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Abstract—We consider a rotating modified Hayward black hole and construct a rotating modified Bardeen
black hole to study particle acceleration of two colliding particles near the horizon. These classes of black
holes have new and important parameters with mass dimension, which made crucial differences with the
Kerr black hole. We investigate the CM energy of two colliding neutral particles with the same rest masses
falling from rest at infinit to near the horizons of the mentioned black holes. We confirm that rotational
motion of these black holes is necessary to have infinite CM energy for collision of two particles near the
horizon. We also investigate the range of the particles’ angular momentum and the orbit of the particle,
hence find an infinite region for the case of rotating modified Bardeen black hole and a finite region for the
case of a modified Hayward black hole.
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1. INTRODUCTION

Collision of particles around black holes (BHs) is
a very interesting topic in the current high energy
particle and astroparticle physics. Recently, Banados,
Silk and West (BSW) [1] investigated a collision of
two particles falling from the rest at infinity in a Kerr
BH, which is known as the BSW mechanism. They
determined the center of mass (CM) energy in the
equatorial plane, which may be high in the limiting
case of an extremal BH. Further, it is demonstrated
that the CM energy of two colliding particles diverges
at the inner horizon of a non-extremal Kerr BH [2,
3]. A general review of BH as particle accelerators
is presented by Harada et al. [4]. Wei et al. [5] also
studied a collision of two uncharged particles around
a Kerr-Newmann BH, depending on the BH spin and
charge. Liu et al. studied a collision of two particles
around a Kerr-Taub-NUT BH [6]. Subsequently,
Zakria and Jamil investigated the CM energy of a
collision of two neutral particles with different rest
masses falling freely from rest at infinity in the back-
ground of a Kerr-Newman-Taub-NUT BH [7]. Till
now, several authors [8–15, 17–21] studied collisions
of particles near BHs and CM energy of the colliding
particles.
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in

Space-time singularities are a consequence of
classical general relativity, while it is a common belief
that singularities do not exist in nature. Indeed, we
should seek an alternative to general relativity. In that
case, models of regular BHs have been studied. For
example a nonsingular rotating BH has been studied
in [22]. It was argued that the CM energy of colliding
particles near a naked singularity diverges [23–
26]. Due to gravitational collapse, any astrophysical
object can produces a space-time singularity beyond
a horizon or a naked one. We know that any
classical BH has a singularity. To avoid a singularity,
Bardeen [27] proposed the concept of a regular BH,
dubbed a Bardeen BH, and subsequently, another
type of regular BHs (Hayward BHs) was found [28].
Another kind of regular BH is the Ayon-Beato-
Garcia (ABG) BH [29] which consist of a nonlinear
electric field as a source. Such electric solutions re-
quire different Lagrangians in different parts of space,
however, magnetic solutions with the same metric are
entirely regular and acceptable [30]. A geodesic study
of a regular Hayward BH was discussed by Abbas et
al. [31]. The implication of a rotating Hayward BH
is discussed in [32]. A modified Hayward BH metric
was proposed by Lorenzo et al. [33]. Recently, Amir
and Ghosh studied a collision of two particles with
equal masses moving in the equatorial plane near
the horizon of a rotating Hayward regular BH as a
particle accelerator [34]. Using numerical analysis
of the case of an extremal BH, they found that the
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CM energy diverges near the horizon. On the other
hand, for the the case of a non-extremal BH there
always exists an upper bound with finite value of
CM energy. Also, Pradhan studied regular Hayward
and Bardeen BHs as particle accelerators [35]. The
collision CM energy of charged particles in a Bardeen
BH was studied in [36]. By the above motivations, we
now extend their work to rotating modified Hayward
and Bardeen black holes. The CM energy and the
particles orbits are investigated for two colliding
neutral particles of the same rest mass falling from
infinity into these BHs. Finally, we conclude the
results for a particle accelerator.

The paper is organized as follows. In Section 2,
a general rotating BH background is reviewed, and
rotating modified Hayward and Bardeen BHs are in-
troduced. In Section 3, the CM energy of colliding
particles is calculated. Particle orbits are investigated
in Section 4. Extremal limits of the solutions are
discussed numerically in Section 5. In Section 6 we
give a conclusion and summary of the results.

2. ROTATING BH BACKGROUND

The general form of a rotating BH metric can be
written as

ds2 = −gttdt
2 + grrdr

2 + gθθdθ
2

+ gφφdφ
2 + 2gtφdt dφ, (1)

where

gtt = F (r),

grr =
Σ

G(r)Σ + a2 sin2 θ
,

gθθ = Σ,

gφφ = sin2 θ
[
Σ+ a2(2−G(r)) sin2 θ

]
,

gtφ = a(1− F (r)) sin2 θ, (2)

with

Σ = r2 + a2 cos2 θ, (3)

also, F (r) and G(r) are some function of r. In this
paper, we are interested in studying two different but
approximately similar BHs: rotating modified Hay-
ward and Bardeen BHs, which are introduced in the
following subsections.

2.1. Rotating Modified Hayward BH

The metrics under study are non-vacuum solu-
tions of Einstein equations which have some form of
exotic fields as a gravitational source. To write the
metric of a rotating modified Hayward BH, we begin
with the general static spherically symmetric metric

given by gtφ = 0 of the line element (1). Then, the
Hayward BH is given by [28]

gtt =
1

grr
= f(r) = 1− 2Mr2

r3 + 2Ml2
= 1− 2m1

r
,

gθθ = r2, gφφ = r2 sin2 θ,

gtφ = 0, (4)

where

m1 =
Mr3

r3 + 2Ml2
, (5)

and M is the Hayward BH mass; l is a parameter
with the dimension of length and a small scale related
to the inverse of the cosmological constant. The
Hayward BH behaves as a Schwarzschild BH as r →
∞ (gtt ≈ 1− 2M/r) and as de Sitter space-time near
the center (r → 0, gtt ≈ 1− r2/l2). Including one-
loop quantum corrections yields a modified Hayward
BH [33], which allows a finite time dilation between
the center and infinity [37]. In that case, accretion and
evaporation of a modified Hayward BH was studied
in [37]. The modified Hayward BH is given by the
metric (1) with

gtt = f(r)h(r)

=

(
1− 2Mr2

r3 + 2Ml2

)(
1− μM

r3 + μ
νM

)
,

grr =
1

f(r)
= (1− 2Mr2

r3 + 2Ml2
)−1,

gθθ = r2, gφφ = r2 sin2 θ,

gtφ = 0, (6)

where μ and ν are positive constants. We can see
that the only change is gtt → f(r)h(r) (F (r) →
f(r)h(r)). So, the modified Hayward BH is obtained
by adding the function

h(r) = 1− μM

r3 + μ
νM

On the other hand, Ref. [32] constructed a general
rotating regular BH and considered the Hayward and
Bardeen BHs as examples. For a rotating Hayward
BH we have the metric (1) with [32],

F (r) = G(r) = f̃ = 1− 2m̃1r

Σ
, (7)

where

m̃1 = M
r3+αΣ−α/2

r3+αΣ−α/2 + g31r
βΣ−β/2

, (8)

with g31 = 2Ml2, α and β are real numbers. It is
easy to check that α = β = a = 0 yield a nonrotating
Hayward BH. It means that a rotating BH is obtained
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Fig. 1. Rotating modified Hayward BHs, gtt in terms of r for M = 1, ν = 1, β = 2, α = 1. (a) θ = π/2, a = 1, l = 0.5;
and μ = 0 (dot), μ = 0.2 (dot dash), μ = 0.4 (solid), μ = 1 (dash). (b) θ = π/2, a = 1, l = 1; and μ = 0 (dot), μ = 0.2 (dot
dash), μ = 0.4 (solid), μ = 1 (dash). (c) θ = π/6, l = 1; a = μ = 0 (dot), a = 2, μ = 0.2 (dot dash), a = 0.8, μ = 0.2 (solid),
a = 1, μ = 0.4 (dash).

by adding the parameters α, β and a together with
the replacement m1 → m̃1 (f → f̃ ). In summary
we have seen that F (r) → f(r)h(r) gives a modi-
fied Hayward BH, and F (r) → f̃(r) gives a rotating
Hayward BH. So, it seems that both effects (F (r) →
f̃(r)h̃(r), G(r) → f̃(r)) give us a rotating modified
Hayward BH (at least in the first order approxima-
tion). So, we suggest the metric (1) as a rotating
modified Hayward BH with the metric

gtt = f̃(r)h̃(r),

grr =
Σ

f̃(r)Σ + a2 sin2 θ
,

gθθ = Σ,

gφφ = sin2 θ
[
Σ+ a2(2− f̃(r)) sin2 θ

]
,

gtφ = a(1− f̃(r)h̃(r)) sin2 θ, (9)

where f̃(r) and m̃1 are given by Eqs. (7) and (8), and

h̃ = 1− μm̃2r

Σ2
, (10)

m̃2 = M
r3+αΣ−α/2

r3+αΣ−α/2 + g32r
βΣ−β/2

, (11)

with g32 = Mμ/ν. This is a regular solution ev-
erywhere for g2 �= 0. The horizon structure of the
rotating modified Hayward BH is given by grr = ∞
from (2), which is exactly similar to the rotating Hay-
ward BH discussed in [34].

It has been shown that there are two horizons,
the so-called Cauchy and event horizons. Also, the
structure and location of the ergosurface may be in-
vestigated using gtt = f̃(r)h̃(r) = 0. A rotating Hay-
ward BH has been studied in [34].

Figure 1 shows the location of the static limit
surface for different values of the parameters.

2.2. Rotating Modified Bardeen BH

The Bardeen BH is very similar to the Hayward
BH and is obtained by Bardeen [27]. The rotating
Bardeen BH has been constructed in [32]. In a similar
way with the previous subsection, we can propose a
rotating modified Bardeen black hole. Therefore, it is
defined by Eqs. (7), (9) and (10), while m̃1 and m̃2 are
given by

m̃1 = M
r3+αΣ−α/2

(
r3+αΣ−α/2 +Ml2rβΣ−β/2

)3/2 ,

m̃2 = M
r3+αΣ−α/2

(
r3+αΣ−α/2 + g2rβΣ−β/2

)3/2 (12)

where, as before, l is a parameter with the dimension
of length, α and β are real numbers, and g is a
constant parameter with the dimension of mass. So,
we can write unified equations for both Bardeen and
Hayward BHs in terms of f̃ and h̃, the only difference
is in the shape of m̃1 and m̃2. Horizons of the BHs
are given by the root of the following equation (the
denominator of grr to be zero):

f̃Σ+ a2 sin2 θ = 0. (13)

Using Eq. (12), we have

Δ = r2 + a2

− 2Mr4+αΣ−α/2

(
r3+αΣ−α/2 +Ml2rβΣ−β/2

)3/2 = 0. (14)

The horizon structure of the rotating modified
Bardeen BH is shown in Fig. 2. We can see that,
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Fig. 2. Rotating modified Bardeen BHs, Δ in terms of r for M = 1. (a) θ = π/2, α = 1 and β = 2, l = 0.5, a = 0 (space
dot), a = 0.3 (long dash), a = 0.5 (solid), a = 0.7 (dot), a = 0.8 (dash). (b) θ = π/2, α = 1 and β = 2, a = 0.5, l = 0.1
(space dot), l = 0.3 (long dash), l = 0.5 (solid), l = 0.6 (dot), l = 0.7 (dash). (c) θ = π/6, a = l = 0.5, α = 1, β = 0 (space
dot), β = 0.8 (long dash), β = 2 (solid), β = 2.8 (dot), β = 3.6 (dash). (d) θ = π/6, a = l = 0.5, β = 2, α = 0 (space dot),
α = 0.4 (long dash), α = 1 (solid), α = 1.6 (dot), α = 2 (dash).

for a suitable choice of the parameters, there are two
horizons r+ = r ± δ, where 0 < δ < 0.5. The case of
θ = π/2 is of our interest, although values of α and β
are not important. In this case, Δ vs r is plotted in
Figs. 2a and 2b.

On the other hand, in the case θ = π/6 we can see
the effect of α and β on BH horizons in Figs. 2c and
2d. For example, from solid lines in Fig. 2a and 2b we
can see r+ ≈ 1.1 and r− ≈ 0.5 for α = 1, β = 2 and
a = 0.5 (a Bardeen BH). Also, one can obtain r+ ≈
1.65 and r− ≈ 0.9 with α = 1, β = 2 and a = 0.5 for
the case of a Hayward BH.

It is easy to check that the behavior of gtt = f̃ h̃ is
approximately similar to the previous case. So, we
can see, for example, Fig. 1 as a typical behavior of
the ergo-surface.

3. THE CENTER OF MASS ENERGY

In this section we consider motion of particles with
rest mass m0 falling from infinity in the background
of a rotating modified Hayward or Bardeen BHs. The
Hamilton-Jacobi equation governs the geodesic mo-
tion in these space-times and can written as

∂S

∂τ
= −1

2
gμν

∂S

∂xμ
∂S

∂xν
, (15)

where τ is an affine parameter along the geodesics,
and S is the Jacobi action, so one can consider the
following ansatz [19, 34]:

S =
1

2
m2

0τ − Et+ Lφ+ Sr(r) + Sθ(θ), (16)

where Sr(r) and Sθ(θ) are functions of r and θ,
respectively. Since equatorial motion (θ = π/2) is
assumed, Sθ(θ) = C is a possible choice, where C is

an arbitrary constant. Moreover, E = −Pt and L =
Pφ are the conserved energy and angular momentum,
respectively. One can obtain the null geodesic in the
form

ṫ =
1

ξ

[
aL(1− h̃f̃)− a2E(f̃ − 2) + EΣ

]
, (17)

φ̇ =
1

ξ

[
Lh̃f̃ − a(1− h̃f̃)E

]
, (18)

where

ξ ≡ a2
(
h̃f̃2(h̃− 1) + 1

)
+ h̃f̃Σ, (19)

and the dot denotes a derivative with respect to the
parameter τ . Using the Hamilton-Jacobi equa-
tion (15) and the relation (16), one can obtain

−m2
0 = gttE2 − 2gtφEL+ gφφL2

+ grrR2(r), (20)

where

R(r) =
dSr(r)

dr
, (21)

gtt =
a2(f̃ − 2)−Σ

ξ
,

grr =
a2 + f̃Σ

Σ
,

gφφ =
h̃f̃

ξ
,

gtφ =
a(1− h̃f̃)

ξ
. (22)

It is easy to find

R(r) =

(
Σ

a2 + f̃Σ

)1/2
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×
[2ELa(1 − h̃f̃)− E2(a2(f̃−2)− Σ)− L2h̃f̃

ξ

−m2
0

]1/2
. (23)

So, we have,

ṙ =
a2 + f̃Σ

Σ
R(r). (24)

Therefore, we have all nonzero 4-velocity compo-
nents given by Eqs. (17), (18), and (24). Hence, we
are able to obtain the CM energy of two neutral par-
ticles’ collision near the rotating modified Hayward or
Bardeen BHs. We suppose that the two particles have
the same rest mass (m0) with the angular momenta
per unit mass L1 and L2 and energies per unit mass
E1 and E2, respectively. Thus the CM energy is given
by

ε ≡ ẼCM =
√

1− gμνu
μ
1u

ν
2 , (25)

where uμi = (ṫi, ṙi, 0, φ̇i), i = 1, 2, and ECM =

ẼCM
√
2m0. After some calculations we can find

Ẽ2
CM =

1

ξ2

(
ξ2 +AL1L2

+ BE1E2 + C(E1L2 + E2L1)−H1H2

)
, (26)

where

A = a2f̃ h̃(f̃ h̃+ f̃2h̃− f̃2h̃2 − 1)− f̃2h̃2Σ,

B = f̃ h̃[a2(f̃ − 2)− Σ]2

+ a2(1− f̃ h̃)[a2(f̃ − 2)− Σ],

C = a(1− f̃ h̃)
(
a2(1− f̃ h̃)

− f̃ h̃[a2(f̃ − 2)− Σ]
)
, (27)

and

Hi =
√
ξ
{
ξm2

0 − 2a(1 − f̃ h̃)EiLi

+ [a2(f̃ − 2)− Σ]E2
i + f̃ h̃L2

i

}1/2
, i = 1, 2. (28)

We will give a numerical analysis of ẼCM (26) for
both cases of rotating modified Hayward and rotating
modified Bardeen BHs.

Near the horizon limit r → r+ we see that
ξ|r→r+ = (h̃− 1)(h̃f̃2 − a2). Therefore, the CM
energy will be infinite if we have h̃ = 1 or h̃f̃2 = a2.

In the plots of Fig. 3 we can see the behavior of
ẼCM for both rotating modified Hayward and Bardeen
BHs.

Figure 3a shows the CM energy for E1 = E2 and
L1 = L2. We can see that for both Hayward (μ =

0, a = 0) and modified Hayward (μ �= 0, a = 0) BHs
the CM energy has a finite constant value.

Then, we can see the growth of this energy near
the horizon for a �= 0. For example, in the case of
a = 0.1 one finds r− ≈ 0.6 and r+ ≈ 1.85 (blue), or in
the case of a = 0.5 one finds r− ≈ 0.9 and r+ ≈ 1.65
(green), we have infinite CM energy. In the Fig. 3b
we can see the effect of μ (corresponding to a modified
Hayward BH). We find that the value of CM energy of
a Hayward BH is larger than for a modified Hayward
BH.

In Fig. 3c we give a plot of CM energy with L1 =
−L2, arbitrary E1 and E2 and μ = 1 to see that the
case of a = 0 yields a finite CM energy near the event
horizon (r+) while a �= 0 gives an infinite CM energy
near the event horizon. Cyan curves corresponds
to μ = 0, and g1 = 0 (Kerr BH). It is clear that the
modified Hayward BH has a larger CM energy than
the Kerr BH. Moreover, g1 = 0 and a = 0 together
with μ = 0 give a Schwarzschild BH with finite CM
energy, as expected.

An important situation is that one particle due to
its momentum strongly turns around the BH while
the other has no such turn, therefore the radial ve-
locity of the second one is close to zero while the
first particle has a velocity close to the speed of light.
The growing Lorentz factor for the relative velocity
leads to growth of the CM energy. It is illustrated by
Fig. 3d. We can see a divergence of the CM energy
which depends on the particles’ properties.

In the Figs. 3e–3h we can see the CM energy for a
modified Bardeen BH. We see similar results to those
for a Hayward BH.

4. PARTICLE ORBITS

To specify the range of the particles’ angular mo-
mentum, we should calculate the effective potential
to describe the motion of test particles. Here, we
are interested to the motion of test particles in the
equatorial plane (θ = π/2), where the radial equation
of motion for the timelike particles moving along the
geodesics is

1

2
ṙ2 + Veff = 0, (29)

which gives the effective potential

Veff = − ṙ2

2
= −a2 + f̃Σ

2Σ

{
1

ξ

[
2ELa(1 − h̃f̃)

− E2(a2(f̃ − 2)− Σ)− L2h̃f̃
]
−m2

0

}
, (30)

where we have used (23) and (24). The circular orbit
of particles is obtained using the relations

Veff = 0, (31)
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Fig. 3. ε ≡ ẼCM in terms of r for α = 1 and β = 2 with M = 1, l = 0.5, ν = 1 and θ = π/2, for rotating modified Hayward
(a–d) and Bardeen (e–h) BHs. (a) L1 = L2 = 0, E1 = E2 = 1, μ = 0, a = 0 (solid), a = 0.1 (dash), a = 0.5 (dash dot),
a = 0.5 with g1 = 0 (dot). (b) L1 = L2 = 0, E1 = E2 = 1, μ = 1, a = 0 (solid), a = 0.1 (dash), a = 0.5 (dash dot),
a = 0.5 with g1 = 0 (dot). (c) E1 = E2 = 1, L1 = −L2 = −6, μ = 1. a = 0 (solid), a = 0.5 (dash dot), a = 0.6 (dash),
a = 0.5 with g1 = 0 (dot). (d) L1 � L2, E11, E2 = 0.2, μ = 0.5, g = 0.5, a = 0 (solid), a = 0.1 (dash dot), a = 0.3
(dash). (e) L1 = L2 = 0, E1 = E2 = 1, μ = 0, g = 0.5, a = 0 (solid), g = 0.5, a = 0.3 (dash), g = 0.5, a = 0.6 (dash dot).
(f) L1 = L2 = 0, E1 = E2 = 1, μ = 1, g = 0.5, a = 0 (solid), g = 0.5, a = 0.2 (dash), g = 0.5, a = 0.4 (dash dot), a = 0.3
with g1 = 0 (dot). (g) g = 0.5, a = 0.5, L1 = L2 = 2, E1 = E2 = 1 (solid), E1 = 2, E2 = 1 (dash), E1 = 0, E2 = 1 (dot),
E1 = 0.4, E2 = 1 (dash dot). (h) L1 � L2, E1 = 0.2, E2 = 1, μ = 1, g = 1, a = 0 (solid), a = 0.167 (dash), a = 0.333
(dash dot), a = 0.3 (dot).

W ≡ dVeff/dr = 0. (32)

The first condition (31) satisfied at the BH horizon.
Figures 4a–4f show the behavior of W . For the unit
values of a and E we can see that the condition (32)
is satisfied for the modified Hayward black hole with
negative L (see Fig. 4a.

In the other plots (Figs. 4b, 4c we can see the effect
of a and E.

On the other hand, Figs. 4d–4f show that rotating
modified Bardeen BHs have no restriction on negative
L. For any values of L we can have particle circles.

It is important to find the innermost stable circular
orbit. Using the relation (24), one can obtain the
angular momentum per unit mass on a circular orbit,
which satisfy ṙ = 0:

L+ =
Ea(1− f̃ h̃)

f̃ h̃

[

1

±

√

1 +
f̃ h̃[ξ − E2(a2(f̃ − 2)− Σ)]

E2a2(1− f̃ h̃)2

]

. (33)

The reality condition for the above solution tells us
that

E2 ≥ f̃ h̃ξ

a2[f̃2h̃− f̃2h̃2 − 1]− f̃ h̃Σ
. (34)

The equality hold for L+ = L− ≡ L0, where,

L0 =
1− f̃ h̃

f̃ h̃
√

f̃(1− h̃)− 1/(f̃ h̃)− Σ/a2
. (35)

In that case there is no stable circular orbit. To
have such an orbit, the angular momentum must be
in the range L− < L < L+. It is possible to suppose
that L1 = L+ and L2 = L− + ε, where 0 ≤ ε leqL+ −
L−. In other words, the first particle is a target and
the second particle on a circular orbit collides with the
target. ε is a small drift of the second particle from a
circular orbit. Therefore, using the relation (33) for
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Fig. 4. W ≡ dVeff/dr in terms of r for α = 1 and β = 2 with M = 1, l = 0.5, g = 0.25 and θ = π/2, for Hayward (a–c) and
Bardeen (d–f) BHs. (a) a = 1, E = 1, L = −2 (dash dotted), L = −0.4 (dot), L = 0 (solid), L = 0.02 (dash). (b) a = 1,
L = −0.4, E = 0 (dash dotted), E = 0.8 (dot), E = 1 (solid), E = 1.2 (dash). (c) E = 1, L = −0.4. a = 0 (dash dotted),
a = 0.2 (dot), a = 0.6 (solid), a = 0.8 (dash). (d) a = 1, E = 1, L = −2 (dash dotted), L = −0.4 (dot), L = 0 (solid),
L = 0.8 (dash). (e) a = 1, L = −0.4, E = 0 (dash dotted), E = 0.8 (dot), E = 1 (solid), E = 1.2 (dash). (f) E = 1,
L = −0.4. a = 0 (dash dotted), a = 0.2 (dot), a = 0.6 (solid), a = 0.8 (dash).

the CM energy (26), we can obtain ẼCM at a circular
orbit. In the case ε = 0 we have a maximum of ẼCM,
and in the case ε = L+ − L− we have a minimum of
ẼCM, i.e,

ẼCMmin < ẼCM < ẼCMmax . (36)

For the appropriate choice of r (at a special place like
that near a horizon), we can see that ẼCMmax tends to
infinity. The innermost circle with ẼCM may serve as
observable phenomena. We can see that behavior of
ẼCM for both rotating modified Hayward and Bardeen
BHs in Fig. 5.

There is also another interesting state with

f̃ h̃[ξ − E2(a2(f̃ − 2)− Σ)] = 0, (37)

where L− = 0, so the second particle has an infinites-
imal angular momentum L2 = ε. For L+ there are
two possible cases. In the first case,

ξ − E2(a2(f̃ − 2)− Σ) = 0, (38)

14

1.41.21.00.8
r

0.60.40.20

∈

Fig. 5. A typical behavior of ε ≡ ẼCM in terms of r for
M = 1, E1 = E2 = 1, ε = 1, α = 1 and β = 2. Solid
and dotted lines represent the case of a rotating modified
Hayward BH for l = 1 and l = 0.5, respectively, while the
dashed line represents a rotating modified Bardeen BH
with g = 0.8.
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Fig. 6. ε ≡ ẼCM in terms of r for α = 1 and β = 2 with M = 1, l = 0.5, μ = ν = 1 and θ = π/2. (a) Extremal (a = 0.65)
rotating modified Hayward BH with r+ = r− ≈ 1.25. L1 = 2, L2 = −2, E1 = E2 = 1 (solid), L1 = 2, L2 = −2, E1 = 1,
E2 = 1.2 (dash), L1 = 0, L2 = −2, E1 = 1, E2 = 2 (dot). (b) Extremal (a = 1.22) rotating modified Bardeen BH with
r+ = r− ≈ 0.6. L1 = L2 = 2, E1 = 1, E2 = 2 (solid), L1 = 0, L2 = 2, E1 = 1, E2 = 2 (dash), L2 = −2, L1 = 0, E2 = 1,
E1 = 2 (dot).

we have

L+ =
[
a2f̃(rc)[h̃(rc)− 1] + r2c + a2

− E2[f̃(rc)a
2 − r2c − 2a2]

]
Ea

×
[
E2[f̃(rc)a

2 − r2c − 2a2]− a2
]−1

, (39)

where rc is a root of Eq. (38).
In the second case f̃ h̃ = 0, we have L+ → ∞.

5. THE EXTREMAL LIMIT
It may be interesting to study the extremal solution

where δ = 0 and r+ = r−. It will be obtained using
the appropriate choice of α, β and a.

For example, the extremal limit of a rotating mod-
ified Hayward BH may be given by α = 1, β = 2 and
a = 0.65 (with other parameters fixed as previously),
leading to r+ = r− ≈ 1.25.

The extremal limit of a rotating modified Bardeen
BH may be given by α = 1, β = 2, g = 0.5, and
a = 1.22 (with other parameters fixed as previously),
and then r+ = r− ≈ 0.6. It is clear from Fig. 6
that an infinite CM energy near the BH horizon will
be obtained for both rotating modified Hayward and
Bardeen BHs.

Figure 6a presents ẼCM in the case of an extremal
rotating modified Hayward BH for various values of
E1, E2, L1 and L2. We find that E1 = E2 is a crucial
condition for having an infinite CM energy near the
horizon. It is clear that a maximum range of CM
energy is seen near r ≈ 1.25, which is indeed the
location of the event horizon.

On the other hand, Fig. 6b presents ẼCM for an
extremal rotating modified Bardeen BH. We can see
for various values of E1, E2, L1 and L2 that we have
an infinite CM energy near the BH horizon.

6. CONCLUSIONS

The BSW mechanism [1] has demonstrated that
the extremal Kerr BH can be considered as a parti-
cle accelerator with infinite CM energy near the BH
horizon. Since there is no definite quantum theory of
gravity, the BH interior has not yet been understood
completely, hence we need regular BHs which are
motivated by quantum theories. The Hayward and
Bardeen BHs are such regular models considered
as classical BHs. The rotating modified Hayward
BH has new parameters μ and ν, while the rotating
modified Bardeen BH has a new parameter g which
make systems different from the Kerr BH. Like [34],
we have found the effect of these new parameters
on the CM energy, hence we can obtain information
about the BH structure. Indeed, in this work we have
assumed two types of regular BHs, rotating modified
Hayward and Bardeen BHs, as particle accelerators.
The horizon structure of a rotating modified Hayward
BH specified by grr = ∞, which is exactly similar
to the rotating Hayward BH discussed in [34]. The
horizon structure of a rotating modified Bardeen black
hole is specified by Fig. 2, and Figs. 2a,b show Δ
vs. r for θ = π/2, while Figs. 2c,d show Δ vs. r for
θ = π/6. We have investigated the CM energy of two
colliding neutral particles with the same rest masses
falling from the rest at infinity to near the horizons of
the mentioned BHs. Figs. 3 show the CM energy vs.
r for rotating modified Hayward and Bardeen BHs on
different cases. We have also investigated the range of
particles’ angular momentum and the particle orbit.
Figs. 4a–4c and 4d–4f show W vs. r for rotating
modified Hayward and Bardeen BHs, respectively.
We have obtained the innermost stable circular orbits
of particles. We have also studied the CM energy cor-
responding to extremal BHs and obtained an infinite
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CM energy for appropriate BH parameters, which is
in agreement with the result of Zaslavskii [38]. It that
case it is interesting to study the BSW mechanism
for another kind of BHs like the Gödel BH [39–41],
two-dimensional BHs [42–44], Schr’́odinger [45] or
string BHs [46] with hyperscaling violation [47–49],
and the Myers-Perry BHs [50, 51].
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