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Abstract—We consider a class of solutions in multidimensional gravity which generalize Melvin’s well-
known cylindrically symmetric solution, originally describing the gravitational field of a magnetic flux tube.
The solutions considered contain the metric, two Abelian 2-forms and two scalar fields, and are governed by
two moduli functions H1(z) and H2(z) (z = ρ2, ρ is a radial coordinate) which have a polynomial structure
and obey two differential (Toda-like) master equations with certain boundary conditions. These equations
are governed by a certain matrix A which is a Cartan matrix for some Lie algebra. The models for rank-2
Lie algebras A2, C2 and G2 are considered. We study a number of physical and geometric properties of
these models. In particular, duality identities are proved, which reveal a certain behavior of the solutions
under the transformation ρ → 1/ρ; asymptotic relations for the solutions at large distances are obtained;
2-form flux integrals over 2-dimensional regions and the corresponding Wilson loop factors are calculated,
and their convergence is demonstrated. These properties make the solutions potentially applicable in the
context of some dual holographic models. The duality identities can also be understood in terms of the Z2

symmetry on vertices of the Dynkin diagram for the corresponding Lie algebra.
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1. INTRODUCTION

In this paper we deal with a certain generaliza-
tion of Melvin’s solution of GR [1]. Melvin’s orig-
inal solution in four dimensions describes the grav-
itational field of a magnetic flux tube. The multi-
dimensional analog of such a flux tube, supported
by a configuration of (p + 2)-form fields, is referred
to as a fluxbrane (a “thickened brane” of magnetic
flux). The appearance of fluxbrane solutions was
motivated by superstring/p-brane models and M-
theory. A physical interest in such solutions is that
they supply an appropriate background geometry for
studying various processes involving p-branes, in-
stantons, Kaluza–Klein (KK) monopoles, pair pro-
duction of magnetically charged black holes and other
configurations which can be studied via a special
kind of KK reduction (“modding technique”) of a cer-
tain multidimensional model in the presence of U(1)
isometry. It was shown, in particular, that Melvin’s
original solution (F1-fluxbrane) can be interpreted as
a modding of flat space in one dimension higher. This
“modding” technique is widely used in construction of
new solutions in supergravity models and for various
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physical applications in superstring models and M-
theory. For generalizations of Melvin’s and fluxbrane
solutions see [2–22] and references therein.

The solution we consider here was presented ear-
lier in [23] and can be regarded as a special case of
the generalized fluxbrane solutions investigated in [2].
Those solutions are governed by moduli functions
Hs(z) > 0 defined on the interval (0,+∞), where
z = ρ2, and ρ is a radial variable. These functions
obey a set of n nonlinear differential master equations
equivalent to Toda-like equations governed by a ma-
trix (Ass′) with the boundary conditions Hs(+0) = 1,
s = 1, ..., n. In this paper we assume that (Ass′) is
a Cartan matrix of some simple finite-dimensional
Lie algebra G of rank n (Ass = 2 for all s). The
appearance of Lie algebras is related to the integra-
bility conditions of the set of differential equations
considered.

Originally, the model from [23] contains n Abelian
2-forms and l ≥ n scalar fields. Here we consider
special solutions with n = l = 2, governed by a 2× 2
Cartan matrix (Aij) for simple Lie algebras of rank
2: A2, C2, G2. It is quite a simple choice to demon-
strate some geometric properties of the model. On
the other hand, classical Lie algebras correspond to
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certain physically interesting models [2] (for exam-
ple, fluxbrane configurations for A1 correspond to
Melvin’s solution, fluxbrane analogs of M2- and M5-
branes in D = 11 supergravity model; A2 is related
to the KK dyonic flux tube). We note that G2 is an
exceptional algebra often appearing in the context of
M-theory.

One of the goals of this paper is to study interest-
ing geometric properties of the solution considered.
In particular, we prove the so-called duality property
which establishes a certain symmetry of the solutions
under the inversion transformation ρ → 1/ρ, which
makes the model in tune with T-duality in string
models, and also can be mathematically understood
in terms of a representation of Z2 group acting on
vertices of Dynkin diagrams for the corresponding
Lie algebras. These duality identities may be used
in deriving a 1/ρ-expansion for solutions at large
distances ρ. The corresponding asymptotic behavior
of the solution is studied.

We also calculate the fluxes (i.e., integrals of 2-
form fields over 2-dimensional disks) which have the
meaning of Wilson loop factors, important objects in
quantum field theory. They appear to be convergent
(even over an infinite region) and have an interesting
nontrivial property: each flux depends on only one
integration constant, while the integrands depend on
a mixed set of all such constants.

According to a conjecture suggested in [2], the
moduli functions Hs(z) with the above boundary con-
ditions are polynomials:

Hs(z) = 1 +

ns∑

k=1

P (k)
s zk, (1)

where P
(k)
s are constants. Here P (ns)

s �= 0, and

ns = 2

n∑

s′=1

Ass′
, (2)

where we denote (Ass′
) = (Ass′)−1. The integers ns

are components of the twice dual Weyl vector in the
basis of simple (co-)roots [24].

The set of fluxbrane polynomials Hs defines a spe-
cial solution to open Toda chain equations [25, 26]
corresponding to a simple finite-dimensional Lie al-
gebra G [27]. In [23, 28] a program (in Maple) for
calculating these polynomials for classical series of
Lie algebras (A-, B-, C- and D-series) was sug-
gested. It was pointed out in [2] that the conjecture
on a polynomial structure of Hs(z) is valid for Lie
algebras of A- and C- series.

In [29], the conjecture from [2] was verified for the
Lie algebra E6, and certain duality relations for six E6

polynomials were found.

The paper is organized as follows. In Section 2
we present the generalized Melvin solution from [23]
for the case of two scalar fields and two forms. In
Section 3 we deal with solutions for the Lie algebras
A2, C2, G2. We find duality relations for polynomials
and present asymptotic relations for the solutions. We
also calculate 2-form flux integrals Φs(R) =

∫
MR

F s

and the corresponding Wilson loop factors, where
F s are 2-forms, and MR is a two-dimensional disc
of radius R. The flux integrals have finite limits for
R = +∞.

2. THE SETUP AND THE GENERALIZED
MELVIN SOLUTIONS

We consider a model governed by the action

S =

∫
dDx

√
|g|

{
R[g]− δabg

MN∂Mϕa∂Nϕb

− 1

2

2∑

s=1

exp[2λsaϕ
a)](F s)2

}
, (3)

where g = gMN (x)dxM ⊗ dxN is a metric, �ϕ =
(ϕa) ∈ R

2 is the vector of scalar fields, F s = dAs =
1
2F

s
MNdxM ∧ dxN is a 2-form, �λs = (λsa) ∈ R

2 is
a dilatonic coupling vector, s = 1, 2 (a = 1, 2). We
denote |g| = |det(gMN )|, (F s)2 = F s

M1M2
F s
N1N2

×
gM1N1gM2N2 , s = 1, 2.

Here we deal with a family of exact solutions to
the field equations corresponding to the action (3) and
depending on one variable ρ. The solutions are defined
on the manifold

M = (0,+∞)×M1 ×M2, (4)

where M1 = S1 and M2 is a (D − 2)-dimensional
Ricci-flat manifold. The solution reads [23]

g =

(
2∏

s=1

H2hs/(D−2)
s

){
dρ⊗ dρ

+

(
2∏

s=1

H−2hs
s

)
ρ2dφ⊗ dφ+ g2

}
, (5)

exp(ϕa) =

2∏

s=1

Hhsλa
s

s , (6)

F s = qs

(
2∏

l=1

H−Asl
l

)
ρdρ ∧ dφ, (7)

s = 1, 2, a = 1, 2, where g1 = dφ⊗ dφ is a metric on
M1 = S1 and g2 is a Ricci-flat metric of signature
(−,+, . . . ,+) on M2. Here qs �= 0 are integration
constants (qs = −Qs in the notations of [23]), s =
1, 2.
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The functions Hs(z) > 0, z = ρ2, obey the master
equations

d

dz

(
z

Hs

d

dz
Hs

)
= Ps

2∏

l=1

H−Asl
l , (8)

with the boundary conditions

Hs(+0) = 1, (9)

where

Ps =
1

4
Ksq

2
s , s = 1, 2. (10)

The boundary condition (9) guarantees the absence
of a conic singularity in the metric (5) at ρ = +0.

The parameters hs satisfy the relations

hs = K−1
s , Ks = Bss > 0, (11)

where

Bsl ≡ 1 +
1

2−D
+ �λs

�λl, s, l = 1, 2. (12)

In the above relations we denote λa
s = λsa and

(Asl) = (2Bsl/Bll) . (13)

The latter is the so-called quasi-Cartan matrix.

It can be shown that if (Asl) is a Cartan matrix
for a simple Lie algebra G of rank 2, there exists a set
of vectors �λ1, �λ2 obeying (13), see the Remark in the
next section.

The solution under consideration is as a special
case of the fluxbrane solution from [2, 20].

Thus we deal with a multidimensional generaliza-
tion of Melvin’s solution for the case of two scalar
fields and two 2-forms [1]. Melvin’s solution with-
out a scalar field corresponds to D = 4, one 2-form,
M1 = S1 (0 < φ < 2π), M2 = R

2 and g2 = −dt⊗
dt+ dx⊗ dx.

3. SOLUTIONS RELATED TO SIMPLE LIE
ALGEBRAS OF RANK 2

We are dealing with solutions which corresponds
to a simple Lie algebras G of rank 2, i.e., the matrix
A = (Asl) coincides with the Cartan matrix

(Ass′) =

⎛

⎝ 2 −1

−k 2

⎞

⎠ , (14)

where k = 1, 2, 3 for G = A2, C2, G2, respectively.
This matrix is described graphically by the Dynkin
diagrams shown in Fig. 1 for these three Lie algebras.

1 2 1 2 1 2

Fig. 1. Dynkin diagrams for the Lie algebras A2, C2, G2,
respectively.

Due to (11)–(13) we get

Ks =
D − 3

D − 2
+ �λ2

s, hs = K−1
s , (15)

and

�λs
�λl =

1

2
KlAsl −

D − 3

D − 2
≡ Gsl, (16)

s, l = 1, 2; (15) is a special case of (16).
It follows from (11)–(13) that

h1
h2

=
K2

K1
=

A21

A12
= k, (17)

where k = 1, 2, 3 for G = A2, C2, G2, respectively.

Remark. For large enough K1 in (17), there exist
vectors �λs obeying (16) (and hence (15)). Indeed,
the matrix G = (Gsl) is positive definite if K1 > K∗,
where K∗ is a positive number. Hence there exists a
matrix Λ such that ΛTΛ = G. We put (Λas) = (λa

s)
and get the set of vectors obeying (16).

Polynomials. The moduli functions H1(z),
H2(z), obeying Eqs. (8) and (9) with the matrix
A = (Asl) from (14) are polynomials with powers
(n1, n2) = (2, 2), (3, 4), (6, 10) for G = A2, C2, G2,
respectively.

In what follows we list these polynomials. Here, as
in [27], we use the rescaled variables

ps = Ps/ns, s = 1, 2. (18)

A2-case. For the Lie algebra A2 = sl(3) we
have [2, 20, 27]

H1 = 1 + 2p1z + p1p2z
2, (19)

H2 = 1 + 2p2z + p1p2z
2. (20)

C2-case. For the Lie algebra C2 = so(5) we ob-
tain the following polynomials [20, 27]:

H1 = 1 + 3p1z + 3p1p2z
2 + p21p2z

3, (21)

H2 = 1 + 4p2z + 6p1p2z
2

+ 4p21p2z
3 + p21p

2
2z

4. (22)

G2-case. For the Lie algebra G2 the fluxbrane
polynomials read [20, 27]

H1 = 1 + 6p1z + 15p1p2z
2 + 20p21p2z

3

+ 15p31p2z
4 + 6p31p

2
2z

5 + p41p
2
2z

6, (23)
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H2 = 1 + 10p2z + 45p1p2z
2 + 120p21p2z

3

+ p21p2(135p1 + 75p2)z
4 + 252p31p

2
2z

5

+ p31p
2
2(75p1 + 135p2)z

6 + 120p41p
3
2z

7

+ 45p51p
3
2z

8 + 10p61p
3
2z

9 + p61p
4
2z

10. (24)

Let us denote

Hs = Hs(z) = Hs(z, (pi)), (25)

where s = 1, 2, (pi) = (p1, p2).

Due to the relations for polynomials, we have the
following asymptotic behavior as z → ∞:

Hs = Hs(z, (pi)) ∼
(

2∏

l=1

(pl)
νsl

)
zns

≡ Has
s (z, (pi)), s = 1, 2. (26)

Here ν = (νsl) is an integer valued matrix

ν =

⎛

⎝1 1

1 1

⎞

⎠ ,

⎛

⎝2 1

2 2

⎞

⎠ ,

⎛

⎝4 2

6 4

⎞

⎠ (27)

for the Lie algebras A2, C2, G2, respectively.

In the last two cases (C2 and G2) we have ν =
2A−1, where A−1 is an inverse Cartan matrix. For
A2 the matrix ν is related to the inverse Cartan matrix
as follows:

ν = A−1(I + P ), (28)

where I is a 2× 2 identity matrix, and

P =

⎛

⎝0 1

1 0

⎞

⎠ . (29)

is the permutation matrix. This matrix corresponds to
the permutation σ ∈ S2 (S2 is the symmetric group)

σ : (1, 2) �→ (2, 1), (30)

by the relation P = (P i
j ) = (δiσ(j)). Here σ is a gener-

ator of the group S2 = {σ, id}, which is the symmetry
group of the Dynkin diagram (for A2); S2 is isomor-
phic to the group Z2.

We note that in all cases we have
2∑

l=1

νsl = ns, s = 1, 2. (31)

Let us denote p̂i = pσ(i) for A2, and p̂i = pi for
C2 and G2 cases, i = 1, 2. We call the ordered set
(p̂i) the dual one to the ordered set (pi). Using
the relations for polynomials, we obtain the following
identity which can be easily verified “by hand”.

Duality Relations

Proposition. The fluxbrane polynomials corre-
sponding to Lie algebras A2, C2, and G2 obey, for all
pi > 0 and z > 0, the identities

Hs(z, (pi)) = Has
s (z, (pi))Hs(z

−1, (p̂−1
i )), (32)

s = 1, 2. We call the relation (32) the duality relation.

Fluxes. Now let us consider the oriented 2-
dimensional manifold MR = (0, R)× S1, R > 0, and
the flux integrals

Φs(R) =

∫

MR

F s = 2π

R∫

0

dρρBs, (33)

where

Bs = qs

2∏

l=1

H−Asl
l , s = 1, 2. (34)

The total flux integrals Φs = Φs(+∞) are convergent.
Indeed, due to (26) we have

Hs ∼ Csρ
2ns , Cs =

2∏

l=1

(pl)
νsl , (35)

as ρ → +∞. From (34), (35) and the equality∑2
1 Aslnl = 2, following from (2) (n = 2), we get

Bs ∼ qsC
sρ−4, Cs =

2∏

l=1

C−Asl
l , (36)

hence the integral (33) converges for any s = 1, 2.

Due to (28), we get, for A2, Aν = I + P and

Cs =

2∏

l=1

p
−(I+P )sl
l =

2∏

l=1

p
−δls−δl

σ(s)

l

= p−1
s p−1

σ(s), (37)

or

Cs = p−1
1 p−1

2 , s = 1, 2, (38)

while for C2 and G2 we obtain

Cs = p−2
s , s = 1, 2. (39)

Now we calculate Φs(R). Using the master equa-
tions (8), we obtain

R∫

0

dρρBs = qsP
−1
s

1

2

R2∫

0

dz
d

dz

(
z

Hs

d

dz
Hs

)

=
1

2
qsP

−1
s

R2H ′
s(R

2)

Hs(R2)
, (40)
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where H ′
s = dHs/dz. With (33) we obtain

Φs(R) = 4πq−1
s hs

R2H ′
s(R

2)

Hs(R2)
, s = 1, 2. (41)

Using the Stokes theorem, we get

Φs(R) =

∫

MR

F s =

∫

MR

dAs =

∫

CR

As, (42)

where CR is a circle of radius R with proper orienta-
tion (the boundary of MR). Using the definition of an
Abelian Wilson loop (factor), we get

W s(CR) = exp

⎛

⎜⎝i

∫

CR

As

⎞

⎟⎠ = eiΦ
s(R),

s = 1, 2. (43)

The relations (1), (42) imply (see (10))

Φs = Φs(+∞) = 4πnsq
−1
s hs, s = 1, 2. (44)

Any (total) flux Φs depends on one integration con-
stant qs �= 0, while the integrand form F s depends on
both constants: q1, q2.

We get in the A2 case

(Φ1,Φ2) = 8πh(q−1
1 , q−1

2 ), (45)

where h1 = h2 = h.
In the C2 case we find

(Φ1,Φ2) = 4π(3h1q
−1
1 , 4h2q

−1
2 ), (46)

where h1 = 2h2.
For G2 we obtain the relation

(Φ1,Φ2) = 4π(6h1q
−1
1 , 10h2q

−1
2 ), (47)

where h1 = 3h2.

We note that for D = 4 and g2 = −dt⊗ dt+ dx⊗
dx, qs coincides with the value of the x-component of
the sth magnetic field on the axis of symmetry.

Due to (17) we get fixed numbers of the ratios

q1Φ
1

q2Φ2
=

n1h1
n2h2

=
n1

n2
k = 1,

3

2
,
9

5
(48)

for k = 1, 2, 3, or G = A2, C2, G2, respectively.
Asymptotic relations. For the solution under

consideration, at the asymptotic ρ → +∞ we obtain

gas =

(
2∏

l=1

pall

)2/(D−2)

ρ2A

{
dρ⊗ dρ

+

(
2∏

l=1

pall

)−2

ρ2−2A(D−2)dφ⊗ dφ+ g2

}
, (49)

ϕa
as =

2∑

s=1

hsλ
a
s

(
2∑

l=1

νsl ln pl + 2ns ln ρ

)
, (50)

F s
as = qsp

−1
s p−1

θ(s)ρ
−3dρ ∧ dφ, (51)

where a, s = 1, 2, and

al =
2∑

s=1

hsν
sl, A = 2(D − 2)−1

2∑

s=1

nshs. (52)

In (51) we have put θ = σ for G = A2, and θ = id
for G = C2, G2. In the derivation of the asymptotic
relations, Eqs. (31) and (35)–(39) were used. We
note that for G = C2, G2 the asymptotic value of the
formF s

as depends on qs (s = 1, 2), while in the A2 case
any F s

as depends on both q1 and q2.

4. CONCLUSIONS

We have considered generalizations of Melvin’s
solution corresponding to simple finite-dimensional
Lie algebras of rank 2: G = A2, C2, G2. Any solution
is governed by a set of 2 fluxbrane polynomials Hs(z),
s = 1, 2. These polynomials define special solutions
to open Toda chain equations corresponding to the
Lie algebra G.

The polynomials Hs(z) also depend on the param-
eters qs, which coincide for D = 4 (up to a sign) with
the values of colored magnetic fields on the axis of
symmetry.

We have found duality identities for polynomials,
which may be used in deriving 1/ρ expansion for
solutions at large distances ρ, e.g., for asymptotic
relations which are presented in the paper.

The power-law asymptotic relations for the poly-
nomials Hs(z) at large ρ are governed by an integer-
valued matrix ν which coincides with twice the in-
verse Cartan matrix 2A−1 for Lie algebras C2 and
G2, while in the A2 case ν = A−1(I + P ), where I is
the identity matrix and P is the permutation matrix,
corresponding to a generator of the Z2 symmetry
group of the Dynkin diagram.

We have calculated 2D flux integrals Φs(R) =∫
MR

F s (s = 1, 2) on a disc MR of radius R and the
corresponding Wilson loop factors W s(CR) over a
circle CR of radius R. Any total flux Φs(∞) depends
on only one parameter qs, while the integrand F s

depends on both parameters q1, q2. The calculation
of “partial” fluxes Φs(R) and the Wilson loop factors
W s(CR) may have an application in certain holo-
graphic dual model [30].

An open problem is to study the convergence of
flux integrals for non-polynomial solutions for mod-
uli functions corresponding to non-Cartan matrices
(Ass′) (e.g. for a model with two 2-forms from [31]).
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