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Abstract—Field equations of the locally rotationally symmetric (LRS) Bianchi type-I metric with
anisotropic fluid are constructed in the framework of Lyra’s manifold. By assuming a hybrid expansion
law (HEL) for the average scale factor that yields power-law and exponential-law cosmologies, we model
Bianchi type-I space time for the time-dependent displacement field which is proportional to a power-law
form of the Hubble parameter. The model provides an elegant description of the transition from cosmic
deceleration to acceleration. We discuss the physical behaviors of the derived models with observational
constraints applied to late-time acceleration as well as early stages of the Universe. It is observed that
HEL Bianchi type I universe is anisotropic at early stage of evolution and becomes isotropic at late times.
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1. INTRODUCTION

In view of explaining observational cosmology,
many researchers are interested in the importance of
late-time acceleration of the isotropic and homoge-
neous Universe which was in an anisotropic phase
at early times. But observational evidence such as
Lima [1], Perlmutter et al. [2] and Reiss et al. [3]
supports that the present Universe is undergoing
a phase of accelerated expansion. Cosmologists
are considering many alternatives to explain this
late-time acceleration. One of the approaches is
that some form of dark energy (DE) must exist in
the Universe to drive this accelerated expansion.
Two main candidates for DE are the cosmological
constant and scalar fields. The data indicate that the
current standard model of the Universe is dominated
by an unclustered fluid with large negative pressure
called DE which causes the acceleration. Spergel
et al. [4] also assert that DE accounts for 70% of
the spatially flat Universe. Scalar field models were
invoked to alleviate the problems associated with the
cosmological constant. Unfortunately, scalar field
models are plagued with similar problems. Caldwell
and Kamionkowski [5] studied the mystery of the
nature of DE. Several models have been proposed to
explain DE [6–12]. An alternative consists in a phe-
nomenological decaying DE density with continuous
creation of matter [12] or photons [13, 14]. DE might
decay slowly in the course of the cosmic evolution and
thus provide a source for matter and radiation.
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Another approach consists in modified theories of
gravity to describe the accelerated expansion of the
Universe. Among various modification of general
relativity, Lyra’s geometry is a well-known example of
scalar tensor theory. A year after Einstein developed
his general relativity (in 1917), in which gravitation
is described in terms of geometry, Weyl [15] proposed
a more general theory in which electromagnetism is
also described geometrically. However, this theory,
based on nonintegrability of length transfer, had some
unsatisfactory features and did not gain general ac-
ceptance. Later Lyra [16] suggested a modification of
Riemannian geometry, which may also be considered
as a modification of Weyl’s geometry, by introduc-
ing a gauge function into the structureless manifold
which removes the nonintegrability of the length of
a vector under parallel transport, and a cosmological
constant is naturally introduced from the geometry.
In subsequent investigations, Sen [17] and Sen and
Dunn [18] formulated a new scalar-tensor theory of
gravitation and constructed an analog of the Einstein
field equations based on Lyra’s geometry. Halford [19]
pointed out that a constant displacement vector field
φi in Lyra’s geometry plays the role of a cosmological
constant in the normal general-relativistic treatment.
Halford [20] found that the scalar-tensor treatment
based on Lyra’s geometry predicts the same effects as
general relativity.

Several authors studied cosmological models
based on Lyra’s manifold with a constant displace-
ment field vector φi. However, this restriction on
the displacement field to a constant is only for con-
venience, and there is no prior reason for it. Many
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eminent authors [19, 21–24] investigated cosmo-
logical models with constant and time-dependent
displacement fields. Recently, an FRW cosmo-
logical model in the framework of Lyra’s geometry
was studied with a variable equation-of-state (EoS)
parameter [25]. Singh et al. [26] also investigated
bulk-viscous models of the Universe with a variable
deceleration parameter in Lyra’s Manifold.

Many authors studied power-law and exponent-
ial-law cosmologies in general relativity by con-
straining it with a host of observational data and
found that such cosmology is not a complete package
for cosmological purposes. In fact, power-law and
exponential-law cosmologies can be used only to
describe an epoch-based evolution of the Universe
because of the constancy of the deceleration parame-
ter. For instance, these cosmologies do not exhibit
a transition of the Universe from deceleration to
acceleration. Akarsu et al. [27] investigated a simple
form of the expansion history of the Universe referred
to as the hybrid expansion law (HEL)—a product of
power-law and exponential type of functions in the
framework of the Brans-Dicke theory.

On the other hand, recent experimental data
and critical arguments support the existence of an
anisotropic phase of the cosmic expansion that ap-
proaches an isotropic one with the age of the Uni-
verse. Balloon-borne experiments such as
BOOMERGang [28] and MAXIMA [29] have de-
tected the anisotropy spectrum of the cosmic mi-
crowave background (CMB) radiation in a flat Uni-
verse. Spatially homogeneous and isotropic Uni-
verses represented by Friedmann-Robertson-Walker
(FRW) models are considered to be the most suitable
for studying the large-scale structure of the Universe.
But, they have higher symmetries than the real
Universe, and therefore they are probably poor ap-
proximations for a very early Universe. The isotropic
and homogeneous Universe on larger scales is well
described observationally by the ΛCDM model, but
the latter shows a poor fit to the CMB temperature
power spectrum at low multipoles. This shows that
the essential features of the early Universe are not
characterized by isotropy and homogeneity. Also,
the WMAP observations hint towards the presence
of some anisotropic energy source in the Universe
with anisotropic pressures. This prediction motivates
us to describe the early stages of the Universe with
anisotropic models. Some Bianchi cosmologies, for
example, are natural hosts of large-scale magnetic
fields, and therefore, their study can shed light on
the implications of cosmic magnetism for galaxy
formation.

The simplest anisotropic models of the Universe
are Bianchi type-I homogeneous models whose spa-
tial sections are flat but the expansion or contrac-

tion rates are direction-dependent. Thus it would
be worthwhile to explore anisotropic DE models in
the framework of modified gravity theory to generate
cosmic acceleration with a regular fluid. Koivisto
and Mota [30] also purposed cosmological model with
anisotropic and viscous DE in order to explain an
anomalous cosmological observation in the cosmic
microwave background (CMB) at the largest angles.
Various attempts are made to construct acceptable
DE models in different directions such as the tradi-
tional cosmological constant, quintessence or phan-
tom models, a dark fluid with complicated equation of
state, string or M theory, higher dimensions, brane-
world models, etc. The anisotropy of the cosmic
expansion which is supposed to be damped out in the
course of cosmic evolution is an important quantity
in the history of evolution of the Universe. Saha [31]
discussed a binary mixture of a perfect fluid and DE
for Bianchi type-I and for Bianchi type-V. The ac-
celerated expansion provides information about the
major part of the Universe which has a large nega-
tive pressure but without telling anything about the
number of cosmic fluids in the Universe. This may
be explained by considering the accelerating expan-
sion with a single fluid and an EoS acting like DE.
The main benefit of this approach is that a suitable
EoS can be obtained, and the observational data can
be fitted.In General relativity (GR) that people have
investigated by assuming a fluid with an anisotropic
EoS.

Akarsu and Kilinic [32] studied Bianchi type-III
models in the presence of a single imperfect fluid
with anisotropic DE. They found that the anisotropy
of DE does not always promote the anisotropy of
expansion. Sharif and Zubair [33] studied Bianchi
type VI0 cosmological models in the presence of an
electromagnetic field and anisotropic DE. Bianchi
type models have been studied by several authors in
an attempt to understand better the observed small
amount of anisotropy in the Universe. The same
models have also been used to examine the role of
certain anisotropy sources during the formation of
large-scale structures we see in the Universe today.
Singh et al. [26] investigated bulk-viscous cosmo-
logical models with a variable deceleration parameter
in Lyra’s manifold. Singh et al. [34] also discussed
Bianchi type-I space-time in the presence of bulk
viscosity and a Chaplygin gas in the context of Lyra’s
geometry. It is observed that the considered form of
bulk viscosity has a similar qualitative behavior to
that of constant and variable bulk viscosities. Suren-
dra et al. [35] investigated power-law inflation with an
anisotropic fluid in Lyra’s manifold.

In this work, our intention is to investigate a
Bianchi type-I cosmological model dominated by
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an anisotropic fluid in Lyra’s geometry for a time-
dependent displacement field by assuming a hybrid
expansion law (HEL) of the Universe. We will inves-
tigate the consistency of the derived HEL cosmology
with observations according to the latest data, and
then studied the kinematics and dynamics of the
HEL Universe in detail. In Section 2, we present the
field equations and their solutions. In Section 3, we
discuss a model with a hybrid expansion law. Some
observational parameters of the derived models are
investigated in Section 4, and a concluding remark is
written in Section 5.

2. FIELD EQUATIONS
AND THEIR SOLUTIONS

The metric of a homogeneous and anisotropic
Bianchi type-I space-time is

ds2 = dt2 −A2dx2 −B2(dy2 + dz2) (1)

where the scale factors A and B are functions of
cosmic time t only. The field equations in Lyra’s
manifold as obtained by Sen [17] are

Rμν −
1

2
Rgμν +

3

2
φμφν

− 3

4
gμνφmφm = −Tμν , (2)

where (8πG = 1 and c = 1) φμ = (0, 0, 0, β(t)) is the
timelike displacement field vector, Rμν is the Ricci
tensor, and R is the Ricci scalar, with comoving co-
ordinates, so that gμνuμuν = 1 and uμ = (0, 0, 0, 1).
We choose φμ in this form to be time dependent.
Here we apply the fact that the ansatz choosing the
coordinate system with matter requires the vector
field happens to be in this particular form exactly
in the matter-comoving coordinates. The essential
difference between the cosmological theories based
on Lyra’s geometry and the Riemannian geometry
lies in the fact that the constant vector displacement
field β arises naturally from the concept of gauge
in Lyra’s geometry whereas the cosmological con-
stant Λ was introduced in an ad-hoc fashion in the
usual treatment. Here Tμν = T

(m)
μν + T

(de)
μν is the total

energy-momentum tensor with T
(m)
μν and T

(de)
μν the

energy momentum tensors of matter and anisotropic
DE fluid, respectively. We can parametrize the com-
ponents of T (de)

μν in the following ways:

T (de)
μν = diag[ρ(de),−p(de)

x ,−p(de)
y ,−p(de)

z ]

= diag[1,−ω(de)
x ,−ω(de)

y ,−ω(de)
z ]ρ(de)

= diag[1,−ω(de),−(ω(de)+δ),−(ω(de)+δ)]ρ(de), (3)

where ρ is the energy density of the fluid, p
(de)
x ,

p
(de)
y and p

(de)
z are the pressure s on the x, y and

z axes, respectively. Here ω(de) = p(de)/ρ(de) is the
deviation-free EoS parameter of the fluid while ω

(de)
x ,

ω
(de)
y and ω

(de)
z are the directional EoS parameters on

the three axes. Now, we parametrize the deviation
from isotropy by setting ω

(de)
x = ω

(de)
y = ω

(de)
z = ω(de)

(the deviation-free EOS parameter of DE), then
introducing the skewness parameter δ which is the
deviation from ω(de) on y and z axis. Here ω(de) and
δ are not necessarily constants and can be functions
of cosmic time t. Similarly, the energy momentum
tensor of matter is given by

T (m)
μν = diag[1,−ω(m),−ω(m),−ω(m)]ρ(m) (4)

where ρ(m) and p(m) are the energy density and pres-
sure of matter while the EoS parameter is given by
ω(m) = p(m)/ρ(m). In a comoving coordinate system,
the above field equations (2) in anisotropic space-
time (1), with Eqs. (3) and (4), yield

2
ȦḂ

AB
+

(Ḃ
B

)2
− 3

4
β2 = ρ(m) + ρ(de), (5)

2
B̈

B
+

(Ḃ
B

)2
+

3

4
β2 = −ω(m)ρ(m) − ω(de)ρ(de), (6)

B̈

B
+

Ä

A
+

ȦḂ

AB
+

3

4
β2 = −ω(m)ρ(m)

− (ω(de) + δ)ρ(de), (7)

where the overhead dot denotes a derivative with re-
spect to t. The directional Hubble parameters along
the x, y and z axes for the LRS Bianchi type-I metric
are

Hx =
Ȧ

A
, Hy = Hz =

Ḃ

B
(8)

The mean Hubble parameter is

H =
ȧ

a
=

V̇

3V
=

1

3

( Ȧ

A
+ 2

Ḃ

B

)

=
1

3
(Hx +Hy +Hz). (9)

The energy conservation equation T μν
;ν = 0 gives

ρ̇(m) + 3Hρ(m)(1 + ω(m)) + ρ̇(de)

+ 3Hρ(de)(1 + ω(de)) + 2δρ(de)Hy = 0. (10)

The energy momentum tensors of noninteracting
matter and DE fluids can be conserved separately:

ρ̇(m) + 3Hρ(m)(1 + ω(m)) = 0, (11)

ρ̇(de) + 3Hρ(de)(1 + ω(de)) + 2δρ(de)Hy = 0. (12)

If matter is a non-relativistic pressureless fluid such
as cold dark matter, then the EoS parameter of matter
is ω(m) = 0. To study a dynamical nature of DE,
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ω(de) is allowed to vary with the evolution of Universe
while the EoS parameter of matter fluid is taken to be
ω(m) = 0. As ω(m) = 0, integration of Eq. (11) gives

ρ(m) = C0a
−3. (13)

The spatial volume of the Universe for this model is
given by

V = a3 = AB2, a = (AB2)1/3, (14)

where a is the average scale factor. Subtracting (6)
from (7), we get

d

dt

(Ȧ
A

− Ḃ

B

)
+

(Ȧ
A

− Ḃ

B

) V̇
V

= −δρ(de).

Integration of this equation gives

Ȧ

A
− Ḃ

B
=

λ

V
exp

∫
δρ(de)

(Ḃ/B − Ȧ/A)
dt (15)

where λ is a constant of integration. But since we are
looking for physically viable models of the Universe
consistent with observations, to find the exact solu-
tion of the above equation (15), we assume

δρ(de)

Ḃ/B − Ȧ/A
=

1

t
+ 3γ, (16)

where γ is a nonnegative constant. Using Eq. (16) in
(15), we obtain

Ȧ

A
− Ḃ

B
=

λ t e3γt

V
. (17)

To examine whether the expansion of the Universe
is anisotropic or not, the anisotropic expansion pa-
rameter Δ is defined as

Δ =
1

3

i=3∑
i=1

(
Hi −H

H

)2

.

If Δ = 0, then the Universe expands isotropically.
Further, any anisotropic model of the Universe
with diagonal energy-momentum tensor approaches
isotropy if Δ = 0, V → ∞, and ρ > 0 as t → ∞. The
volumetric deceleration parameter is

q = −aä

ȧ2
(18)

The deceleration parameter q measures the rate of
expansion of the Universe. If q < 0 or q > 0, then
it represents inflation or deflation of the Universe,
respectively, while q = 0 shows expansion with a con-
stant rate.

3. MODEL WITH A HYBRID
EXPANSION LAW

We have three independent equations in seven
unknowns, viz., A,B, ρ(de), ω(de), β and δ. Therefore
we need more relations among the variables in order
to obtain a unique solution. In order to solve the
equations completely, we consider the following hy-
brid expansion law [27]:

a = a0t
neαt, (19)

where a0 > 0, n ≥ 0 and α ≥ 0 are constants. This
generalized form of the scale factor is referred to as the
hybrid expansion law (HEL) which unifies power-law
and exponential expansions of the Universe. Power-
law and exponential expansion are obtained with α =
0 and n = 0, respectively. Thusn > 0 and α > 0 gives
a new cosmology arising from HEL. The parameter
n determines the initial kinematics of the Universe
since a ∼ a0t

n at t ∼ 0, while the very late time kine-
matics of the Universe is determined by the parameter
α since a ∼ a0e

αt at t ∼ ∞. Using (19), we obtain
the volumetric deceleration parameter q as

q =
n

(αt+ n)2
− 1 (20)

It is observed that the HEL model evolves with a
variable deceleration parameter if α and n are posi-
tive, and a transition from deceleration to acceleration
takes place at t = (

√
n− n)/α which restricts n to

the range 0 < n < 1. Equation (14) becomes

V = a3 = AB2 = a30t
3ne3αt (21)

Using the above relation, taking γ = α in (17) in or-
der to find a viable solution, Eq. (17) can be integrated
to give

A = BC1 exp

[
λ

a30(2− 3n)
t2−3n

]
, (22)

where C1 is an integration constant. Using (21) and
(22), we get the scale factors as

A = a0C
2
3
1 t

n exp

[
αt+

2λ

3a30(2− 3n)
t2−3n

]
, (23)

B =
a0

C
1
3
1

tn exp

[
αt− λ

3a30(2− 3n)
t2−3n

]
. (24)

It is observed that the scale factors expand along x, y
and z axes with different rates with the realistic condi-
tion 2/3 < n < 1. The directional Hubble parameters
in this model are

Hx = α+
n

t
+

2λ

3a30
t1−3n, (25)

Hy = Hz = α+
n

t
− λ

3a30
t1−3n,
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H = α+
n

t
. (26)

Here, the directional parameters are extremely large
at the beginning of the Universe and decrease mono-
tonically with its age. Such a scenario provides infor-
mation that our Universe is highly anisotropic in the
past and becomes more isotropic later. The Universe
starts evolving with different expansion rates Hx, Hy,
Hz along x, y and z directions, has high anisotropy
and shear at the beginning. In this model, we assume
the vector field φμ = (0, 0, 0, β(t)), where β = β0H

κ,

β =
nκβ0
tκ

, (27)

where κ > 0. The displacement vector field β is
infinite at the beginning and decreases with time.
Here β → 0 as t → ∞. Thus the concept of Lyra’s
geometry will not be valid in the future evolution of
Universe. The anisotropy parameter of the expansion
is found as

Δ =
2λ2t2−6n

9a60

(
α+

n

t

)−2
(28)

One can check that this behavior of Δ is equivalent to
the ones obtained for power law expansion in Bianchi

type-I [36] and Bianchi type-V [37, 38] cosmological
models with an isotropic fluid. The anisotropy pa-
rameter approaches zero for 1 > n > 2/3 as t → ∞,
which shows isotropic expansion, while for n < 2/3
its behavior is switched. The expansion scalar Θ is

Θ = 3H = 3
(
α+

n

t

)
. (29)

It also shows that the Universe initially evolves with
an infinite expansion rate and shows a constant ex-
pansion at later epoch. The shear scalar σ2 is given
by

σ2 =
1

2

(
i=3∑
i=1

H2
i − 3H2

)

=
3

2
ΔH2 =

λ2t2−6n

3a60
. (30)

Using Eqs. (23), (24) and (27) in the Eqs. (5)–(7),
we obtain the deviation parameter, the energy density
and the deviation-free EoS parameter for the model
as follows:

δ = −

(
3α+

1

t

) λ

a30t
3n−1

3
(
α+

n

t

)2
− λ2

3a60t
6n−2

− 3n2κβ2
0

4t2κ
− {C0(a0tneαt)}−3

, (31)

ρ(de) = 3
(
α+

n

t

)2
− λ2

3a60t
6n−2

− 3n2κβ2
0

4t2κ
− 1

C0(a0tneαt)}3
, (32)

ω(de) = −1 +

2n

t2
+

2λα

a30t
3n−1

− 2λ2

3a60t
6n−2

+
2λ

3a30t
3n

− 3n2κβ2
0

2t2κ
− {c0(a0tneαt)}−3

3
(
α+

n

t

)2
− λ2

3a60t
6n−2

− 3n2κβ2
0

4t2κ
− {C0(a0tneαt)}−3

. (33)

Since in this model, we have many alternatives for
choosing values of λ, κ, β0, a0 and n, it is just suffi-
cient to look for suitable values of these parameters
such that the physically viable cosmological mod-
els are satisfied. For 1 > n > 2/3, λ = 0.001, α =
0.5, a0 = 0.2, κ = 8, c0 = 3 and β0 = 2, the positiv-
ity condition of energy density is satisfied. i.e., ρ > 0,
and it is a decreasing function of time; ω and δ are
dynamical. Here δ → 0 as t → ∞ provided n ≥ 2/3.
Thus the Universe approaches isotropy with the age
of Universe. One may obtain a model with a constant
displacement field if β = β0.

4. KINEMATICS AND PHYSICAL BEHAVIOR
OF THE MODEL

The observational setting a(t) = 1/(1 + z), z be-
ing the redshift, gives the expression between time
and redshift as

t =
n

α
W

[α
n

( 1

a0(1 + z)

)1/n]
(34)

where W denotes the Lambert W function, also
known as the omega function or product logarithm.
Using (29), the parameters of the derived model can
be expressed in terms of the redshift. Such a relation
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Asymptotic behavior of the model parameters for 2/3 <
n < 1

Parameters t → 0(z → ∞) t → ∞(z → −1)

A,B, a 0 ∞

ρ(de) ∞ 3α

ω(de) Indeterminate –1

q
1

n
− 1 –1

H,Hx, Hy, Hz ∞ α

Δ, β, σ,Θ ∞ 0

is useful for testing the model with observational
data. Also, one has the liberty to test the behavior
of the parameters with respect to cosmic time or
redshift. Observations confirm that DE would have
been too small to counteract the gravity of matter
in the Universe, and the expansion would have
initially slowed. DE would dominate in the future
accelerating Universe. The cosmologists observed
that the Universe transition from deceleration to
acceleration is described by a cosmic jerk. The jerk
parameter is important to figure out what DE is. The
deceleration to acceleration phase of the Universe
occurs for different models with a negative value
of the deceleration parameter and a positive value
of the jerk parameter [39, 40]. The dimensionless
jerk parameter j is the third derivative of the scale
factor with respect to cosmic time t and provides a
perfect diagnosis of how much the DE model is close
to ΛCDM dynamics. Flat ΛCDM models have a
constant jerk j = 1. The statefinder parameters (j, s)

0 5 10
t

15 20
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

α = 0.5
α = 0.2
α = 1

Fig. 1. Time variation of j for n = 0.7 and α =
0.2, 0.5, 1.

are defined by Sahni et al. [40] as

j(t) =

...
a

H3a
= 1 +

(2− 3αt− 3n)n

(αt+ n)3
, (35)

s =
j − 1

3(q − 3
2)

=
2n(3αt + 3n− 2)

3(αt + n)[5(αt+ n)2 − 2n]
. (36)

In the above definition of s, there is 3/2 instead of
1/2 in the original definition s = j−1

3(q−1/2) by Sahni
et al. [40]. This is to avoid the divergence of the
parameter s when the HEL model passes through
q = 1 or q = 1/2 as in Akasu, et al.[27]. This model
overlaps with flat ΛCDM models for n → ∞ as (j, s)
becomes (1, 0) for 2/3 < n < 1. This is in agreement
with recent observations [41].

Table 1 presents the asymptotic behavior of the
parameters of the derived model. We observe that
the directional scale factors A,B and the spatial vol-
ume a3 vanish while other parameters ρ,H,Δ, σ, β
diverge as t → 0. This shows that the early Universe
evolves from an initial singularity and anisotropy. The
scale factors evolve with different expansion rates in
x, y and z directions. As t → ∞, we have Hx ∼
Hy ∼ Hz ∼ α, Δ ∼ σ ∼ β ∼ 0, which shows that the
Universe approaches isotropy at a late stage of its
evolution. This is consistent with observations which
advocate an isotropic Universe on large scales. We
also observe that q ∼ −1, ρ ∼ 3α, ω(de) ∼ −1 as t →
∞,this shows that the Universe achieves an asymp-
totically de-Sitter phase and hence DE dominates the
evolution at late times. We plot the variation of ω(de)

versus time in Fig. 1 and j versus time in Fig. 2. Here,
we observe that ω(de) and j asymptotically approach
−1 and 1, respectively, which shows that the Universe
will be dominated at late times by DE that drives
the cosmic acceleration. Moreover, our results show
that the cosmic jerk parameter of the derived model is
positive throughout the entire history of the Universe.

0 0.2 0.4 0.6 0.8 1.0
t

α = 0.5

4 × 107
ωde

3 × 107

2 × 107

1 × 107

0

α = 0.2
α = 1

Fig. 2. Time variation of ω(de) for n = 0.7, λ = 0.001,
α = 0.5, a0 = 0.2, κ = 20, c0 = 3 and β0 = 2.
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0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

t

H

Hx
Hy

Fig. 3. Time variation of Hx, Hy and H for n = 0.7 and
α = 0.5, λ = 0.001, a0 = 0.2.

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8 Ω(de)

Ω(m)

1.0

t

Fig. 4. Time variation of Ω(de) and Ω(m) for n = 0.7, λ =
0.001, α = 0.2, 0.5, 1, a0 = 2, κ = 0.001, c0 = 3 and
β0 = 0.001.

0 1 2
t

3 4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4
q

Fig. 5. Time evolution of q for n = 0.7, α = 0.5.

5. CONCLUSION

In this paper, we have obtained exact solutions for
a Bianchi type I model due to anisotropic DE in Lyra’s
geometry of the Universe. The models are investi-
gated for a hybrid expansion law of the Universe. The

model represents accelerated expansion of the Uni-
verse with V → ∞ as t → ∞ and is in good agree-
ment with observations as represented by the type Ia
Supernova (Perlmutter et al., 1999; Reiss et al., 1998)
and WMAP data (Spergel et al., 2007). The physical
behavior of the dynamic quantities depends on the
value of n. We can only discuss 2/3 < n < 1 for later
times. The expansion scalar shows that the expansion
rate is infinite at the beginning but approaches a
uniform constant as time passes. The HEL Universe
exhibits a transition from deceleration to acceleration,
which is an essential feature of the dynamic evolu-
tion of the Universe. Interestingly, the model ex-
hibits an initial singularity with high anisotropy. The
anisotropy parameter vanishes for 2/3 < n < 1 at late
epoch of the Universe, which shows that the Universe
expands isotropically at late times. It may help us
to understand the isotropization mechanism which
could be responsible for the transition from a possible
prior anisotropic phase to the present isotropic epoch
we live in. The energy density decreases monotoni-
cally with time. In the HEL Bianchi type I model, the
displacement field vanished in the future. The HEL
model mimics the concordance ΛCDM behavior of
the Universe at late epochs. The model developed in
this paper may be fruitful while dealing with the issues
of CMB anisotropy, structure formation in the early
Universe, etc.
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