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Abstract—This study links the fractal structure of physical space-time to quantum-mechanical laws. It
is shown that primitive distortions of the pregeometric surface, a fractal cell of 3D space, gives birth to a
condition eliminating the metric defect while providing “eternal validity” of the exclusive algebras (of real,
complex, and quaternion numbers). Written in the physical units typical for the micro-world entities, this
condition acquires the precise form of the Pauli equation describing mechanics of the quantum electron
with spin.
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1. INTRODUCTION
The recent decade is marked with a mathematical

embodiment of Wheeler’s ideas of pregeometry [1], an
unobserved entity regulating the quantum mechani-
cal laws. Ref. [2] strongly supported the mathematical
development of this idea in the framework of three
exclusive algebras, demonstrating the existence of an
“interior” structure of 3D space (possibly, the physi-
cal space) represented by a fractal surface of dimen-
sionality 1/2 having a clear geometric, in fact, prege-
ometric, image and a strict mathematical description.
A closer inspection of this entity gave birth to a new
visual model of a complex number, of an original
version of the theory of relativity [3]; it was a base for
new mathematical algorithms controlling space flight
of objects subject to recently revealed GR effects [4].
However, the most impressive adhesion relates the
space fractal structures with quantum physics [5].

The equation describing the mechanics of a quan-
tum particle, heuristically introduced by Schrödinger,
surprisingly admits a derivation from pure mathe-
matical considerations involving fundamental math-
ematical structures and matrix tools. In brief, the
derivation course is as follows. Non-contradictory,
square non-degenerate simple matrices may perfectly
represent the units of (at least) three exclusive alge-
bras of real, complex and quaternion numbers. The
spectral theorem (see, e.g., [6]) reveals a composite
structure of these matrices built as square products
of vectors of a single biorthogonal basis. In the sim-
plest case, the basis forms a 2D complex-number-
valued surface, fractal (of dimension 1/2) with respect
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to the space attributed to the algebras’ units. Two
primitive deformations of the fractal surface (oscilla-
tion and stretching) ruin the algebras’ basic binary
operation (product). Introduction of a normalization
integral cures the multiplication, while the stability
condition (constancy of the integral with respect to a
free parameter) makes the algebras “eternally valid”
and gives birth to a propagation vector which can
be chosen. In the simplest case, when this vector
is the gradient of an oscillation phase, the algebra
stability condition fractalizes and, in the micro-world
with the physical units, acquires precise the form
of the Schrödinger equation. This approach, when
logically continued, leads to classical and relativistic
mechanics [7].

In this study, we consider an extended form of the
propagation vector comprising, apart from the phase
gradient, an arbitrary 3D vector field. In Section 2,
we analyze the respective algebra stability condition,
written in a scalar format. In Section 3, we ap-
ply to the obtained equation the Bohm procedure
(separation of real and imaginary parts) and recol-
lect the complex-number-valued operator for a fractal
(spinor) function. In Section 4, the unitless fractal
equation written in the physical micro-world units
takes the form of the Pauli equation.

We use the following mathematical objects and
notations. The full set of nondegenerate simple unit
matrices is
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q2 = −i

⎛
⎝0 −i

i 0

⎞
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0 −1

⎞
⎠ .

The vector matrices qn form a metric triad in 3D
space and obey the product law

qmqn = −δmn + εmnjqj ,

where δmn and εmnj are the Kronecker and Levi-
Civita symbols, respectively, and summing in re-
peated indices is implied. The vectors (covectors)
of the respective biorthogonal basis generating the
fractal surface are

ψ+ =

⎛
⎝0

1

⎞
⎠ , ψ− =

⎛
⎝1

0

⎞
⎠ ;

φ+ = (0 1), φ− = (1 0),

so that
1 = ψ+φ+ + ψ−φ−,

q1 = −i(ψ+φ− + ψ−φ+),

q2 = ψ+φ− − ψ−φ+,

q3 = i(ψ+φ+ − ψ−φ−).

Below we omit the parity indicators ± meaning that
both vectors (covectors) fit to the equalities.

2. THE ALGEBRA STABILITY CONDITION
AND THE EXTENDED ANSATZ

FOR THE PROPAGATOR
We deform the fractal surface twice: (i) we make

it oscillate, so that each its vector (covector) pumps
over its length from the real sector to the imaginary
one, ψ′ = eiαψ, φ′ = e−iαφ, (ii) we stretch the oscil-
lating basis

Ψ ≡ σeiαψ ≡ λψ,

Φ ≡ σe−iαφ = λ∗φ; σ �= 0, σ �= 1, (1)

where the phase and the conformal factor may be
real functions of a parameter and the 3D coordinates,
α(θ, ξn), σ(θ, ξn). In fact, we just multiplied a con-
stant 2D unit vector ψ by a complex function of four
real variables λ(θ, ξn).

The factor σ introduces a 3D metric defect since
the triad loses its unitarity property, |σ2q′

k| �= 1. To
save the algebra, we confine the metric defect to a
point of 3D space, f(θ) =

∫
Vξ

ΦΨdVξ = 1. Then the

triad q′′
n = fq′

n restores its property of units of the
algebra, its “eternal” stability (with respect to θ) pro-
vided by the condition ∂θ

∫
Vξ

ΦΨdVξ = 0. This stabil-

ity condition produces the differential continuity-type
equation

∂θ(ΦΨ) + ∂n(ΦΨkn) = 0. (2)

As mentioned above, if the free vector kn (“propaga-
tor”) is chosen to be the gradient of a phase, then in
the micro-world physical units

xn = (�/mc)ξn, t = (�/mc2)θ (3)

(where m is the electron mass, c is the vacuum
speed of light) the fractalized equation becomes the
Schrödinger equation for the electron in a potential
field.

Here we consider an extended version of the prop-
agator comprising (apart from the phase gradient) an
arbitrary 3D vector field,

kn = ∂nα(θ, ξ) +An(θ, ξ). (4)

We stress that the phase gradient describes the direc-
tion and rate of “propagation” of the 2D vector Ψ (and
the triad q′

n), while the vector An(θ, ξ) may unify the
characteristics of Ψ and 3D space. We assume the
space to be Euclidean, though possessing “hidden”
vector properties, a Clifford-type 3D metric tensor
well fits to this condition,

δmn = (pmpn + pnpm)/2, (5)

where pn ≡ iqn are three Pauli-type matrices obey-
ing the multiplication rule

pmpn = δmn + iεmnjpj .

With Eqs. (1), (4), (5), the algebra stability condi-
tion (2) acquires the form

∂θ (φλ
∗λψ) +

1

2
(pmpn + pnpm)

× ∂m[φλ∗λψ(∂nα+An)] = 0. (6)

The next purely technical stage is to be exposed
in details. Since the 2D vectors (covectors) are con-
stant, the first term in Eq. (6) is

φ∂θλ
∗ · λψ + φλ∗ · ∂θλψ. (7)

The phase gradient in the last term can be repre-
sented as

∂nα =
i

2
∂n(λ

∗/λ) =
i

2

(
∂nλ

∗

λ∗ − ∂nλ

λ

)
, (8)

so that the square brackets in Eq. (6) are

φλ∗ · λψ (∂nα+An) =

=
i

2
(φ∂nλ

∗λψ − φλ∗ · ∂nλψ) +Anφλ
∗λψ, (9a)

and the second term in Eq. (6) is rearranged as

∂n

[ i
2
(φ∂nλ

∗ · λψ − φλ∗ · ∂nλψ)

+
1

2
(pmpn + pnpm)φλ∗ · λψAn

]

=
i

2
(φ∂n∂nλ

∗ · λψ − φλ∗ · ∂n∂nλψ)
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+Anφ∂nλ
∗ · λψ +Anφλ

∗ · ∂nλψ

+ φλ∗λψ · 1
2
(pmpn + pnpm)∂mAn, (9b)

the Clifford metric, meaningful only with asymmetric
free-vector’s space derivative

1

2
(pmpn + pnpm) ∂mAn

= ∂nAn +
i

2
εmnjpj∂mAn +

i

2
εnmjpj∂mAn. (9)

Now we unite the terms from Eqs. (7), and (9b) in two
brackets, one with the (left) common factor λ∗φ = Φ,
the other with the (right) factor λψ = Ψ:

Φ ·
(
∂θ −

i

2
∂n∂n +An∂n +

1

2
∂nAn

+
i

2
AnAn − i

2
εmnjpj∂mAn

)
Ψ

+
[
Φ
(←−
∂ θ +

i

2

←−
∂ n

←−
∂ n +An

←−
∂ n +

1

2

←−
∂ nAn

− i

2
AnAn +

i

2
εmnjpj∂mAn

)]
·Ψ = 0. (10)

It is necessary to note that in Eq. (11) we put in each
bracket a half of the “symmetric” term ∂nAn(ΦΨ)/2,
and added the terms ±AnAn(ΦΨ)/2 in the sum an-
nihilating each other. With these additional terms, we
can replace the sum of four operators with a square of
one two-term operator

− i

2
∂n∂n +An∂n +

1

2
∂nAn +

i

2
AnAn

=
i

2
(−i∂n +An)(−i∂n +An); (11)

Taking this into account and endowing Eq. (11)
with the factor −i, we rewrite it in the form

Φ(DΨ) + (Φ
←−
D†)Ψ = 0 (12)

with the “covariant derivative” operator defined as

D ≡ ∂θ +
i

2
(−i∂n +An)(−i∂n +An)

− i

2
εmnjpj∂mAn, (13)

the dagger meaning Hermitian conjugation. Since
Φ = Ψ†, the spinor equation

DΨ = 0 ⇒ (DΨ)† = Φ
←−
D† = 0 (14)

converts the scalar equation (13) into an identity as
a sufficient condition. To analyze the “necessary-
condition solutions,” we address to the Bohm proce-
dure.

3. BOHM-TYPE PROCEDURE APPLIED
TO THE SCALAR STABILITY CONDITION

Here we, first, apply the Bohm procedure to the
scalar equation (13) in order to present a detailed form
of action of the operators onto the involved scalar
functions. Second, we use the obtained equalities
to build a “complex-number” equation for a spinor
function; and we expect that the result will confirm
the sufficient condition given by Eqs. (15).

The Bohm procedure [8] implies separation of real
and imaginary parts in one complex-number equa-
tion. To apply it to Eq. (13), we first process the
derivatives:

∂θΨ ≡ ∂θ(σe
iα)ψ = (∂θσ/σ + i∂θα)Ψ,

∂nΨ = (∂nσ/σ + i∂nα)Ψ,

∂n∂nΨ = (∂n∂nσ/σ + 2i∂nσ · ∂nα/σ + i∂n∂nα

− ∂nα · ∂nα)Ψ,

Φ
←−
∂ θ = (∂θΨ)†, Φ

←−
∂ n = (∂nΨ)†,

Φ
←−
∂ n

←−
∂ n = (∂n∂nΨ)†. (15)

Then we rewrite in an explicit form the first term of
Eq. (13) [or (11)] (divided by σ2 �= 0):

Φ(DΨ)/σ2 = ∂θσ/σ + i∂θα− i

2
∂n∂nσ/σ

+ ∂nσ · ∂nα/σ +
1

2
∂n∂nα+

i

2
∂nα · ∂nα

+An∂nσ/σ + iAn∂nα+
1

2
∂nAn

+
i

2
AnAn − i

2
εmnj(φpjψ)∂mAn (17a)

and similar expression for the second term

(Φ
←−
D)Ψ/σ2 = ∂θσ/σ − i∂θα+

i

2
∂n∂nσ/σ

+ ∂nσ/σ · ∂nα+
1

2
∂n∂nα− i

2
∂nα · ∂nα

+An∂nσ/σ − iAn∂nα+
1

2
∂nAn

− i

2
AnAn +

i

2
εmnj(φpjψ)∂mAn. (17b)

Then the real part of Eq. (13), i.e., of the sum of
Eqs. (17a) and (17b) (we take one-half of it), is

∂θσ/σ + ∂nσ · ∂nα/σ +
1

2
∂n∂nα

+An∂nσ/σ +
1

2
∂nAn = 0, (18)

while the imaginary part identically vanishes like
iW − iW = 0 with the scalar W defined as

W = −∂θα+
1

2
∂n∂nσ/σ − 1

2
∂nα · ∂nα
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−An∂nα− 1

2
AnAn +

1

2
εmnj(φpjψ)∂mAn. (19)

We can regard the term W as an arbitrary function
of the parameter θ and the coordinates ξn, so that the
definition (19) may be represented as an equation:

∂θα− 1

2
∂n∂nσ/σ +

1

2
∂nα · ∂nα

+W +An∂nα+
1

2
AnAn ± 1

2
B = 0, (20)

where we denote εmnj∂mAn ≡ Bj , while projections
of the Q-vector B ≡ pjBj on the direction distin-
guished by the spinors (in the simplest case) are
φBψ = ±B.

Now we restore the “complex-number” format of
the equation and endow it with the spinor form. To
do so, we sum Eq. (18) (as a real part) and Eq. (20)
(as an imaginary part), return back the matrices, and
multiply the result by the spinor Ψ = σeiαψ:(

∂θσ/σ + ∂nσ · ∂nα/σ +
1

2
∂n∂nα+An∂nσ/σ

+
1

2
∂nAn + i∂θα− i

2
∂n∂nσ/σ

+
i

2
∂nα · ∂nα+ iW + iAn∂nα

+
i

2
AnAn +

i

2
Bnpn

)
σeiαψ = 0; (21)

where we use the property of ψ to be an eigenvector
of one matrix of the set pn with the eigenvalues ±1.
With the help of Eqs. (12), (14), (16), we recollect
Eq. (21) in the format “differential & matrix operator
acting on a spinor”:[

− i∂θ +
1

2
(−i∂n +An)(−i∂n +An)

−W − 1

2
Bnpn

]
Ψ = 0. (22)

Equation (22) evidently correlates with the ansatz
(15), the only difference being represented by a free
function W (can be zero).

4. THE PAULI EQUATION

We emphasize that Eq. (22) is abstract, i.e., its
terms are not measured in any physical units. The
equation emerges as a condition providing the exis-
tence and stability of an exclusive algebra. We endow
it with physical units, a suitable set of equalities link-
ing the mathematical unitless quantities (the abstract
3D coordinates and the free parameter) with micro-
world spatial coordinates (length) and time which is

suggested in Eq. (3). We apply them to the differential
operators

∂θ =
�

mc2
∂t,

∂n ≡ ∂

∂ξn
=

�

mc

∂

∂xn
≡ �

mc
∂ñ, (23)

and relate the arbitrary vector to the magnetic poten-
tial An ≡ q

mc2Añ, so that

Bn = εkmn∂kAm =
q�

m2c3
Bñ, (24)

where q is the particle’s electric charge, Bñ is the
magnetic field strength; we also denote the arbitrary
potential energy as U ≡ mc2W . With these nota-
tions, Eq. (22) takes the precise form of the equation
heuristically suggested by Pauli to describe a non-
relativistic electrically charged quantum particle with
spin 1/2 (an electron) in an exterior magnetic field,
[
−i�∂t +

1

2m

(
−i�∂n +

q

c
An

)(
−i�∂ñ +

q

c
Añ

)

− U − q�

2mc
Bñpn

]
Ψ = 0. (25)

We stress that the particle’s magnetic moment (Bohr
magneton) in this deduction appears automatically:

μB ≡ q�

2mc
∼= 0.927 × 10−20 g1/2 cm5/2 s−1. (26)

Equation (25) previews two polarizations of the
electron’s spin (since BñpnΨ = ±BΨ).

5. DISCUSSION

The Pauli equation, a specific law of physics
having a complicated mathematical structure, came
to Wolfgang Pauli “in a flash of genius.” So, its
logical derivation from hypercomplex mathematics
suggested here in a precise mathematical form (25)
once more (and even stronger) confirms the ex-
istence of links between the physical world and
“non-material” though fundamental mathematical
constructions, first noticed in a similar derivation of
the simpler Schrödinger equation and of the vector
version of relativity theory.

A special attention is deserved by the fact that
the mathematical Pauli-type equation (22) is just
a definition of the “mathematical potential” W ; it
was shown that the basic complex-number condition
(6) leaves significant only its real part, Eqs. (18),
(23), while its imaginary part identically vanishes
as a subtraction of two equal “mathematical poten-
tials.” Nonetheless, it is the operator determining the
“potential” (together with the freely chosen potential
function itself) that acts on the fractal function thus
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Table 1. Some physical constants

Magnitude Symbol Units Value

Electron mass m g 9.1094× 10−28

Electron electrical charge q g1/2 cm3/2 s−1 4.8030× 10−10

Planck constant � g cm2 s−1 1.0546× 10−27

Fundamental velocity c cm s−1 2.9979× 1010

Bohr magneton μB g1/2 cm5/2 s−1 9.274× 10−21

forming the quantum mechanical equation. A closer
look prompts that it is not an odd coincidence. Using
Eqs. (23) and (24), we identically rewrite the “imagi-
nary” equation (20) in the physical units,

∂t(�α) +
1

2m

(
∂n(�α) +

e

c
Añ

)(
∂n(�α) +

e

c
Añ

)

+ U ± μBB − �
2

2m
∂ñ∂ñσ/σ = 0. (27)

Let U = Uex +Uin, where the functions Uex, α, Añ
and Bñ comparatively slowly change at the lab scale,
while Uin and σ change very fast. Then Eq. (27) de-
cays into a Hamilton-Jacobi-type “exterior” classical
equation (with S ≡ α�)

∂tS +
1

2m

(
∂nS +

e

c
Añ

)(
∂nS +

e

c
Añ

)

+ Uex ± μBB = 0 (28)

and a Helmholtz-type “interior” equation [with R ≡
(2m/�2)Uin]

∂ñ∂ñσ +Rσ = 0, (29)

regulating the distribution of the factor σ in a limited
volume of physical space. The factor σ remains to be
a unitless magnitude, the conservation of its square
demanded by the algebra stability condition, in par-
ticular, by Eq. (18), rearranged after multiplication
with σ2,

∂θσ
2 + ∂n[σ

2(ξnα+An)] = 0. (30)

If we, for example, endow the factor σ with
the sense of a fractal relative mass density, σ ≡
[ρ(t, x)/ρmean]

1/2 of the particle (ρmean being an av-
erage mass density), then the respective normalizing
integral written in physical units∫

Vξ

σ2dVξ =
1

ρmeanV

∫

V

ρ(t, x)dV = 1,

where V ≡ [�/(mc)]3, determines the particle mass.
Of course, it is just a version of its interpretation.

Finally, we attract attention to the fact that

the empirical term
q�

2mc
Bñpn was earlier deduced

theoretically under the assumption of an interaction
between the particle’s electric charge and the mi-
crostructure of the quaternion space with an asym-
metric metric tensor [10].
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