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Abstract—We study the behavior of cosmological parameters, massive and massless scalar fields (normal
or phantom) with a scalar potential in f(R, T ) theory of gravity for a flat Friedmann-Robertson-Walker
(FRW) universe. To get exact solutions to the modified field equations, we use the f(R, T ) = R+ 2f(T )
model by Harko et al. (T. Harko et al., Phys. Rev. D 84, 024020 (2011)), where R is the Ricci scalar and T
is the trace of the energy momentum tensor. Our cosmological parameter solutions agree with the recent
observational data. Finally, we discuss our results with various graphics.
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1. INTRODUCTION

According to recent observations from type Ia
Supernova (SNe Ia), baryon acoustic oscillations
(BAO), cosmic microwave background (WMAP7)
[1–3], it was noticed that our universe is acceler-
ating [4]. Recently, many researchers have been
working on alternative gravitation theories and get-
ting their solutions showing the cosmic acceleration.
Some well-known alternative theories to the Einstein
theory are: f(R) cosmology [5], the Brans-Dicke
theory [6], Lyra cosmology [7] etc. In 2011, Harko
et al. [8] put forward another alternative gravitation
theory known as f(R,T ) gravitation theory. After the
work of Harko et al., various researchers investigated
f(R,T ) theory for different matter distributions and
universe models [9–11]. In this context, Mirza
and Oboudiat have analyzed a dynamical system of
f(R,T ) gravity [12]. Sahoo et al. [13] have studied
a Bianchi type universe model with string theory in
f(R,T ) theory. Zubair et al. [14] studied f(R,T )
gravity admitting conformal Killing vectors. Also
Zubair et al. studied f(R,T ) gravity with various
space-time models [15–17]. Singh et al. studied a
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Bianchi type III universe model with a cosmological
constant in f(R,T ) theory [18]. Also Singh and
Bishi [19] obtained a quadratic equation of state
solutions with Λ in f(R,T ) theory. Ramesh and
Umadevi [20] studied an FRW cosmological model in
the presence of a perfect fluid source, with a linearly
varying deceleration parameter in f(R,T ) gravity.
Rudra [21] studied the relation between f(R,T )
gravity, dark matter and dark energy. Moraes et al.
studied a transition from decelerated to accelerated
phase of the universe [22], compact stars [23], brane-
world cosmology [24] in f(R,T ) gravity. Reddy et
al. investigated a Kantowski-Sachs bulk-viscous
string cosmological model [25] and a Bianchi type-
III dark energy model [26] in f(R,T ) gravity. Also,
Aygün et al. studied strange quark matter (SQM)
solutions for Marder’s universe [27] and magnetized
SQM solutions for an FRW universe [28] in f(R,T )
gravity with Λ. Rao and Neelima [29] obtained
perfect fluid solutions for an Einstein-Rosen universe
model in f(R,T ) gravity. However, scalar fields
(SF) are important in cosmology because they have
a fundamental role to explanation of dark matter,
inflation, also late time acceleration [8].

Burko and Gaurav [30] studied a massive scalar
field (MSF) in black-hole universe models. They
obtained that MSFs have the same late-time behav-
ior in all black-hole models. Shadar and Piran [31]
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studied gravitational collapse of a massive scalar field
and decay in Reissner-Nordström space-time. Singh
and Rani [32] studied a MSF in Lyra geometry for
a Bianchi type III universe model. Aygün et al. [33]
investigated MSF solutions and found that the MSF
decays to SFs in Riemann and Lyra geometries. Be-
sides, Singh et al. [34] investigated a SF and time-
varying Λ in f(R,T ) gravity. Sharif and Zubair [35]
studied anisotropic space-times with SF and perfect
fluid in f(R,T ) gravity. Santos and Ferst [36] investi-
gated a Gödel type universe model with a perfect fluid
and also a perfect fluid plus a SF in f(R,T ) gravity.
Singh and Singh [37] also studied SF solutions with
f(R,T ) gravity. We normally build our universe mod-
els with the a perfect fluid matter distribution. How-
ever, it is clear from recent studies and observations
that the universe needs other matter fields to create
negative pressure, and the cosmic dynamics cannot
be clarified by only standard matter [34, 38].

Scalar fields are one of the important entities is
superstring and Kaluza-Klein cosmology [39]. In
various modified gravitation theories, such as Lyra,
self-creation, Brans-Dicke and inflationary models,
SFs are basic components. Also, SFs are a good
nominee for dark matter in spiral galaxies [40]. They
are in harmony with measurements in weak gravita-
tional fields [33]. So it is very important to investigate
solutions that contain massive and massless SFs in
physics. There are a few massless scalar field models
in the literature, but there is no MSF solutions in
f(R,T ) theory.

The purpose of this article is to study massive and
massless scalar field cosmological models in f(R,T )
gravitation theory in the framework of a flat FRW
universe model, because FRW space-time well de-
scribes today’s universe. For this purpose we will
use f(R,T ) = R+ 2h(T ). In Section 2, we derive
the basic formalism of f(R,T ) gravitation theory and
describe FRW universe models. In Section 3, we ob-
tain massless scalar field solutions for the R+ 2h(T )
model in f(R,T ) gravity with Λ. In Section 4, we
obtain MSF solutions for f(R,T ) = R+ 2h(T ) with
Λ. Finally, we discuss the results in Section 5.

2. f(R,T ) MODIFIED FIELD THEORY

According to Harko et al. [8], the action of the new
modified f(R,T ) gravity is given by

S =

∫ (
f(R,T )

16πG
+ Lm

)√
−gd4x, (1)

where R is the Ricci scalar, T is the trace of Tαβ ,
g is the determinant of gαβ , and f(R,T ) is an arbi-
trary function of R and T . Also, Lm is the matter

Lagrangian. Tαβ is defined as [8]

Tαβ = gαβLm − 2∂Lm

∂gαβ
. (2)

By varying Eq. (1), we get

fR(R,T )Rαβ − 1

2
f(R,T )gαβ

+ (gαβ� −∇α∇β)fR(R,T ) = 8πTαβ

− fT (R,T )Tαβ − fT (R,T )Ξαβ + Λgαβ , (3)

where fR(R,T ) and fT (R,T ) are derivatives of
f(R,T ) with respect to R and T , respectively, and
∇α is the covariant derivative; � = ∇α∇α; Ξαβ is

Ξαβ = −2Tαβ + gαβLm − 2gik
∂2Lm

∂gαβgik
. (4)

If we contract Eq. (3), we obtain

fR(R,T )R+ 3�fR(R,T )− 2f(R,T )

= 8πT − fT (R,T )T − fT (R,T )Ξ + Λgαβ , (5)

where Ξ = gαβΞαβ . From Eqs. (3) and (5), we get the
gravitational field equations as follows [8]:

fR(R,T )
(
Rαβ − 1

3
Rgαβ

)
+

1

6
f(R,T )gαβ

= 8π
(
Tαβ − 1

3
Tgαβ

)
− fT (R,T )

(
Tαβ − 1

3
Tgαβ

)

− fT (R,T )

(
Ξαβ − 1

3
Ξgαβ

)

+∇α∇βfR(R,T ) + Λgαβ . (6)

In this paper we will study the f(R,T ) = R+
2h(T ) model for a SF in a homogeneous and isotropic
flat FRW universe. Its metric is given by

ds2 = dt2 −A2[dr2 + r2(dθ2 + sin2 θdϑ2)], (7)

where A is a function of t. In this study, we consider
the source of gravity as a SF coupled to gravity. Then
our new SF φ with a self-interacting potential V (φ)
is described by

Tαβ = ε∂αφ∂βφ− [
ε

2
∂lφ∂

lφ− V (φ)]gαβ , (8)

where ε = ±1 and corresponds to phantom and nor-
mal SFs, respectively [37]. The SF Lagrangian is

Lφ = −1

2
εφ̇2 + V (φ), (9)

where the dot denotes an ordinary derivative in t.
Using Eqs. (8) and (9) in (4), we get

Ξαβ = −2Tαβ −
(1
2
εφ̇2 − V (φ)

)
gαβ , (10)

and the trace of Tαβ is

T = 4V (φ)− εφ̇2. (11)
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3. SOLUTIONS FOR A MASSLESS
SCALAR FIELD IN f(R,T ) = R+ 2h(T )

MODEL WITH Λ

For the choice h(T ) = μT (μ = const), we use
Eqs. (6)–(8), (10), and (11) for the f(R,T ) = R+
2h(T ) model with Λ, where R is a function of cosmic
time, and 2h(T ) describes the gravitational interac-
tion between curvature and matter [8]). We get:

2Ä

A
+

Ȧ2

A2
= 4πεφ̇2 − 8πV (φ)

+ μεφ̇2 − 4μV (φ)− Λ, (12)

3Ȧ2

A2
= −4πεφ̇2 − 8πV (φ)

− μεφ̇2 − 4μV (φ)− Λ. (13)

We have four unknowns A, φ, V (φ), Λ and two
modified field equations. To solve the system, we will
firstly use the deceleration parameter as follows:

q = −AÄ

Ȧ2
= const (14)

if we integrate Eq. (14), we get

A = (at+ b)1/(1+q), (15)

where a �= 0 and b are integration constants. Equa-
tion (15) mentions that the condition for expansion of
the universe is 1 + q > 0.

Now, making the calculation accessible and with-
out loss of generality, we take a = 1, b = 0 in our
solutions. Also, we get the metric potential as A =

t1/(1+q). Secondly, we will use different SF models:
(V (φ) = V0 and V (φ) = V0e

−βφ(t)), to obtain exact
solutions of the field equations as discussed below.

In power-law cosmology, the authors have con-
strained the parameter H0 and q. With the help
of 14 points of H(z) data and 557 data points of
SNe Ia data, Kumar [41] has constrained the H0

and q parameters. Gumjudpai [42] also constrained
the H0 and 1/(1 + q) parameters with WMAP7 and
WMAP7 + BAO + H(z) data sets. In 2015, Rani
et al. [43] used 29 points of the latest H(z) data
and 580 data points from Union 2.1 SNe Ia data
to constrain these parameters. Recently Singh and
Singh [37] used the value of q and 1/(1 + q) to study
the SF cosmology in f(R,T ) gravity. In the present
study we also use the values of q and 1/(1 + q) for
different data sets [37], presented in Table 1.

(i) Constant scalar potential, V (φ) = V0. To
solve the field equations, we use a constant potential
V (φ) = V0 similarly to [34, 37]. Then we get the
physical parameters as follows.

φ =
ln(t)√

−ε(4π + μ)(1 + q)
+ c1.

Table 1. Constraints on q and 1/(1+ q) from different data
sets [37]

Data q 1/(1 + q)

H(z) −0.04+0.05
−0.05 –

SNe Ia −0.36+0.05
−0.05 –

H(z) + SNe Ia −0.21+0.04
−0.04 –

WMAP7 – 0.99+0.04
−0.04

WMAP7 + BAO + H(z) – 0.99+0.02
−0.02

This expression, for a suitable choice of c1 can also be
recast as

φ = ln (c1t
φ1), (16)

Λ =
(q − 2)

(1 + q)2t2
− 4V0(2π + μ), (17)

where c1 > 0 is a constant and

φ1 = 1/
√

−ε(4π + μ)(1 + q).

Figure 1 shows variation of the scale factor A, and
Figure 2 variation of the SF φ with time. Figure 3
shows variation of Λ with time for V (φ) = V0 in the
f(R,T ) = R+ 2h(T ) model.

(ii) Exponential scalar potential, V (φ) =

V0e
−βφ(t). Now we choose an exponential scalar

potential, V (φ) = V0e
−βφ(t), where V0 and β are

nonnegative constants [37, 44]. From Eqs. (12), (13),
(15) and the form of the potential, we get the unknown
physical parameters as follows:

φ =
ln(t)√

−ε(4π + μ)(1 + q)
+ c2.

40
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SNe Ia
H(z) + SNe Ia
WMAP7
WMAP7 + BAO + H(z)
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5
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t

86420

Fig. 1. Variation of the scale factor against time for differ-
ent observational values of q.
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Fig. 2. Variation of φ against time for ε = −1, μ = 1,
c1 = 2.71 (Eq. 16).
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Fig. 3. Variation of Λ against time for ε = −1, μ = 1 and
different V0 (Eq. 17).

This expression, for a suitable choice of c2 can also be
recast as

φ = ln (c2t
φ1), (18)

Λ =
(q − 2)

(1 + q)2t2
− 4V0(2π + μ)

cβ2 t
βφ1

, (19)

where c2 > 0 is a constant. Figure 4 shows variation
of Λ with time for V (φ) = V0e

−βφ(t) in the f(R,T ) =
R+ 2h(T ) model.

4. MASSIVE SCALAR FIELD SOLUTIONS
IN f(R,T ) GRAVITY

In this section we study flat FRW space-time with
MSF matter. The MSF energy-momentum tensor is
given by

Tαβ =
1

4π
[∂αφ∂βφ− 1

2
gαβ(∂lφ∂

lφ−M2φ2)], (20)
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H(z) + SNe Ia
WMAP7
WMAP7 + BAO + H(z)
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H(z)
SNe Ia
H(z) + SNe Ia
WMAP7
WMAP7 + BAO + H(z)

V0 = 0
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H(z) + SNe Ia
WMAP7
WMAP7 + BAO + H(z)

Fig. 4. Variations of Λ with time for ε = −1, μ = 1, c2 =
2.71 and different V0 and β (Eq. 19).

where M is related to the mass m of a zero-spin par-
ticle by M = 2πm/h, h being Planck’s constant [47].
The Lagrangian of the MSF is

LM
φ =

1

2
(∂lφ∂

lφ−M2φ2), (21)

where the dot denotes an ordinary derivative in t.
Using this in Eq. (4), we get

Ξαβ = −2Tαβ − 1

2
(∂lφ∂

lφ−M2φ2)gαβ , (22)

and the trace of Tαβ is given by

T =
2M2φ2 − φ̇2

4π
. (23)
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4.1. Solutions for a Massive Scalar Field

For the choice h(T ) = μT (μ = const), using
Eqs. (6), (7), (20), (22), and (23) for the f(R,T ) =
R+2h(T ) model with Λ, we get the modified Einstein
field equations as follows:

2Ä

A
+

Ȧ2

A2
= φ̇2(1 + μ)−M2φ2(1 + μ)

− 3μM2φ2

4π
+

μφ̇2

2π
− Λ, (24)

3Ȧ2

A2
= φ̇2(μ− 1)−M2φ2(1 + μ)

− 3μM2φ2

4π
− Λ, (25)

where we have two equations and A,φ(t), and Λ as
three unknown parameters. Using Eq. (15), we get
the physical parameters as follows:

φ =
2
√
π ln(t)√

−(1 + q)(μ + 4π)
+ c3.

This expression, for a suitable choice of c3 can also be
recast as

φ = ln (c3t
φ2), (26)

Λ =
ΛN

16π(t)2(μ4 + π)(1 + q)2
, (27)

where

φ2 =
2
√
π√

−(1 + q)(μ+ 4π)
,

Λ1 = 16

[
(μ+ 1)π3/2 +

3μ
√
π

4

]
M2 ln(t)

× t2 ln c3(1 + q)
√

−(1 + q)(μ + 4π),

Λ2 = 16
[(

π +
3

4

)
μ+ π

]
M2π ln(t)2t2(1 + q),

Λ3 = 16

[(
π +

3

4

)
μ+ π

]
M2t2(1 + q)2

× ln c23

(μ

4
+ π

)
,

Λ4 = 16

[(
3

4
+ (1 + q)π

)
μ− π(q − 2)

]
π,

ΛN = Λ1 + Λ2 − Λ3 − Λ4,

where c3 > 0 is a constant, and Fig. 5 presents vari-
ation of the SF function φ with time, while Fig. 6
shows time variations of Λ in the f(R,T ) = R+
2h(T ) model.

16
φ
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8
6
4
2

1 2 3 4 5
t

H(z)
SNe Ia
H(z) + SNe Ia
WMAP7
WMAP7 + BAO + H(z)

Fig. 5. Time variation of the scalar field for μ = −5π,
c3 = e12 and different observational value of q (Eq. 26).
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H(z) + SNe Ia
WMAP7
WMAP7 + BAO + H(z)

Fig. 6. Time variation of Λ for μ = −5π, c3 = e12, M =
0.01, and different observational values of q (Eq. 27).

5. DISCUSSION

In this paper, we have studied the modified f(R,T )
gravitation theory with massive and massless SF
matter distributions for flat FRW universe models.
For this purpose we have considered f(R,T ) = R+
2h(T ). To solve the f(R,T ) modified field equations
in massless scalar field (normal and phantom) matter
distributions, we have used a constant deceleration
parameter and constant and exponential SF func-
tions. We also used a constant deceleration param-
eter for the solution of a MSF. We have compared
our solutions with observations of H(z), SNe Ia,
H(z)+SNe Ia, WMAP7 and WMAP7 +BAO +
H(z). For a massless scalar field matter distribution,
we get the following results: For a constant scalar
potential V (φ) = V0, we find that Λ is negative, ε does
not affect Λ, which decreases with an increase of V0
and cosmic time t in the R+ 2h(T ) model. We also
obtain a real SF φ for ε = −1 and 4π + μ < 0 in our
model.

In the situation with an exponential scalar poten-
tial V (φ) = V0e

−βφ(t): It turns out that ε is effective

GRAVITATION AND COSMOLOGY Vol. 24 No. 3 2018
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on the cosmological parameter, when t and V0 in-
crease, Λ decreases. Also we get a real φ value for
ε = −1 and 4π + μ < 0 in our f(R,T ) = R+ 2h(T )
model. However, we get same results for c1 = c2 in
Eqs. (16), (18). For a MSF distribution we get a value
of Λ based on the mass value M . As t increases, the
value of φ increases. We also obtain positive real φ
values for 4π + μ < 0 and c3 > e12 in the f(R,T ) =
R+ 2h(T ) model. Our cosmological parameter solu-
tions agree with the recent observations.
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