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On the Notions of Energy Tensors in Tetrad-Affine Gravity
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Abstract—We are concerned with the precise modalities by which mathematical constructions related to
energy tensors can be adapted to a tetrad-affine setting. We show that, for fairly general gauge field theories
formulated in that setting, two notions of energy tensor (the canonical tensor and the stress-energy tensor)
exactly coincide with no need for tweaking. Moreover, we show how both notions of energy tensor can be
naturally extended to include the gravitational field itself, represented by a couple constituted by the tetrad
and the spinor connection. Then we examine the on-shell divergences of these tensors in relation to the
issue of local energy conservation in the presence of torsion.
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1. INTRODUCTION

In Lagrangian field theory [1–6] one has a pre-
cise mathematical construction yielding a “canon-
ical energy-tensor” associated with each field sec-
tor. Such tensors are related to conservation laws
by generalizations of the classical Noether theorem,
which constitutes the basis for physical interpreta-
tion. When the considered field theory is formulated
over a curved Lorentzian background, then one has
the further notion of “stress-energy tensor” [4, 7–
9] whose relation with the canonical energy-tensor
is known as the “Belinfante-Rosenfeld formula” [2,
10, 11] In various concretely interesting cases the
said two notions yield tensors which turn out to be
different just by a numerical coefficient and, possibly,
by a needed symmetrization.

In particular, the notion of energy tensor for the
gravitational field has been variously debated in the
literature [12–17]. Recent results [18] suggest that
that role should be played by the Ricci tensor. On the
other hand, precise covariant constructions [19] show
that the Ricci tensor is to be seen as the canonical
tensor of the gravitational field.

In this paper we are interested in applying the
general formalism of Lagrangian field theory in the
context where a gauge theory is coupled with tetrad-
affine gravity "— indeed we regard that as the most
natural and convenient setting. This also yields a
canonical tensor for the gravitational field that, again,
turns out to be essentially the Ricci tensor. It should
be stressed, however, that we do not aim at a detailed
discussion of the possible physical interpretations of
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the ensuing mathematical notions,1 which are intro-
duced just as natural extensions of the usual notions.

Tetrad gravity [20–30] has been introduced and
studied mainly as a convenient “non-holonomic co-
ordinate” formalism, but it is interesting to note that
the tetrad θ acquires a neat geometric meaning if it
is viewed as an isomorphism between the tangent
bundle TM of the space-time manifold M and a
further vector bundle H over M whose fibers are
endowed with a Lorentz metric g—i.e., an SO(1, 3)-
bundle. Moreover, such H is naturally generated by
the spinor bundle needed for the description of Dirac
fields, so that it does not actually constitute an ad hoc
unphysical assumption; this result is especially well
expressed in the context of 2-spinor geometry [31–
37]. Now θ transforms g into a space-time metric;
moreover, a metric connection Γ of H is transformed
by θ into a metric space-time connection. Thus the
couple (θ,Γ) can be regarded as representing the
gravitational field, according to which we may call the
“tetrad-affine representation”. Note that the space-
time structures, in this view, are derived, nonfun-
damental quantities. Though the space-time metric
also determines the Levi-Civita (symmetric) connec-
tion, the space-time connection corresponding to Γ a
has non-zero torsion, which turns out to interact with
spin fields. The torsion is then an unavoidable, but not
fundamental field since it can be essentially expressed

1 Indeed, a straightforward physical interpretation of the Ricci
tensor in terms of energy is problematic as, for example,
Schwarzschild space-time has a nonzero gravitational en-
ergy while the Ricci tensor vanishes.
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as the covariant differential2 of θ with respect to Γ.
Furthermore, we observe that Γ can be essentially re-
garded as the spinor connection, as shown by Eq. (7).

In general, field theory topics can be most rigor-
ously addressed in the context of a formulation ex-
ploiting jet bundle geometry [1, 3, 5, 6, 42–44]. In this
presentation, however, we will skip some technicali-
ties of that kind, limiting ourselves to plain coordinate
expressions, even though a mathematically exigent
reader might regard some statements as those not
sufficiently justified.

2. TETRAD-AFFINE GRAVITY

If (eλ) is an orthonormal frame of H , then the
tetrad can be expressed as θ = θλadxa ⊗ eλ, where the
components θλa have the physical dimension of length.
We will use shorthands

|θ| ≡ det θ = 1
4!ε

abcdελμνρθ
λ
aθ

μ
b θ

ν
c θ

ρ
d,

θ̆aλ ≡ ∂|θ|/∂θλa = 1
3!ε

abcdελμνρθ
μ
b θ

ν
c θ

ρ
d,

θ̆abλμ ≡ ∂θ̆aλ/∂θ
μ
b = 1

2ε
abcdελμνρθ

ν
c θ

ρ
d,

θ̆abcλμν ≡ ∂θ̆abλμ/∂θ
ν
c = εabcdελμνρθ

ρ
d.

We observe that the above quantities are well-defined
also if θ is degenerate; if θ is invertible, then (θ−1)aλ =

θ̆aλ/|θ|.
We denote the components of the metric and of a

connection of H by gλμ, and Γ λ
aμ, respectively, and the

induced space-time quantities by

gab ≡ θλaθ
μ
b gλμ,

Γ c
a b = θcλ(−∂aθ

λ
b + Γ λ

aμθ
μ
b ), (1)

where (θ−1)aλ = θaλ ≡ gabgλμθ
μ
b . Then θ can be re-

garded as a “square root of the metric,” and we also
get |θ| ≡ det θ =

√
|det g|. The condition that the

tetrad be covariantly constant characterizes a con-
nection of the space-time manifold which turns out
to be metric, but does not coincide with the standard
space-time connection since it is not symmetric (re-
mark: for the connection coefficients we use the sign
convention yielding ∇adxc = Γ c

a bdxb). The torsion is
expressed as

T c
ab = Γ c

ba − Γ c
ab = θcλ(∂[aθ

λ
b] + θμ[aΓ

λ
b] μ). (2)

2 The notion of a covariant differential of a vector-valued forms,
which has been variously present in the literature for several
years, is strictly related to the Frölicher-Nijenhuis bracket
[5, 38–41]. In this paper we will just write down the needed
coordinate expressions.

Locally, we write the Lagrangian density of a field
theory as �d4x , where � is a function of the fields and
their first derivatives. For the gravitational field we set

�grav = 1
4GR

λμ
ab θ̆abλμ = − 1

2GR
λμ

ab θbλθ
a
μ|θ|, (3)

where3

R λμ
ab ≡ R λ

ab νg
νμ = (−∂[aΓ

λ
b] ν + Γ λ

[a ρΓ
ρ

b] ν)g
νμ.

If θ is non-degenerate, then R λμ
ab θbλθ

a
μ coincides with

the scalar curvature of the space-time connection,
but note that the above Lagrangian density is well-
defined also in the degenerate case.

Independent variations of the fields θλa and Γ λμ
a

then yield the Euler-Lagrange operator components

(δ�grav)
a
λ = 1

4G θ̆
abc
λμνR

μν
bc = 1

G θ̆
b
λE

a
b , (4)

(δ�grav)
a
λμ = − 1

4GT
e
bcθ

ν
e θ̆

abc
λμν , (5)

where E a
b is the Einstein tensor (not symmetric in

this context).

3. GAUGE FIELD THEORIES
IN TETRAD-AFFINE GRAVITY

A spin-zero “matter field” in a gauge theory is a
section of some vector bundle whose fibers are not
“soldered” to space-time. A field with nonzero spin
can be seen as a section of a similar bundle tenso-
rialized by a spin bundle; we denote its components
by φiα, where α is the spin-related index (which may
represent a sequence of ordinary spinor indices). The
adjoint field φ̄iα can be regarded as an independent
section of the dual bundle.

The matter fields interact with a gauge field A i
aj

that is a connection of the ‘unsoldered’ bundle. Usu-
ally A is assumed to preserve some fiber structure
and is accordingly valued into the appropriate Lie
algebra, so one uses components AI

a, but we do not
need to deal with such a restriction explicitely—it is
not difficult to see that the arguments presented here
work seamlessly with respect to the needed restric-
tion. The covariant derivative of a matter field has the
expression

∇aφ
iα = ∂aφ

iα −A i
ajφ

jα − ω α
aβφ

iβ,

where the “spinor connection” ω α
aβ is related to Γ λ

aμ

by a linear relation of the type

ω α
aβ = G

α|μ
β|λΓ

λ
aμ.

3 Here G is Newton’s gravitational constant. We use natural
units: � = c = 1.
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The coefficients G
α|μ
β|λ can be expressed as combina-

tions of Kronecker deltas in the case of integer spin,
while Dirac matrices are involved for semi-integer
spin. In particular, for spin one half we have

ω α
aβ = 1

4Γ
λ
aμ(γλγ

μ)αβ, (6)

which can be inverted as
Γ λ
aμ = 1

2Tr(γλωaγμ). (7)

Thus our variable Γ could be regarded as the spinor
connection, namely the gravitational field can be
equivalently represented as the couple (θ, ω).

Remark: In this concise exposition, charges and
other factors that usually appear in the literature are
absorbed into the gauge field itself.

The Klein-Gordon Lagrangian, written in the form

�φ = 1
2|θ|g

λμθaλθ
b
μ∇aφ̄iα∇bφ

iα − 1
2m

2φ̄iαφ
iα|θ|, (8)

yields the well-defined density �φd4x for any matter
field. For a spin-half field, one rather uses

�ψ =
(

i
2(ψ̄αi∇/ψαi −∇/ψ̄αiψ

αi)

−mψ̄αiψ
αi
)
|θ|. (9)

Note that the Dirac operator ∇/ ≡ γa∇a depends on
the tetrad that transforms the natural Clifford algebra
structure of H (and its representation on the Dirac
spinor bundle) into an object defined on TM .

For matter fields of either integer or semi-integer
spin greater than one half one may wish to consider
an appropriate specialized setting, leading to pos-
sible generalizations of the Dirac equation [45–47].
However, issues about the Lagrangian treatment of
such a setting suggest that we provisionally confine
ourselves to the Lagrangian (8) for all matter fields of
spin different from one half.

A convenient handling of gauge fields, analogous
to the metric-affine gravity formalism, treats the
gauge field A and the tensor field F as independent
fields [33]. Indeed, consider the Lagrangian

�gauge = −1
2 θ̆

ab
λμ(d[A]A)

i
ab jF

λμj
i

+ 1
4F

λμi
jF

j
λμ i|θ|, (10)

where
(d[A]A) i

abj = ∂[aA
i
b]j −A i

[ahA
h
b]j

is the “covariant exterior differential” [39, 40]of A,
coinciding with minus its curvature tensor. Since F
is not present in other pieces of the total Lagrangian
�tot ≡ �grav + �matter + �gauge, with �matter being either
�φ or �ψ, the variation of �gauge with respect to F
immediately yields

F i
abj ≡ θλaθ

μ
b F

i
λμ j = 2(d[A]A) i

ab j . (11)

4. ENERGY TENSORS

In standard Einstein gravity, the general link be-
tween a field’s Lagrangian and the related stress-
energy tensor has nontrivial aspects [4, 48], mainly
since one has to allow for the Lagrangian to de-
pend on the derivatives of the metric. In the usual
Lagrangians of matter fields this dependence comes
from space-time connection coefficients in covariant
derivatives, while the situation is somewhat different
in the metric-affine approach. In the tetrad-affine
approach, the total Lagrangians for all basic cases
do not depend on the derivatives of the tetrad (later
we will also consider such a possible dependence).
Hence the role of the stress-energy tensor for each
sector is played by T a

λ ≡ ∂�/∂θλa = (δ�)aλ. We obtain

(Tgrav)
a
λ = 1

4G θ̆
abc
λμνR

μν
bc , (12)

(Tgauge)
a
λ = F i

λν jF
λμj

iθ̆
c
μ − 1

4F
i

λμ jF
λμj

iθ̆
c
ν , (13)

(Tφ)cν = 1
2|θ|2 g

λμ(θ̆aλθ̆
b
μθ̆

c
ν − θ̆aλθ̆

b
ν θ̆

c
μ − θ̆aν θ̆

b
μθ̆

c
λ)

×∇aφ̄αi∇bφ
αi − 1

2m
2φ̄αiφ

αiθ̆cν , (14)

(Tψ)cν = �ψθ
c
ν − i

2|θ|g
λμθ̆aν θ̆

c
λ

× (ψ̄αiγ
α
μβ∇aψ

βi −∇aψ̄βiγ
β
μαψ

αi). (15)

Moreover, we consider the canonical energy tensor
that for a generic field φi has the expression

Ua
b = �δab −∇bφ

iP a
i , P a

i ≡ ∂�/φi
,a. (16)

Note the covariant derivative ∇bφ
i above, in contrast

to the ordinary partial derivative φi
,b appearing most

commonly in the literature. This modification, which
is necessary for U to be geometrically well defined in
general, was introduced by Hermann [49]; see also
Hehl et al. [24], Eq. (3.10). A precise geometric
construction and a discussion of the meaning of this
object can be found in the previous work [19, 50].

Briefly, U relates infinitesimal transformations of
the space-time manifold M , represented by vector
fields X on M , to currents of the field theory under
consideration, that are expressed as Ja = Ua

bX
b. To

do that, one needs a way to “lift” a vector field so
that it acts on the theory’s “configuration bundle;” if
the latter is not trivial, then the required construction
can be performed by means of a connection. In
terms of the coordinate expression of U this eventu-
ally amounts to replacing φi

,b with ∇bφ
i in the basic

expression.
It is well known that the two notions of energy

tensor turn out to be strictly related, though in general
they do not coincide [2]. In our present context, we
can try a generic comparison between T and U by
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observing that writing � = �̃|θ|, and assuming that �
is independent of the derivatives of θ, we get

T a
λ = �θaλ +

∂�̃

∂θλa
|θ|,

Ua
λ = θbλUa

b = �θaλ − θbλ∇bφ
iP a

i .

Then the two tensors coincide if

∂�̃

∂θλa
= − 1

|θ|∇bφ
iP a

iθ
b
λ.

Straightforward computations then show that this
situation actually occurs in the basic cases presently
under consideration, including the Dirac spinor case.
Interestingly, this also holds true for the energy ten-
sors of the gauge and gravitational fields, provided
that we use the right notion of “covariant derivative”
of such fields. Various arguments [19, 41] clearly
indicate that the role of the covariant derivative of a
connection is to be taken up by the exterior covariant
differential of the connection with respect to itself,
that is, minus its curvature tensor. Namely, we insert
∇bA

i
cj ≡ (d[A]A) i

bc j into

(Ugauge)
a
λ = �gaugeθ

a
λ − θbλ∇bA

i
cj

∂�gauge

∂(∂aA
i
cj)

,

and obtain the stated identity. As for the gravitational
field (θ,Γ), since �grav is independent of the derivatives
of θ, we get

(Ugrav)
a
λ = �̃gravθ̆

a
λ −∇bΓ

μν
c

∂�̃grav

∂(∂aΓ
μν
c )

θ̆bλ|θ|−1

= − 1
2GRθ̆aλ − 1

2G|θ| θ̆
ac
μνR

μν
bc θ̆bλ

= 1
G(R

μ
b θaμθ̆

b
λ − 1

2Rθ̆aλ) = (Tgrav)
a
λ.

More generally, one may wish to consider a La-
grangian that also depends on the derivatives of the
tetrad. Then the question arises if one can generalize
the construction of the canonical energy tensor to this
case. Without being involved in technical details, we
state that two constructions turn out to be legitimate,
the difference between them being the way in which
the action of a vector field on M is properly lifted.
Essentially, both ways eventually lead to an expres-
sion of the type Ua

b = �ab − Dbθ
λ
cP

λ
a,c , where Db is a

suitable differential operator. One construction yields
just Dbθ

λ
c = ∇bθ

λ
c = 0. More interestingly, the other

construction determines Dbθ
λ
c to be—somewhat sim-

ilarly to the connection—the covariant differential of
θ, that is essentially the torsion. Namely, one gets

Ua
b = �δac − P a,c

λθ
λ
eT

e
cb, P a,c

λ ≡ ∂�/θλc,a.

For example, one may consider the standard
“ghost Lagrangian” that in terms of the tetrad can
be written as

�ghost ≡ gλμθaλθ
b
μχ̄I,a∇bχ

I |θ| − 1
2ξfIf

I |θ|,

f I ≡ |θ|−1gλμ∂a(θ
a
λθ

b
μ|θ|AI

b).

Here χI and χ̄I are the ghost and anti-ghost fields, ξ
is a constant, and the index I denotes components
in the appropriate Lie algebra. Then the “gauge-
fixing Lagrangian” �fix ≡ −fIf

I |θ|/(2ξ) introduces
into the total canonical energy tensor, constructed
in the above described way, a term which is linear
in the torsion. Similarly, the stress-energy tensor
gets a term that can be expressed as the “variational
derivative” of �fix with respect to θ; in turn, this can be
expressed in terms of the torsion, through somewhat
intricate computations.

5. FIELD EQUATIONS

Besides Eq. (11), the field equations obtained from
variations of �tot with respect to θ, Γ, A, φ, and
φ̄ yield, respectively, the gravitational equation, the
torsion equation, the non-Abelian generalization of
the second Maxwell equation, and a generalization of
either the Klein-Gordon or Dirac equation.

The gravitational equation is

0 = Ttot ≡ Tgrav + Tgauge + Tmatter, (17)

where Tmatter is either Tφ or Tψ .

The other field equations—in a somewhat concise
form—can be written in the KG case as

0 = − 1
G θ̆

abc
λμνT

e
bcθ̆

ν
e + 2gabGα

β |λμ

× (φ̄αi∇bφ
βi −∇bφ̄αiφ

βi), (18)

0 = (d[A]∗F ) i
aj +

1
2 |θ|g

ab

× (φ̄αi∇bφ
αj −∇bφ̄αiφ

αj), (19)

0 = (d[Γ⊗A]∗∇φ̄)αi +m2φ̄αi|θ|, (20)

0 = (d[Γ⊗A]∗∇φ)αi +m2φαi|θ|. (21)

Here ∗ stands for the “Hodge isomorphism” of exte-
rior forms,4 namely,

∗F abj
i = gacgbd|θ|F i

cd j , ∗∇φaαi = gab|θ|∇bφ
αi,

and d[A] and d[Γ⊗A] are the exterior covariant dif-
ferentials with respect to the connections indicated
between brackets. A generalized version of the so-
called “replacement principle” states that these differ

4 Exterior form components ξa, ξab with higher indices are
to be intended relative to frames i(∂xa)d4x, i(∂xa ∧ ∂xb)d4x
etc.
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from the usual “covariant divergences” by torsion
terms [19]. In fact, we have the identities

∇aξ
ai = (d[K]ξ)i − T b

abξ
ai,

2∇aξ
bai = (d[K]ξ)bi − 1

2ξ
aciT b

ac − ξbaiT c
ac,

where ξ is a (4− r)-form (r = 1, 2) valued in a vector
bundle, and K is a connection of that same bundle.

Equation (18) is the torsion equation; equa-
tion (19) is the “second Maxwell equation;” Eqs. (20)
and (21) are the “Klein-Gordon equations” for φ̄ and
φ.

In the Dirac case we find the field equations

0 = − 1
G θ̆

abc
λμνT

e
bcθ

ν
e

+ i
4 θ̆

a
ν ψ̄αi(γλ ∧ γμ ∧ γν)αβψ

βi, (22)

0 = (d[A]∗F )aji − iθ̆aλψ̄αiγ
λα
βψ

βj , (23)

0 = −(i∇/ψ̄βj +mψ̄βj +
i
2 ψ̄αjτλγ

λα
β )|θ|, (24)

0 = (i∇/ψβj −mψβj + i
2τλγ

λβ
αψ

αj)|θ|, (25)

where τλ ≡ θaλT
ab

b . Equations (24) and (25) are the
Dirac equations with torsion.

6. DIVERGENCES

In the standard, torsion-free formulation of gen-
eral relativity, the stress-energy tensor in the right-
hand side of the Einstein equation is divergence-free
on-shell (that is, when the field equations are taken
into account). This well-known result [4, 48] is a
consequence of the naturality of the Lagrangian, and
holds, in particular, for gauge theories provided that
the stress-energy tensor contains the contributions of
the matter field and the gauge field [19]. This property
is interpreted as local energy conservation.5

In the presence of torsion, the situation is more
intricate. The gravitational equation Ttot = 0 im-
plies ∇a(Ttot)

a
λ = 0, but the single contributions have

a nonvanishing divergence. In particular, we re-
mark that the “Einstein tensor” appearing in Eqs. (4)
and (12) is not divergence-free; actually,

∇a(Tgrav)
a
λ = 1

G θ̆
c
λ(T

b
caR

a
b − 1

2T
b
adR

ad
bc ).

Hence we expect that the on-shell divergence of
Tgauge + Tmatter depends on the torsion linearly. In-
deed, this can be checked, by not-so-short computa-
tions. The vanishing of ∇a(Ttot)

a
λ expressed in terms

of the torsion can be regarded as an “integrability

5 As previously observed, in this paper we are not involved
with detailed discussions about physical interpretations of
the presented mathematical notions.

condition” for the gravitational equation. In the KG
case we obtain

∇a(Ttot)
a
λ = 1

G θ̆
c
λR

b
{aT

a
c}b + θ̆cλF

i
cajT

{e
beF

a}bj
i

+ 1
2g

aeθ̆
{c
λ T b}

ca(∇eφ̄αi∇bφ
αi +∇bφ̄αi∇eφ

αi).

In the Dirac case,

∇a(Ttot)
a
λ = 1

G θ̆
c
λ(T

a
cbR

a
b − 1

2T
a
cbR

bd
ac )

+ θ̆cλF
i

caj(T
a
ebF

ebj
i − F abj

i τb)

+ i
2 θ̆

c
λ

[
τλγ

λα
β(ψ̄αi∇cψ

βi −∇cψ̄αiψ
βi)

+ ψ̄αi(γ
bRab +Rabγ

b)αβψ
βi
]
.

The last term in the above equation can be further
elaborated. By Clifford algebra we get

γbRab +Rabγ
b = −1

3Ra[bcd]γ
bγcγd,

and Ra[bcd], vanishing in the torsion-free situation,
can be expressed in terms of the exterior covariant
differential d[Γ]T , which is essentially the right-hand
side of the first Bianchi equation with torsion.

7. CONCLUSIONS

The offered results support the view that the
tetrad-affine representation of gravity is natural and
convenient in various respects. In a gauge field theory
coupled to gravity there is essentially one energy
tensor for each sector. The total energy-tensor is
divergence-free, while the single contributions are
not—on account of the torsion. The torsion itself is
unavoidable in this setting, but it should be regarded
as a “by-product” rather than a fundamental, inde-
pendent field.
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