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Some Bulk-Viscous Solutions in a First-Order Theory¶
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Abstract—We first motivate the study of viscosity in cosmology. Whilst most studies assume that the
universe is filled with a perfect fluid, viscosity is expected to play a role, at least during some stages of the
evolution of the Universe. There are several theories of viscosity. Eckart’s first-order theory was found
to permit superluminal signals, and equilibrium states were found to be unstable. To solve these problems,
the Israel-Stewart second-order theory was proposed. More recently, a relatively new first-order theory has
appeared, which is claimed to also solve these problems. We briefly review this first-order theory and present
the basic field equations. Then we attempt to find homogeneous and isotropic solutions in the theory. It is
noted that there do not exist stiff matter (pressure = energy density) solutions in the theory, in contrast to
other theories. We then find power-law solutions without a cosmological term. Surprisingly, there do not
exist simple exponential solutions, again in contrast to other theories. Finally, we present a solution with a
cosmological term and make some concluding remarks.
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1. INTRODUCTION

Dissipative phenomena are expected to play a role
at least during some stages of the evolution of the
Universe. Misner [1] studied neutrino decoupling
during the radiation era in homogeneous anisotropic
models. In a large class of these models, he found
that the initial anisotropy was damped out as the
universe evolved to its presently observed isotropic
state. Stewart [2] and Doroshkevich et al. [3, 4]
showed that Misner had taken the initial anisotropy
to be small. Collins and Stewart [5] showed that
with arbitrary initial conditions, the anisotropy could
be arbitrarily large today with shear viscosity alone.
However, these studies were largely concerned with
shear viscosity. We shall be concerned only with
bulk viscosity, which is the only dissipative process
that can arise in FLRW (Friedmann-Lemaııtre-
Robertson-Walker) models.

The present-day features of the Universe are well
described by the ΛCDM model filled with a perfect
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fluid. A perfect fluid is an idealization of an im-
perfect fluid, taking into account various dissipative
processes, especially in the early universe. Dissipa-
tive processes could still become significant in the
future. The Universe has currently a very high photon
to baryon ratio, which is difficult to explain. Bulk
viscosity can generate the right amount of entropy [6].
During the GUT phase transition (T ∼ 1015 GeV),
gauge bosons acquire mass. The mixture of nonrel-
ativistic and ultrarelativistic particles can give rise to
bulk viscosity which can drive inflation.

In general relativity without viscosity, there exists
a set of energy conditions that the fluid must obey.
They lead to the initial big-bang singularity. Bulk
viscosity violates the energy conditions, and hence
the initial singularity can be avoided [7]. This is not
a generic feature if anisotropy is introduced [8]. Bulk
viscosity can lead to a better understanding of the
initial singularity itself [9].

Bulk viscosity can provide a phenomenological
description of particle creation in a strong gravita-
tional field. Turok [10] showed that after the Planck
time a rapid rhythm of string creation by strong quan-
tum fields leads to an exponential expansion of the
universe. The production of strings compensates its
dilution by expansion. From the equation ρ = 3H2

(in a flat FLRW model), it follows that ρ = const
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implies H = const ⇒ exponential expansion. Bar-
row [11] showed that this approach could be inter-
preted phenomenologically in terms of a bulk-viscous
model.

Other reasons to study viscosity include the for-
mation of galaxies [5], photon decoupling during the
recombination era, interaction of dark energy with
other matter, and as a candidate for dark energy
itself. For philosophical and aesthetic reasons, a
spatially closed FLRW model is appealing. Before
the singularity theorems of Hawking and Penrose, an
infinite series of oscillations was supposed to solve
the problem of the creation/beginning of the universe.
Bulk viscosity can give rise to an infinite series of
growing oscillations. Such models involve quantum
gravity, time asymmetry and thermodynamics. The
actual transition from a big crunch to a big bang in-
volves quantum processes. The universe is currently
is undergoing acceleration. A natural explanation for
this is the cosmological constant. However, this leads
to the cosmological constant/fine tuning problem.
There are several alternatives, amongst them bulk
viscosity, a decaying cosmological parameter and ex-
otic fluids, e.g., Chaplygin gas. Bulk viscosity can
also model a decaying cosmological parameter as well
as a Chaplygin gas.

There are several theories of viscosity. In the
full nonlinear causal theory (NTIS), the pressure is
modified by [12]:

p̄ = p+Π, (1)

where p̄ is the total pressure, p the equilibrium pres-
sure, and Π the viscosity factor given by

τ Π̇ = −3ζH −Π

(
1 + Π

τ∗
ζ

)−1

− ε
1

2
Πτ

[
3H +

τ̇

τ
− ζ̇

ζ
− Ṫ

T

]
. (2)

In this equation τ is the relaxation time for linear ef-
fects, ζ is the coefficient of bulk viscosity, T is th tem-
perature, and τ∗ is the characteristic time for nonlin-
ear effects. The linear full causal Israel-Stewart the-
ory (FIS) [13] is recovered for τ∗ = 0. If, in addition,
ε = 0, the truncated Israel-Stewart theory (TIS) [14]
is obtained, and finally if, in addition, τ = 0, then the
Eckart theory [15] is obtained.

2. DISCONZI THEORY

A new first-order formulation of bulk viscosity was
recently given by Disconzi et al. [16, 17]. It is claimed
that it is causal and that the equilibrium states are
stable.

The field equations are

Rab −
1

2
Rgab + Λgab = Tab, (3)

where Rab is the Ricci tensor, R the Ricci scalar, gab
the metric tensor, Λ the cosmological term (which
need not necessarily be constant), and the energy-
momentum tensor Tab is given by

Tab = (ρ+ p)uaub + pgab

− ζ(gab + uaub)∇dC
d, (4)

where ρ is the energy density, p the pressure, ua the
4-velocity of the fluid and ζ the coefficient of bulk
viscosity. The quantity Ca is the dynamic velocity of
the fluid defined by

Ca = Fua, (5)

and F is the specific enthalpy of the fluid given by

F = (ρ+ p)/μ, (6)

where μ is the rest mass density of the fluid, conserved
along the fluid flow lines:

∇a(μu
a) = 0. (7)

3. FIELD EQUATIONS

The FLRW metric is given by

ds2 = −dt2

+ a2(t)

[
dr2

1−kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (8)

where a is the scale factor, and k = 0,+1,−1 cor-
responding to flat, closed, and open models, respec-
tively. Now we get

∇au
a = 3ȧ/a, (9)

from which we find that

∇aC
a = Ḟ + 3F ȧ/a. (10)

From the previous equations, we get the following
Raychaudhuri-type equation:

Ḣ +H2 =
ä

a

= −1

6

(
ρ+ 3p− 3ζḞ − 9ζF

ȧ

a
− 2Λ

)
, (11)

where H = ȧ/a is the Hubble parameter. In addition,
we also get the modified energy conservation equation

ρ̇+ 3(ρ+ p)H − 3ζ(Ḟ + 3FH)H + Λ̇ = 0. (12)

Note that we have allowed for the possibility of a
variable cosmological parameter. For comparison
with other theories, we note that the modified energy
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conservation equation (12) can also be written, for
Λ = 0, as

ρ̇+ 3(ρ+ p̄)H = 0, (13)

where the total pressure p̄ is given by Eq. (1), and the
viscous pressure Π is:

Π = −3ζ(Ḟ + 3FH)H. (14)

From Eqs. (11) and (12) we can derive a Friedmann-
type equation

3H2 +
3k

a2
= ρ+ Λ. (15)

We shall mostly assume a linear equation of state,

p = ωρ, (16)

where ω is not necessarily constant. Equations (11)
and (12) then become, respectively,

Ḣ +H2 = ä/a

= −1

6

(
(3ω + 1)ρ− 3ζḞ − 9ζFH − 2Λ

)
, (17)

ρ̇+ 3(ω+1)ρH − 3ζ(Ḟ + 3FH)H + Λ̇ = 0. (18)

Equations (15), (17), (18) are the basic equations
that we will use for our analysis. The function F is
given by

F =
(1 + ω)ρa3

μ0
. (19)

4. SOLUTIONS

Firstly, we note that Disconzi et al. [16] pointed out
that it is impossible to have any stiff matter solutions
(p = ρ) in this theory. Lichnerowicz [18] has shown
that the condition p = ρ leads to ∇aC

a = 0. From
Eq. (10) we then see that Ḟ + 3F ȧ/a = 0. Hence,
from Eq. (14), we see that the bulk viscous pressure
Π = 0. Hence, it is impossible to have any stiff matter
solution with bulk viscosity in this theory, in stark
contrast to the Eckart, TIS, FIS, and NTIS theories.

We now present some simple solutions. It is
possible to find some more general solutions than
those presented here using Mathematica or Maple,
but these solutions are very complicated and not very
useful to analyze. As is the usual practice, we take the
viscosity coefficient to have the form ζ = ζoρ

α, where
ζo and α are constants.

4.1. Power-Law Solution

• k = 0, Λ = 0 (we shall consider Λ �= 0 later),
• ω = const.
The equations admit the following solution:

a = aot
2/[3(ω+1)], (20)

ρ = ρo/t
2, (21)

F = Fot
2/(ω+1), (22)

Π = Πot
−2ω/(ω+1), (23)

ωeff ≡ p̄

ρ
= ω +

Πo

ρo
+ t2/(ω+1), (24)

q = (3ω + 1)/2, (25)

where ωeff ≡ p̄/ρ gives the effective equation of state.

4.2. Exponential Solution

In the Eckart theory, it is well known that a simple
exponential solution of the type [11]

a = aoe
Hot, (26)

where ao,Ho = const, exists for all values of ω �= −1.
In fact, such a simple solution exists in the TIS [20],
FIS [6], and NFIS [12] as well.

Let us find out if such a solution exists in this
formulation. We consider:

• k = 0, Λ = 0 (we consider Λ �= 0 later),
• α = 0 =⇒ ζ = const = ζo,
• ω = const.
From Eq. (15), the density ρ will also be constant.

From the modified energy conservation law (12), we
get the following equation:

μo(ω + 1)− 6(ω + 1)ζoHoa
3 = 0, (27)

from which we conclude that a = const unless ω =
−1. However, if ω = −1, then we see from Eq. (19)
for F that there is no viscosity.

We conclude that a simple exponential solution of
the type a = aoe

Hot does not exist in this theory, in
contrast to Eckart, TIS, LIS, and NIS theories.

4.3. Variable Λ Solution

Consider:
• ω = const �= ±1,

• Λ = H2,
• ζ = ζoρ

α, α ≥ 0.
Then we find the following solution:

a(t) = (−2kt2 + k1t+ k2)
1/2, (28)
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where k, k1, k2 = const. We can easily find the other
parameters from our equations. We list them for the
case k = 0 (k3 is an integration constant):

ρα =
2α(ω − 1)μ0

(6α− 1)k1(1 + ω)ζo(k1t+ k2)1/2

+
k3

(k1t+ k2)3α
, (29)

ζ = ζo
2α(ω − 1)μ0

(6α− 1)k1(1 + ω)ζo(k1t+ k2)1/2

+ ζo
k3

(k1t+ k2)3α
, (30)

Λ =
k21

4(k1t+ k2)2
, (31)

ωeff = ω − 3(1 + ω)ζok1(k1t+ k2)
1/2

2μo
x, (32)

where x is given by

x =
(1− ω)μo

(6α−1)(1+ω)ζo(k1t+ k2)3/2
− 3k1k3

(k1t+k2)3α+2

+
6k1α(ω − 1)μo

(6α − 1)(1 + ω)k1ζo(k1t+ k2)3/2
, (33)

q = −1/2. (34)

We note that this solution is accelerating since q is
negative.

5. CONCLUSION

In this paper, we have studied the first-order theory
of Disconzi et al. [16, 17, 19], which is claimed to
be causal and stable. We have found several simple
solutions. A further study is required, especially the
evolution of the temperature and a more detailed com-
parison with other viscosity theories. We are presently

carrying out a dynamic system analysis and hope to
report on this elsewhere.

We are extremely grateful to an anonymous referee
for constructive comments which have led to an im-
provement in the manuscript.
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