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Abstract—An anthropic explanation of the evident smallness of the dark energy (DE) density value implies
the existence of a time-dependent component of the scalar field, serving, together with a negative-valued
cosmological constant, as one of two components to the overall DE density. The observers (i.e. us) might
then only evolve in those regions of the universe where the sum of those two components (the positive and
a negative ones) is sufficiently close to zero. However, according to Vilenkin and Garriga, the scalar field
component has to slowly but surely diminish in time. In about a trillion years, this process will put a cap
to the now-observable accelerated expansion of the universe, leading to a subsequent phase of impending
collapse. However, the vanishing scalar field might also produce some rather unexpected singularities with
a finite nonzero scale factor. We analyze this possibility using a particular example of a Sudden Future
Singularities (SFS) and come to a startling conclusion that the time required for an SFS to arise must be
“comparable” to the lifetime of the observable universe.
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1. INTRODUCTION

In a seminal work [1] by Garriga and Vilenkin, a
very novel “anthropic” approach has been presented,
purporting to resolve two enigmas surrounding the
“cosmological constant”: its smallness and its time
coincidence. The key idea there was to view the
density of dark energy (DE) ρD as a random variable.
To be more precise, ρD was to be written as a sum of
two terms:

ρD = ρΛ + ρX , (1)

with ρΛ ∈ R being the vacuum energy density, and
ρX a variable density of a dynamic DE component
X. This implies that |ρΛ| does not have to be small
as is usually accepted, for as long as |ρΛ| ∼ |ρX | and
ρΛρX < 0, then automatically |ρD| � 1. This, cou-
pled with the anthropic restrictions on the observable
value of ρD

1 (see [3–5]) provided a radically new
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1 Interestingly, the very first paper which has suggested the

anthropic solution of the cosmological constant problem due
to DE dates back to 1986 [2]!

view on the problem of smallness of DE density. In
addition to that, the authors of [1] have managed to
find a very elegant way of explaining the time coinci-
dence of the cosmological constant with the density

of dark matter,2 as well as to make a number of
testable predictions (see also [6]). One of them, being
most exciting, but at the same time the hardest to
verify, was the prediction that the expansion of the
observable universe will, at some time in the future,
stop, only to be replaced with a gravitational collapse
(however, the earliest time when this can happen is
after about a trillion years of accelerated expansion).
Here is how this startling conclusion came to pass:
first, it was assumed that the term ρX in (1) was a

contribution of some scalar field φ̃ with a very low
mass [7, 8]. At the next step, one recalls that the
conscious observers (i.e. we) can only emerge within

2 According to the observational data, the present densities of
the dark matter (DM) and DE are of approximately the same
magnitude. This “coincidence” is actually very puzzling
because the evolution of DM is rather distinct from that of
DE, and because there should be just a relatively narrow time
interval within which their densities would coincide. And yet
we somehow happen to be right in the midst of it!
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a very narrow spectrum of values of ρD:3

−t−2
EI ≤ ρD ≤ t−2

EG, (2)

where tEI is the (earliest) time required for intelli-
gence to emerge and develop, and tEG is the time
it takes for the earliest galaxies to form (if t0 is the
present time, then tEG ∼ (1 + zEG)

−3/2t0 with red-
shift zEG ∼ 5).

With the “band of opportunity” (2) being ex-
tremely narrow, the potential V (φ̃) inside it remains
practically constant, and one can estimate that
V (φ̃) ∼ V (0) + V ′(0)φ̃. Therefore, if φ̃ decreases
with time, one is free to use the slow-roll approxi-
mation [9–11] to get an estimate on the time t∗ which
measures how long it will take from the current time
t0 till the beginning of the collapse. In particular, if
φ̃0 = φ̃(t = t0) and V (0) = 0, then t∗ ∼ tD(φ̃0/mp)

2,
where tD ∼ ρD

−1/2, and so we end up with t∗ ∼
1012 yr.

In this paper we are going to describe another
unusual prediction that can be made by studying the
behavior of the dynamical component of DE. To that
end, let us introduce a new field variable φ, such that
in terms of this variable (1) can be formally rewrit-
ten as

ρD = V (φ). (3)

Then, let us assume that, in accordance with [1], that
the field φ varies but very slowly, and that the way
the effective potential in (3) depends on φ can be
approximately described by a power law:

V (φ) ∼ A2φn, (4)

where all the variables are real-valued, including n,
which in general is not necessarily an integer. Such
potentials has been extensively studied in [12] by
Barrow and Graham, who drew one particularly in-
teresting conclusion: the potentials (4) might lead to
singularities spontaneously emerging in finite time as
φ → 0.

In particular, let M be an integer, such that

M < n < M + 1, (5)

then as φ → 0 the scalar field develops a divergence
in the M + 2-th derivative with respect to time:
dM+2φ/dtM+2 → (−1)M+1 ×∞, while all lower-
order derivatives remain finite. Such a behavior is
characteristic of class IV singularities by the Nojiri-
Odintsov-Tsujikawa classification [13] and can be
characterized as a “weak” singularity according to
the terminology of [14, 15]. For example, if M = 0,

3 Throughout this article we will be using the system of units
where 8πG/3 = c = 1.

then only the second-order derivative φ̈ will diverge,
whereas both the density ρ and the pressure p remain
finite.

The presence of such peculiar singularities in an
otherwise very realistic field model with the with a
power-law potential leads to yet another interesting
observation: the prediction by Garriga and Vilenkin
might actually be a lot more verifiable then was origi-
nally thought, since the emergence of those singular-
ities happens much sooner than the aforementioned
time scale t∗ ∼ 1012 yr (see Sec. 3).

To get a grasp on the characteristic time that has
to pass before the emergence of such a singularity, we
will consider a simple integrable cosmological model.
In Sec. 2 we will describe the method of superpo-
tential that will be useful in determining the dynamics
of singular solutions and will subsequently discover
an even stronger singularity—a Sudden Future Sin-
gularity (SFS)—arising in finite time, provided the
potential has the form

V (φ) = C1φ
n + C2φ

m, (6)

where nm < 0. This observation, coupled with the
fact that the potential (6) is quite permissible in
cosmology, makes us conclude that the Garriga-
Vilenkin hypothesis can actually predicate an emer-
gence of SFS. Following this line of reasoning,
in Sec. 3 we actually build such a model under
the approximation of a slow-varying φ. A detailed
analysis of that model leads us to something quite
unexpected: the conclusion that the time scale in
which an SFS emerges must be comparable to the
lifetime of the observable universe! In other words, if
an SFS should happen, it will be very soon (that is,
“soon” in cosmological terms, of course!).

2. SOME SINGULARITIES ARE SUDDEN

We begin by pondering the potential (4). In the flat
Friedmann-Lemaître-Robertson-Walker (FLRW)
model the dynamics of the universe is given by the
system:

H2 =
1

2
φ̇2 + V (φ),

φ̈ = −3Hφ̇− V ′(φ), (7)

which in the case of the power-law potential (4) turns
into:

H2 =
1

2
φ̇2 +A2φn, (8)

φ̈ = −3Hφ̇− nA2φn−1. (9)

Let φ0 > 0, H0 > 0, and φ̇0 > 0. Then the r.h.s.
of (9) is strictly negative, i.e, φ̈ < 0, and φ̇ shall
decrease, eventually turning to zero. If that happens
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in finite time (which is easy to verify), then the scalar
field φ itself will begin to decrease. And if 0 < n < 1,
then at some time φ → 0 and φ̈ → −∞. Despite that,
φ̇ remains finite, and so do ρ = H2 and p = φ̇2/2 −
V (φ). In other words, we end up with a scale factor
whose third (and higher) order derivative with respect
to t diverges at some moment of time (for more details
cf. [12]).

The potentials (4) are generally nonintegrable,
which significantly complicates our explorations.
Fortunately, we have in our possession a versatile
tool called the method of superpotential [16], which
would allow us to overcome this difficulty by produc-
ing a suitable completely integrable model. Here is
how it works.

First, we introduce a superpotential W (φ), de-
fined as

W (φ) =
1

2
φ̇2 + V (φ). (10)

Using (10), it is easy to see that the FLRW equa-
tions (7) get reduced to a much simpler system:

dφ

dt
= −1

3

W ′(φ)
√

W (φ)
, (11)

V (φ) = W (φ)− 1

9

(W ′(φ))2

W (φ)
. (12)

The key to the next step would be to introduce the
desired power-law relationship, except that we do it
not for the potential V (φ), but for the superpotential
W (φ) instead. Then, letting W (φ) = A2φn and inte-
grating (11), we end up with:

φ(t) = C (ts − t)2/(4−n) , 0 < n < 4, (13)

where we have introduced an integration constant ts,
and

C =

(
An(4− n)

6

)2/(4−n)

.

What kind of potential V are we dealing with? This
can be answered by looking at (12):

V (φ) = A2φn − A2n2

9
φn−2, (14)

i.e., we have a potential that will be exactly like (6),
provided that 0 < n < 2. If we set 2 < n < 4, then the
potential would still be (6) but with a positive power
m > 0. It is now easy to see that

(i) if 0 < n < 2, then φ̇ diverges as t → ts, i.e., φ̇ →
−∞;

(ii) if 2 < n < 3, then φ̈ → ∞ as t → ts, but φ̇ re-
mains finite;

(iii) if 3 < n < 10/3, then
...
φ → −∞ as t → ts, while

both φ̇ and φ̈ remain finite. Note that since we
are only interested in the noninteger powers of
φ, we thereby restrict ourselves to strict inequal-
ities.

Naturally, when n > 2 we end up with the very
solutions that were discovered and described in [12].
However, for the purpose of this paper we will instead
concentrate our effort on case (i), which is the only
case that does not fit into the class of singularities
studied in [12]. The reason for not fitting in is obvious:
the class (i) singularity is an SFS! We can verify it by
directly calculating the density and pressure:

ρ = H2 = A2Cnη
2n
4−n , (15)

p =
A

3(4 − n)
η−

2(2−n)
4−n

(
2nCn/2

− 3ACn(4− n)η
4

4−n

)
, (16)

where η = ts − t. So, as t → ts we have ρ → 0 and
p → +∞ (again, we assume that 0 < n < 2), which
proves that the strong (ρ+3p ≥ 0) and the weak (ρ+
p ≥ 0) energy conditions remain valid.

The revelation that an SFS can be generated by
the potentials like (6) with m < 0 (of which (14) is but
an example) actually should not come as too big of a
surprise. It is easy to see that all polynomial potentials

V (φ) =
∑

k

ckφ
nk , (17)

with nk > 0 are unable of producing SFS. Indeed,
the requirement that p → ∞, while ρ → ρs < ∞ as
t → ts, can be satisfied if and only if the kinetic term
and the potential were to diverge at the same time al-
beit with opposite signs, whereas φ → φs < ∞ (recall
that by assumption φs = 0). But the potential (17)
with nk > 0 is regular at φ → 0. Accidentally, this
explains why there were no SFS in [12].

Nevertheless, the SFS popping into existence by
the vanishing scalar field poses a very interesting
question: could this scenario be replicated in the
Garriga-Vilenkin model by slow evolution of the dy-
namical component of a scalar field? In other words,
can it be that the very reason for the existence of the
conscious observers is an almost complete compen-
sation of the vacuum energy by the scalar field—is
something that might in close future render it inhos-
pitable? That would certainly a case of a silver lining
conjuring its own cloud! Let us look at this possibility
in the next section.
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3. IS A COLLAPSE IMMINENT?

Let us assume that we were right in our assump-
tions: that the Garriga-Vilenkin anthropic model is
correct and that there is a slowly vanishing scalar field
which (eventually) produces an SFS. Let us move
a little further by assuming a more general class of
SFS, where, as t → ts, we have p → +∞, but ρ →
ρs 	= 0 [17]. As we have discussed in Sec. 1, the
anthropic principle restricts the possible ρD to a very
narrow band (2), where ρD can be defined as (3).
This implies the following dynamics: ρD essentially
behaves as a constant (ρs) up to the imminent arrival
of an SFS. The same can be said about the pressure
pD ∼ −ρD, although at t = ts we have pD → +∞,
unlike ρD which remains finite. Such a model can be
easily constructed if we assume that

ρ = Λ+
CDM

a3
, (18)

p = −Λ+ α2
Sδ

(
ts − t

T

)
, (19)

where δ is the Dirac delta-function. Before we move
on, a remark would be in order, regarding this func-
tion. At the first glance, it might seem counterintu-
itive to incorporate such an object into the pressure
function, especially in view of an SFS being a “soft”
singularity. However, it is instructive to recall that
the second derivative of a scale factor at the very
moment of sudden singularity ceases to be an analytic
function. The same can be said about the pressure,
courtesy of the FLRW equation (recall that both a
and ρ remain finite during an SFS):

ä = −1

2
(ρ+ 3p)a. (20)

Furthermore, it has been recently shown by Fernán-
dez-Jambrina and Lazkoz [18–20] that sudden sin-
gularities, like those introduced in [21], have one in-
teresting property: any geodesic in a Friedmann uni-
verse does not end at a sudden singularity but safely
passes through it. This implies that there might exist
a unique description of the universe which unites the
pre- and post-SFS cosmological dynamics as one
unbroken evolution, passing through the sudden sin-
gularity. In such a framework, a discontinuity in the
pressure dynamics would appear as an infinitesimally
thin but infinitely high jump in a pressure plotted as a
function of time. This naturally leads us to a function
akin to (19). Finally, in order to fit the definition of an
SFS, we should satisfy the following three conditions:
at t = ts we should have [22]:

0 < a(ts) < ∞,

0 < ȧ(ts) < ∞,

lim
t→ts

ä = −∞.

As we shall see, all of these conditions are indeed
satisfied by (19), so we do have a bona fide sudden
singularity.

Now let us return back to the model (18), (19).
When α2

S = 0, our model morphs into a ΛCDM
model, where ρD = Λ, and pD = p, owing to the fact
that there is no contribution to the pressure from dark
and baryonic matter (note that baryons accounted for
in the CDM coefficient in (18), being a small perturba-
tion of the DM term). The system (18), (19) perfectly
satisfies our requirements, so the corresponding
equations can be used to qualitatively describe a very
slow dynamics of the X component in the anthropic
model of Garriga and Vilenkin. As such, we expect
that the estimates we are about to make using (18),
(19) will not change in a significant way even for more
difficult and more realistic models, provided those
realistic models still satisfy the Garriga-Vilenkin
postulates.

Let us now move on towards actually building
those estimates. The solutions of the FLRW equa-
tions will have the form

a(t < ts) = a−(t) = a0

(
ΩDM (t0)

ΩΛ(t0)
sinh2

t

T

)1/3

= B sinh2/3
(

t

T

)
, (21)

a(t > ts) = a+(t) = a0

(
ΩDM(t0)

ΩΛ(t0)
sinh2

2ts−t

T

)1/3

= B sinh2/3
(
2ts − t

T

)
, (22)

where

ΩΛ(t0) =
Λ

H2(t0)
, ΩDM(t0) =

CDM

a3(t0)H2(t0)
,

T =
2

2
√
Λ
, B = a0

(
ΩDM (t0)

ΩΛ(t0)

)1/3

.

As we have discussed, we are interested in the dy-
namics of the universe where the scale factor and its
first order derivative are both continuous functions
everywhere. This implies that at t = ts we have to
impose matching conditions for (21), (22):

a+(ts) = a−(ts) = B sinh2/3 τs, (23)

ȧ+(ts) = −ȧ−(ts) = − 2B cosh τs
3T (sinh τs)1/3

, (24)

where τs = ts/T . Here we again note that such
“stitching” together of two seemingly different solu-
tions (pre- and post-SFS) is not just a mathematical
sleigh of hand, but a direct application of the results of
Fernández-Jambrina and Lazkoz [18–20] regarding
the possible existence of a unique description of a
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universe enduring a sudden singularity and surviving
it. The matching conditions (23), (24) is then just a
mathematical manifestation of this hypothesis.

Now, if we look at our model at t = ts, we shall
see that the density remains constant, the pressure
blows up (a standard SFS behavior), and the Hubble
parameter changes its sign:

H+(ts) = −H−(ts) = − 2

3T
coth

ts
T
, (25)

so starting out from t > ts, the universe enters a
phase of collapse, instigated by the SFS at t = ts.

We still have two undetermined parameters,
though: a positive-definite “SFS coupling constant”
α2
S and ts, the moment of SFS emergence. We

can find them as follows. First, we substitute (18)
and (19) into the Friedmann equation (20), then we
integrate it in the interval t ∈ (ts − ε, ts + ε) and take
a limit ε → 0. Our reward would be the following
important relationship:

Λcoth
ts
T

= α2
S . (26)

If we choose Λ ∼ 0.7 × 10−29 g/cm−3, then T ∼
10 Gyr. Since we are making a sensible assumption
that an SFS will happen in the future, then ts > T ,
and we have an estimate:

1 < α2
S/Λ < coth 1 ∼ 1.31. (27)

As the exact value of this fraction is arbitrary, we
can use the Bayes approach (a.k.a. the mediocrity
principle) and say that α2

S/Λ should lie somewhere
around 1.155, i.e. in the middle of the interval (27).
If this is so, then the most probable estimate we can
make is

ts ∼ T × coth−1 1.155 ∼ 13.16 Gyr. (28)

Of course, this result should be taken with a grain
of salt, being just an approximation. Still, it looks
very unlikely that better estimates would differ from
T by orders of magnitude. In fact, for more accurate
estimates to predict ts � T , it would either require
a presence of some hitherto unknown “fine tuning”
of cosmological parameters, or indicate the work of
some undiscovered physical laws behind the choice of
α2
S , the “SFS coupling constant”. Both these pos-

sibilities seem very unlikely (at least at this juncture)
which makes us believe that our result is sufficiently
general for those anthropic Garriga-Vilenkin models
with a slowly vanishing scalar field that contain SFS.

4. CONCLUSION

Since our final result is admittedly rather unusual,
it would be a good idea to once again briefly go over
the reasoning that had led us here.

(1) We began with the anthropic solution to the
cosmological constant problem, developed in [1]. Its
core assumption was that DE consists of two com-
ponents: the vacuum energy and a slowly varying
dynamic component. Then the vacuum energy den-
sity might actually satisfy the predictions imposed by
the string theory,: being large and negative-valued.
As long as the density of a second, dynamic, com-
ponent is sufficiently large and positive-definite, the
anthropic principle will do the rest, i.e. select those
universes where the sum of both components is sig-
nificantly small to ensure the universe in question be
habitable, thus producing DE density that is compat-
ible with the observational data.

(2) On the other hand, the model of [1] predicts
in uncertain terms that the dynamic component of
DE must be slowly decreasing, predicting in a dis-
tant future a change in the dynamics of the universe.
After about 1012 years of accelerated expansion, the
universe is supposed to stop growing and begin to
contract. If the variable component is produced by a
scalar filed (another alternative would be a four-form
field strength, which can vary through nucleation of
membranes [7, 23]), then the DE density will play the
role of an effective self-action potential of this very
slowly abating scalar field.

(3) It is sensible to assume that this potential
should have a form V ∼ φn. On the other hand, there
are no reasons to a priori set the constant n to be an
integer—or even a positive number. But if n is not
integer, then, according to [12] the vanishing scalar
field might give rise to some previously unforseen new
singularities. In particular, since we cannot rule out
the effective potentials (6), the abating field might
lead to an SFS, a Sudden Future Singularity (see
Sec. 2). Further on, we have specifically concentrated
on this type of singularity, being the most extreme
and therefore more interesting (the “weaker” type of
singularities will be considered in subsequent papers).

(4) To study the emergence of SFS in the Garriga-
Vilenkin approach, we have constructed a very simple
intuitive model (Sec. 3) that contained both necessary
ingredients for the scenario of [1], and an SFS. Taking
into account that the resulting model contains a bare
minimum of initial assumptions, it is reasonable to
expect that the qualitative estimates made in it would
also hold for more realistic models.

(5) Most interestingly, when the model is equipped
with the current observational data (see Sec. 3), it
predicts an imminent arrival of SFS, for its time of
emergence ends up being comparable with the age
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of the observable universe (about 10 Gyr). It is

important to note that the models of the universe
undergoing a relatively abrupt (as compared to the
trillions of years) halt in accelerated expansion and
collapsing thereafter are not unusual in the frame-
work of supergravity theory. For example, it has been
demonstrated in [6, 24] that in such cosmological
models the DE density eventually evolves to nega-
tive values, after which the universe totally collapses
in times comparable with the observable age of the
universe. An even more general class of such models
was considered in [25], where it was shown that any
eternally expanding model of a DE universe must
have a number of counterparts, where the observ-
able expansion reverts to contraction in characteristic
times of 1010−1011 years. And while those “alter-
native” models might appear too complex and not
very natural, we nevertheless have to take them into
account, if for nothing else, but for a simple fact that
all of them by design satisfy the current observations
(see also [26]).

Returning to models with SFS, we would also like
to mention Ref. [27], where the authors, while study-
ing models with a Big Brake singularity (introduced
in [28]), endeavoured to compare their pre-singular
evolution with the supernovae data and managed to
select some sets of initial parameters compatible with
these data. The authors then numerically analyzed
the duration of time that should pass between the
moment of (contemporary) observation and the Big
Brake singularity, and showd it to be not very large.

In conclusion, we cannot resist mentioning one
last remarkable circumstance. In 2007 the authors
of [29] made an attempt to estimate a possible time
of arrival of an SFS using the observational data on
Ia type Supernovae. They arrived at an astonishing
conclusion that “a sudden singularity may happen in
the very near future (e.g. within ten million years)”! It
is important to point out that the cosmological model
used in [29] was very different from the one studied in
this paper. And yet the conclusions of [29] and ours
are quite alike. Most fascinating, isn’t it?
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