-
stant, we obtain

B = A. (24)

Solving Eqs. (7)–(10) together with (18), we get

A = l1

(
tmeλt

) 1
n
exp

[
s1

∫ (
tmeλt

)−3
n
dt

+
αρ

(de)
0

3ω

∫ (
tmeλt

)−3(ω+1)
n

dt

]
, (25)

B = l2

(
tmeλt

) 1
n
exp

[
s2

∫ (
tmeλt

)−3
n
dt

+
αρ

(de)
0

3ω

∫ (
tmeλt

)−3(ω+1)
n

dt

]
, (26)

C = l3

(
tmeλt

) 1
n
exp

[
s3

∫ (
tmeλt

)−3
n
dt

− 2αρ
(de)
0

3ω

∫ (
tmeλt

)−3(ω+1)
n

dt

]
. (27)

Here l1, l2, l3 and s1, s2, s3 are constants satisfying
the conditions l1l2l3 = 1 and s1 + s2 + s3 = 0.

The deceleration parameter (DP) in the derived
model is given by

q =
d

dt

(
1

H

)
− 1 =

mn

(m+ λt)2
− 1. (28)

The expressions for directional Hubble parameters
are

Hx =
1

n

(m
t
+ λ

)
+ s1

(
tmeλt

)−3
n

+
αρ

(de)
0

3ω

(
tmeλt

)−3(ω+1)
n

, (29)

Hy =
1

n

(m

t
+ λ

)
+ s2

(
tmeλt

)−3
n

+
αρ

(de)
0

3ω

(
tmeλt

)−3(ω+1)
n

, (30)

Hz =
1

n

(m
t
+ λ

)
+ s3

(
tmeλt

)−3
n

− 2αρ
(de)
0

3ω

(
tmeλt

)−3(ω+1)
n

. (31)

The mean Hubble parameter for the model is found as

H =
1

n

(m
t
+ λ

)
. (32)

The mean anisotropy parameter (Δ) and the shear
scalar (σ2) are defined as [51, 52]

Δ =
1

3

[(
Hx−H

H

)2

+

(
Hy−H

H

)2

+

(
Hz−H

H

)2 ]

=
2n2

3(m/t+ λ)2

[
ζ

(
tmeλt

)−6
n

+
α2ρ

(de)
0

2

3ω2

(
tmeλt

)−6(ω+1)
n

]

− 2n2

3(m/t+ λ)2

[
s3αρ

(de)
0

ω

(
tmeλt

)−3(ω+2)
n

]
, (33)

where ζ = s22 + s23 + s2s3, and

σ2 =
1

2

[
H2

x +H2
y +H2

z − 3H2
]

= ζ
(
tmeλt

)−6
n

+
α2ρ

(de)
0

2

3ω2

(
tmeλt

)−6(ω+1)
n

− s3αρ
(de)
0

ω

(
tmeλt

)−3(ω+2)
n

. (34)

From Eq. (28), it has been found that the range of t
is

(
0, 1

λ(
√
mn−m)

)
. At t < 1

λ(
√
mn−m) q is posi-

tive, and the universe is decelerating. The phase tran-
sition take place at the value t = 1

λ (
√
mn−m), but

at t > 1
λ (
√
mn−m) q is negative, and the universe

is expanding with acceleration. This phase transition
of the model is evident from the graphic behavior of q,
as shown in Fig. 1. Figure 2 exhibits the dynamics of
the DP q as a function of the redshift z. It is evident
that at present time, i.e., at z = 0, the DP is negative,
which is consistent with the recent observations.

From Eq. (33) we observe that at late times, as
t → ∞, Δ → 0 for ω = −0.7. Thus our model has a
transition from an initial anisotropy to isotropy at the
present epoch, which is in good harmony with current
observations. The plot in Fig. 3 of the anisotropy
parameter Δ versus cosmic time shows a decreas-
ing anisotropy parameter, tending to zero with the
passage of time for ω = −0.7 i.e., for quintessence,
whereas for ω = −1.3 (phantom) it seems to have a
finite value indicating the nonremoval of anisotropy,
which match the realistic properties of universe. Thus
anisotropy is retained in the phantom model whereas
in the quintessence model the universe seems to be
isotropized with the passage of time.

Solving Eq. (17), we find

β = μ
(
tmeλt

)−3/n
, (35)

where μ is an integration constant.
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The skewness parameters are given by

η(t) = α1

[
2

n

(m

t
+ λ

)
− s3

(
tmeλt

)−3
n

]

+
2αα1ρ

(de)
0

3ω

(
tmeλt

)−3(ω+1)
n

, (36)

δ(t) = −α1

[
2

n

(m

t
+ λ

)
+ s3

(
tmeλt

)−3
n

]

+
2αα1ρ

(de)
0

3ω

(
tmeλt

)−3(ω+1)
n

= γ(t). (37)

The directional EoS parameters of DE are

ωz = ω + η(t) = ω + α1

[
2

n

(m

t
+ λ

)

− s3

(
tmeλt

)−3
n

]

+
2αα1ρ

(de)
0

3ω

(
tmeλt

)−3(ω+1)
n

, (38)

ωx = ωy = ω

− α1

[
2

n

(m

t
+ λ

)
+ s3

(
tmeλt

)−3
n

]

+
2αα1ρ

(de)
0

3ω

(
tmeλt

)−3(ω+1)
n

. (39)

The energy density and pressure of the DE com-
ponent read

ρ(de) = ρ
(de)
0

(
tmeλt

)−3(ω+1)
n

, (40)

p(de) = ωρ
(de)
0

(
tmeλt

)−3(ω+1)
n

. (41)

The corresponding Fig. 4 with energy density against
time shows that the dark energy density of the
quintessence model decreases with time while for the
phantom model it increases; the spatial volume (V )
is an increasing function of time, which shows the
expansion of the universe.

The EoS parameters depicted show that the earlier
universe was highly anisotropic in dark energy, and
later it is isotropized, especially as t → ∞.

The pressure and energy density of the perfect fluid
are obtained as

p(m) =
2m

nt2
− 3

n2
(m/t+ λ)2 − β

(
tmeλt

)−6
n

− (2ω + 1)

3ω2
α2ρ

(de)
0

2 (
tmeλt

)−6(ω+1)
n

+
(3ω + 1)

3ω
s3αρ

(de)
0

(
tmeλt

)−3(ω+2)
n
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− ωρ
(de)
0

(
tmeλt

)−3(ω+1)
n

− (9ω + 1)

3nω
αρ

(de)
0 (m/t+ λ)

(
tmeλt

)−3(ω+1)
n

, (42)

ρ(m) =
3

n2
(m/t+ λ)2 − β

(
tmeλt

)−6
n

− α2ρ
(de)
0

2

3ω2

(
tmeλt

)−6(ω+1)
n

+
s3αρ

(de)
0

ω

(
tmeλt

)−3(ω+2)
n

− ρ
(de)
0

(
tmeλt

)−3(ω+1)
n

. (43)

The spatial scale factors A(t), B(t), C(t) vanish at
t = 0, which means that the model has a point-
type singularity at t = 0. However, for m = 0 the
model has q = −1 and dH/dt = 0. which shows a
singularity-free universe with the fastest rate of ex-

pansion. This explains the future dynamics of the
universe.

The perfect fluid density parameter (Ω(m)) and the
DE density parameter (Ω(de)) are expressed as

Ω(m) = 1

+
1

3
n2 (m/t+ λ)2

[
s3αρ

(de)
0

ω

(
tmeλt

)−3(ω+2)
n

]

− 1
3
n2 (m/t+ λ)2

[
α2ρ

(de)
0

2

3ω2

(
tmeλt

)−6(ω+1)
n

]

− ρ
(de)
0

3
n2 (m/t+ λ)2

(
tmeλt

)−3(ω+1)
n

− 1
3
n2 (m/t+ λ)2

β
(
tmeλt

)−6
n
, (44)

Ω(de) =
ρ

(de)
0

3
n2 (m/t+ λ)2

(
tmeλt

)−3(ω+1)
n

. (45)

Thus the overall density parameter (Ω) is obtained as

Ω = 1 +
1

3
n2 (m/t+ λ)2

[
s3αρ

(de)
0

ω

(
tmeλt

)−3(ω+2)
n

]

− 1
3
n2 (m/t+ λ)2

[
α2ρ

(de)
0

2

3ω2

(
tmeλt

)−6(ω+1)
n

]

− 1
3
n2 (m/t+ λ)2

β
(
tmeλt

)−6
n
. (46)

From Eq. (46), as t → ∞, the overall density parame-
ter Ω → 1, which satisfies the astrophysical observa-
tions [1, 2].

Both Figs. 6 and 7 show that the null energy con-
dition (NEC) and dominant energy condition (DEC)
are satisfied for the quintessence and phantom model,
but they do not satisfy the strong energy condition
(SEC). Instead of inflation, the ellipsoidal expansion
of the universe is shown by the time-dependent skew-
ness parameters.

5. STABILITY CONDITION

To check the stability of the present solution with
respect to perturbation of the metric [53] the consid-
ered perturbations in three expansion factors ai are

ai −→ aBi + δai = aBi(1 + δbi). (47)

With reference to Eq. (47), the relations representing
perturbations of the volume scalar, the directional
Hubble factors and the mean Hubble factor are

V −→ VB + VB

∑
i

δbi,
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Fig. 6. Energy conditions versus time t for n = 3, m =

1.5, λ = 0.75, ρ(de)
0 = 0.75, ω = −0.7.
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Fig. 7. Energy conditions versus time t for n = 3, m =

1.5, λ = 0.75, ρ(de)
0 = 0.75, ω = −1.3.

θi −→ θBi +
∑
i

δbi,

θ −→ θB +
1

3

∑
i

δbi. (48)

For metric perturbation δbi to be linear, the following
equations must be satisfied:∑

i

δ̈bi + 2
∑
i

θBi
˙δbi = 0, (49)

δ̈bi +
V̇B

VB

˙δbi +
∑
j

˙δbjθBi = 0, (50)

∑
˙δbi = 0. (51)

From Eqs. (47)–(51) it follows

δ̈bi +
V̇B

VB

˙δbi = 0, (52)

0.00025
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	a
i

0.00020
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0.00010
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0
87654
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321

Fig. 8. Plot of δai versus cosmic time for n = 3, c1 =
2.5 × 10−7, c2 = 10−5.

where the background volume scalar VB leads to

VB = t
3m
n exp

(
3λt

n

)
. (53)

From Eqs. (52) and (53), the metric perturbation
becomes

δbi = c2 − c1

(
3λ

n

)−1+ 3m
n

Γ

[
1− 3m

n
,
3λt

n

]
, (54)

where c1 and c2 are integration constants.
Thus the actual fluctuation for each expansion

factor δai = aBiδbi are expressed as

δai = c2t
−3m
n exp

(
−3λt

n

)

− c1

(
3λ

n

)−1+ 3m
n

t
−3m
n

× exp

(
−3λt

n

)
Γ

[
1− 3m

n
,
3λt

n

]
. (55)

Figure 8 for δai versus cosmic time t shows a smaller
value of δai at time very close to zero, which indi-
cates a very little perturbation in the scale factor and
means a negligible but significant instability. But this
sharply decreases and soon becomes zero in a very
short span of time with the evaluation of the universe,
making further the stability of the model. Thus, in
view of large-scale measurement, the solution of the
present problem is stable against perturbation of the
gravitation field.

6. CONCLUDING REMARKS
In this paper, we have studied the existence of

Lyra’s cosmology in a singularity-free hybrid uni-
verse within Bianchi-III space-time with the least
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interaction of a perfect fluid and an anisotropic dark
energy. Using the generalized hybrid scale factor for
the solution of the field equations, the conclusions are
summarized as follows:

(i) Though the solutions to the differential equa-
tions are similar to those of Kumar and Singh
[26], the obtained expressions for the cosmo-
logical parameters are different. The anisotro-
pic dark energy has a dynamical energy den-
sity which shows a decreasing trend for the
quintessence model and an increasing trend for
the phantom model. From Eq. (18), for λ = 0,
corresponding to power-law expansion, the
dynamics of the universe seems to be described
from the Big Bang to the present era, whereas
n = 0 reasonably project a singularity-free
universe. At t = 0, the model shows a point
type singularity because both scale factors and
the volume vanish.

(ii) As t → ∞, the scale factors and the volume
both become large enough, and, on the other
hand, dark energy pressure and pressure of
perfect fluid become negligible.

(iii) The present model violates the strong energy
condition, while the null and dominant energy
conditions are preserved in the quintessence
model. From the Big Bang, the expansion
of the universe is never ceased, but te model
analysis reflects that earlier its expansion was
slowing down and then suddenly changes into
acceleration. This change in the expansion of
the universe from deceleration to acceleration
is very interesting but is yet to be justified for a
valid reason.

(iv) The plot of the anisotropy parameter Δ vs. cos-
mic time clearly indicates that the anisotropy
of dark energy is retained in the phantom
model (for ω = −1.3), while the quintessence
model (ω = −0.7) shows a transition from
initial anisotropy to isotropy at the present
epoch, which is in good harmony with recent
observations.

(v) The behavior of the displacement vector β(t)
is similar to that of the cosmological constant
Λ(t), as is clear from Fig. 5, the displacement
vector β(t) decreases with time and finally ap-
proaches zero as t → ∞.

(vi) The present model under various conditions
reduces to those studied earlier by Akarsu et al.
(2010) [43], Yadav et al. (2011) [48], Samanta
(2013) [54], and Adhav et al. (2014) [55].

(vii) It is observed that the present hybrid cosmic
model is more general. For λ = 0, the model
reproduces power law expansion [46], for m =
0 it shows an exponential law, and for λ =
0, n = 1,m = 1 it turns into a linear expansion
law [45]. Thus the above results are special
cases of the present hybrid model.

(viii) The solution of the present model is almost
perturbation=free, which has been verified for
the condition of stability [53]. The fluctuations
(δai) in the scale factor are found to start with a
minimum value which in a very short time, with
the evolution of the universe, approach zero,
signifying almost stability of the model. Thus
the present study reveals that the quintessence
model is suitably describing the accelerated
nature of the universe with anisotropic dark en-
ergy and is consistent with the observations. In
the absence of dark energy and for some partic-
ular values of the parameters, the model pos-
sibly indicates the accelerating universe with
positive pressure, which should be tested by
other models.

(ix) As a final comment, we note that the derived
model shows the possibility of incorporating
both features of the universe, the decelerated
and accelerated phases, depending on the
values of the parameters under consideration.
It can also be noted that for some values of
the problem parameters, the derived model de-
scribes an accelerating universe with nonneg-
ative pressure of its matter/energy constituent,
which needs to be tested by other theories.
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