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Abstract—The paper deals with spatially homogeneous and anisotropic Kantowski-Sachs and Bianchi
universes with a general non-canonical scalar field with the Lagrangian L = F (X)− Ω(φ), where X =
1
2φiφ

i. We discuss a general non-canonical scalar field in three different cosmologies: (i) cosmology with
a constant potential, Ω(φ) = Ω0 = const, (ii) cosmology with a constant equation-of-state parameter,
i.e., γφ = const, and (iii) cosmology with a constant speed of sound, i.e., cs2 = const. For a constant
potential, we have shown that the k-essence Lagrangian and the Lagrangian of the present model are
equivalent. Dissipation of anisotropy, when the universe is filled with a general non-canonical scalar field,
is investigated. The existence of an average bounce in Kantowski-Sachs and locally rotationally symmetric
Bianchi-I and Bianchi-III models is discussed in detail.
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1. INTRODUCTION

Recent astrophysical data including supernovae
Ia [1], cosmic microwave background radiation
(CMBR) [2], and large-scale structure [3] suggest
that the universe is dominated by two dark com-
ponents, viz., dark matter and dark energy [1, 4].
Dark matter, matter without pressure, is mainly
used to explain the galactic curves and large-scale
structure formation, while dark energy, an exotic
energy with negative pressure, is used to explain the
present accelerating cosmic expansion. For dark
energy, many candidates have been proposed, such
as the cosmological constant [5], quintessence [6],
k-essence [7], phantom [8], and so on.

Over the last few years, scalar field models with
a non-canonical kinetic term have been attracting
much attention. These models are generally moti-
vated by phenomenological considerations, and their
theoretical structures are also common in effective
field theories. A non-canonical kinetic term appears
in supergravity theories [9, 10] to relate the present
cosmic acceleration to the onset of matter domina-
tion. In models of higher dimension, identification
of lnψ with the volume of internal space or some
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appropriate dilaton type field also leads to a non-
canonical kinetic term [11–15].

The Lagrangian of a non-canonical scalar field can
be parametrized as [16]

L = f(φ)F (X)− Ω(φ), (1)

where X = 1
2φiφ

i. For f(φ) = const, equation (1)
represents quintessence when F (X) = X and a
phantom when F (X) = −X. Equation (1) reduces
to k-essence if Ω(φ) = 0. The first integral of the
k-essence field equation for arbitrary F (X) was ob-
tained in [16, 17] where the potential was taken as an
inverse square form or a constant [18]. Then, in [19,
20] it was found that all quintessence models can be
viewed as k-essence models generated by appropriate
linear kinetic functions F (X). Anisotropic space-
times with a k-essence field [17] have been further
discussed for Kantowski-Sachs and Bianchi space-
times [21] for a constant potential and a linearly
varying scalar field. General non-canonical scalar
field models, in contrast to k-essence models, have
been investigated in [22]. Bounce conditions for
Kantowski-Sachs and Bianchi universes in modified
gravity theories are studied in [23].

In this paper, we focus on a class of models
with the Lagrangian L = F (X)− Ω(φ) in some
anisotropic space-times and discuss the role of the
background geometry in the evolution of cosmolo-
gies.
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The paper is organized as follows: the basic the-
oretical framework is given in Section 2. In Sec-
tion 3, we study some explicit general non-canonical
scalar field solutions. We obtain the general solution
of Einstein’s equation in three cases: (a) where the
potential is constant, (b) where the barotropic index
is constant, and (c) where velocity of sound cs is
constant. In Section 4, we study the anisotropy
dissipation and the existence of an average bounce.
Finally, in Section 5, we present our conclusion.

2. BASIC EQUATIONS

The metric of the models is in the form [24]

ds2 = dt2 − a1
2dr2 − a2

2(dθ2 + f2(θ)dφ2), (2)

where a1(t) and a2(t) are the scale factors. The met-
ric (2) reduces to a Kantowski-Sachs (KS) model,
a Bianchi-III (B-III) model and a locally rotation-
ally symmetric Bianchi-I (LRS B-I) model at f(θ) =
sin θ, f(θ) = sinh θ, and f(θ) = θ, respectively. For
the metric (2) and a choice of ui, the field equations
can be written in terms of the propagation equa-
tions as

Θ̇ +
1

3
Θ2 + 2σ2 = −1

2
(ρ+ 3p), (3)

σ̇ +Θσ − 1

2
√
3
(3R) = 0, (4)

3Ṙ+
2

3
Θ(3R)− 2√

3
(3R)σ = 0, (5)

where Θ = ui;i is the expansion scalar,

σij = B(ij) −
1

3
θ(gij + uiuj)

is the shear tensor, the overdot denotes derivative with
respect to cosmic time t, and 3R is the 3-curvature.
For the metric (2), we have

Θ =
ȧ1
a1

+
2ȧ2
a2

,

σ =
1√
3

(
ȧ1
a1

− ȧ2
a2

)
,

3R =
2k

a22
.

The Gauss-Codazzi constraint and the continuity
equations are

3R = −2

3
Θ2 + 2σ2 + 2ρ, (6)

ρ̇+Θ(ρ+ p) = 0. (7)

From Eqs. (3) and (6), we have

2

3
Θ̇ +

1

3
Θ2 + σ2 +

3R

6
= −p. (8)

We have assumed 8πG = c = 1 in proper units.
Here ρ and p are the energy density and the pressure,
respectively. The equation of state is p = γρ. The
shear vector 	σ has the components [17]

σi = Hi −H, (9)

where σi = σi0/V and σ2 = σ2
0/V

2. Here H =
ȧ/a = 1/3(H1 +H2 +H3) is the Hubble parameter,
and Hi = ȧi/ai, i = 1, 2, 3 are the expansion rates in
the three spatial directions. These notations are used
in the same sense as in [17]. The three constants σi0
transform as components of a vector in the internal
three-dimensional Cartesian space associated with
the three axes σi [17]. Here V = a1a2

2 =
√−g, and

σi satisfies σ10 + σ20 + σ30 = 0 and σ10
2 + σ20

2 +
σ30

2 = σ0
2, where σ0 is a constant. Thus we have

3σ2 =

(
ȧ1
a1

− ȧ2
a2

)2

. (10)

The Lagrangian density is

L = F (X) − Ω(φ), (11)

where Ω(φ) is a potential, and F is a function of the
kinetic term X. We assume that the anisotropic
space-time contains an isotropic perfect fluid as-
sociated with a spatially homogeneous scalar field
φ. We are considering such a scalar field with
a non-canonical kinetic energy term. The above
Lagrangian (11) is a special case of the Lagrangian
L = f(φ)F (X) − Ω(φ) for f(φ) = const. Also,

X =
1

2
gijφiφj, φi =

∂φ

∂xi
.

Since φ is homogeneous, we have X = 1
2 φ̇

2 > 0.

In the case of a general non-canonical scalar field,
we have

ρφ = 2XFX − F (X) + Ω(φ),

pφ = F (X) − Ω(φ). (12)

The barotropic index γφ can be written as

γφ =
F (X)− Ω(φ)

2XFX − F (X) + Ω(φ)
. (13)

If cs denotes the speed of sound, then

cs
2 =

[
1 +

2XFXX

FX

]−1

. (14)

From Eqs. (6) and (8), we have

2

3
Θ2 − 2σ2 + 3R = 2(2XFX−F (X)+Ω(φ)), (15)

2

3
Θ̇ +

1

3
Θ2 + σ2 +

3R

6
= Ω(φ)− F (X). (16)
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From Eq. (7) we have

(FX + 2XFXX )φ̈+ FXΘφ̇+Ω
′
(φ) = 0, (17)

d

dt

(
γφ + 1

φ̇

)
−

(
γφ + 1

φ̇

)
γφΘ

+
Ω

′
(φ)

1
3Θ

2 − σ2 + 1
2
3R

= 0, (18)

where Ω
′
(φ) = dΩ(φ)/dφ, φ̇ �= 0, and FX = dF/dX.

In terms of geometrical quantities, we have

γφ = −4Θ̇ + 2Θ2 + 6σ2 + 3R

2Θ2 − 6σ2 + 3(3R)
. (19)

Equations (17) and (19) show that φ and γφ are
sensitive to the evolution of the average geometry.
Since 3R is different for LRS B-I, BIII, and KS
models, we obtain different values of γφ for the cor-
responding models.

3. SOLVABLE GENERAL NON-CANONICAL
SCALAR FIELD COSMOLOGIES

3.1. Cosmology with a Constant Potential

Consider a constant potential, i.e., Ω = Ω0 =
const, and investigate the resulting cosmologies in
our generalized metric background. For a constant
potential, Eq. (18) can be re-written as

d

dt

(
γφ + 1

φ̇

)
=

(
γφ + 1

φ̇

)
γφΘ. (20)

Using the geometrical definition of γφ from Eq. (19)
in Eq. (20); after integration, we have

γφ + 1

φ̇
=

c1
V (2Θ2 + 3 · 3R− 6σ2)

, (21)

where c1 �= 0, 1 and is a constant. Equation (21) can
be rewritten as φ̇ = 2(γφ + 1)V ρ/(3c1) with 2X =

φ̇2, so we have

V FX φ̇ =
3c1
2

. (22)

From Eqs. (13) and (22), we have
3c1

2V FX
= 2(γφ + 1)V

ρ

3c1
.

Using σ2 = σ2
0/V

2 in the previous expression, the
barotropic index associated with this general non-
canonical scalar field becomes

γφ + 1 =

(
1 +

4σ0
2FX(Ω0 − F )

9c12σ2

)−1

. (23)

The models generated by the set of kinetic func-
tions, with a constant potential satisfying the con-
dition FX(Ω0 − F )/σ2 � 1 at early times, describe

universes which, are, on the average, like dust domi-
nated ones.

With a constant potential, the k-essence La-
grangian can be written as Lk = −Ω0Fk(X), while
the Lagrangian in the present model isLg = Fg(X)−
Ω0. If Fg(X) = Ω0(1− Fk(X)), then the two La-
grangians are equivalent. So the present model
can reproduce by k-essence models with a constant
potential.

Let us consider a Lagrangian of the form Lg = 1−
Ω(φ)−

√
1− 2X , which is considered as the non-

linear Born-Infeld scalar field theory in [25]. If the
potential Ω(φ) is constant, Ω0, we have

φ̇2 =
c2

c2 + V 2
, (24)

where c2 = 9c1
2/4 = const. Also,

ρφ = Ω0 − 1 +

√
1 +

c2
V 2

, (25)

cs
2 = 1− φ̇2 =

V 2

c2 + V 2
. (26)

At small V , ρφ ∝ 1/V , with cs
2 � 0, and at large

V , ρφ � Ω0, with cs
2 � 1. So the KS model, B-

III and LRS-B-I cosmology with a general non-
canonical scalar field having a constant potential play
the role of models that unify dark matter and dark
energy in their respective background geometries.

3.2. Cosmology with γφ = const

In this section, we assume that the equation-of-
state parameter γφ = γ0 = const. From Eq. (7), we
have

ρ =
V0

V 1+γ0
, (27)

where V0 is an integration constant. From Eq. (13),
we have(

2γ0
1 + γ0

)
XFX − F (X) + Ω(φ) = 0. (28)

It is obvious from the above equation that the form of
F (X) in our model will depend on the potential. For
a constant potential Ω0, we have

F (X) = c3X

(
1+γ0
2γ0

)
+Ω0, (29)

where c3 is an integration constant. To check the
stability of the solution with a constant γ0, we let γφ
vary with time. Differentiating γφ +1 = (ρφ + pφ)/ρφ
with respect to t, we get

γ̇φ = γφ

(
Θ(γφ + 1) +

ṗ

p

)
. (30)
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In equation (30), we have two critical points: γ0 =
0 or γ0 satisfying

Θ(γ0 + 1) +
ṗ

p
= 0. (31)

If the condition in the above equation holds, the po-
tential Ω(φ) and the function F (X) satisfy

p = F (X) − Ω(φ) =
c4

V 1+γ0
, (32)

where c4 is an integration constant. From Eqs. (30)
and (31), we have

γ̇φ = γφ(γφ − γ0)Θ. (33)

From Eq. (33), we get

γφ =
c5γ0

c5 − V γ0
, (34)

where c5 is an integration constant. For the expand-
ing universe and γ0 < 0, the barotropic index γφ has
the asymptotic limit γ0. For γ0 > 0, the barotropic
index γφ approaches the asymptotic limit 0. At γ0 =
0, we have

γφ =
−1

log c6V
, (35)

where c6 is an integration constant. The above equa-
tion shows that γ0 = 0 is also a stable point in an
expanding universe. The solutions with a constant
barotropic index are attractors in the case γ0 ≤ 0, and
the solution γ0 = 0 separates the stable region from
the unstable one in the phase plane.

3.3. Cosmology with cs
2 = const

The speed of sound cs is the propagation speed of a
perturbation of the background scalar field, which can
affect the CMB power spectrum. In this section, we
are taking the speed of sound as a constant quantity.
From Eq. (14), we have

2cs
2XFXX = (1− cs

2)FX . (36)

From Eq. (36), we get

F (X) =
2cs

2

1 + cs2
c7X

1+cs2

2cs2 + c8, (37)

where c7 and c8 are integration constants. In this
case, cs

2 is independent of the potential Ω(φ) and
is the same as that in a k-essence model. Also, if
FXX = 0, we have cs2 = 1.

4. GENERAL ISSUES

4.1. Anisotropy Dissipation

In this section, we study dissipation of the ani-
sotropy when the universe contains a general non-
canonical scalar field. Defining D = σ2/ρφ, the evo-
lution equation for the ratio D can be written as

Ḋ +

[
Θ(1− γφ)−

3RV

σ0
√
3

]
D = 0. (38)

For the LRS-BI model, 3R = 0, thus Eq. (38)
reduces to

Ḋ +Θ(1− γφ)D = 0. (39)

If γφ < 1, D is a positive-definite quantity, and for
an average expanding cosmology (Θ > 0), a solution
of Eq. (39), D = 0 is asymptotically stable. This
model becomes isotropic at late times, and the ge-
ometry tends to that of a FRW model, although it
depends on the choice of the potential. From Eqs. (6)
and (8), we have

Θ̇ + Θ2 =
3

2
(ρ− p). (40)

For γφ < 1, we have Θ̇ + Θ2 > 0, which finally,
gives ρ > p. So, with a fluid obeying the DEC (Dom-
inant Energy Condition), the initial anisotropy dissi-
pates. By contrast, in the case γφ > 1, shear domi-
nates over the fluid, the DEC is getting violated, and
the quantity D increases asymptotically.

For the KS model, 3R = 2/a22, and Eq. (38) takes
the form

Ḋ +

[
Θ(1− γφ)−

2a1

σ0
√
3

]
D = 0. (41)

Whenever D is a positive-definite quantity and γφ <

1, for Θ > 0 with Θ(1− γφ) > 2a1/(σ0
√
3), the solu-

tion D = 0 is asymptotically stable. From Eqs. (6)
and (8), for γφ < 1, we have Θ̇ + Θ2 + 2/a22 > 0,
which finally gives ρ > p. So, a fluid obeying the DEC
dissipates the initial anisotropy.

For the B-III model, 3R = −2/a22, thus (38) takes
the form

Ḋ +

[
Θ(1− γφ) +

2a1

σ0
√
3

]
D = 0. (42)

If D is a positive-definite quantity and γφ < 1, then
with Θ > 0 the solution D = 0 is asymptotically sta-
ble. The model becomes isotropic at late times, and
the geometry tends to that of the FRW model, al-
though it depends on the choice of the potential. For
γφ < 1, we have Θ̇ + Θ2 > 2/a22, thus finally, ρ > p.
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4.2. Average Bounce

By a bouncing universe, we mean a universe that
undergoes a collapse, attains a minimum and then
subsequently expands. The FRW universe under-
going a “bounce” attains a minimum, and at this
minimum, the Strong Energy Condition (SEC) of
classical gravity must be violated. Though, a violation
of the SEC is a necessary but not sufficient condi-
tion [26]. We define the occurrence of a bounce at a
time t = tb by the conditions

(i) V̇ = 0, (ii) V̈ > 0,

i.e., (i)Θ(tb) = 0 and (ii) Θ̇(t) > 0 for t ∈ (tb − ε, tb)∪
(tb, tb + ε) for small ε > 0. The expansion scalar
Θ(t) > 0 for all t in this interval. The conditions may
not be sufficient for a nonsingular bounce. In the
present model, we have more than one scale factor,
the above conditions of a bounce should be under-
stood as those characterizing a bounce in the average
scale factor V = (a1a2

2)1/3. However, one can also
consider a more generic situation where a bounce can
occur in any of the directional scale factors ai. We can
make this precise by defining the directional Hubble
parameters Hi = ȧi/ai. So a bounce in ai will occur
at t = tb if (i) Hi(tb) = 0 and (ii) Ḣi(tb) > 0. It is clear
that although it may be possible to have a bounce in
any one of the scale factors but not the other, this
does not lead to a new expanding universe region.
We therefore require that a bounce occurs in all ai’s
at t = tb, even though they may in general occur at
different times [23]. These conditions may not be
sufficient for a non-singular bounce.

We here take that a scale factor satisfies the nec-
essary condition of a bounce in volumetric expansion,
therefore, we call it an average bounce. The condi-
tions derived below just address the necessary condi-
tions of a bounce in anisotropic models given by the
metric (2). The idea of a bounce in a spatially flat or
open universe may be understood if we recall that the
quantity Θ̇ gives a measure of the deviation of matter
world lines. In this sense, the bounce conditions
simply mean that there exists a phase in which the
separation between matter world-lines decreases to a
minimum and then increases again. Since this phe-
nomenon is independent of a spatial geometry of the
model, the bounce itself is independent of it [27, 28].

In a comoving coordinate system with T i
j =

diag(ρ,−p,−p,−p), the energy conditions can be
characterized as follows:

Null Energy Condition (NEC)

⇔ ρ+ p ≥ 0.

Weak Energy Condition (WEC)

⇔ ρ ≥ 0, ρ+ p ≥ 0.

Strong Energy Condition (SEC)

⇔ ρ+ p ≥ 0, ρ+ 3p ≥ 0.

From Eqs. (3) and (6), the equations for a general
non-canonical scalar field can be written as

Θ̇ +
1

3
Θ2 + 2σ2 = −(F +XFX − Ω(φ)), (43)

2

3
Θ2 − 2σ2 + 3R = 2(2XFX − F +Ω(φ)). (44)

At t = tb, Eqs. (43) and (44) can be rewritten as

Θ̇ + 2σ2 = Ω(φ)− (F +XFX), (45)
1

2
(3R)− σ2 = 2XFX − F +Ω(φ). (46)

In Eq. (45), the l.h.s. is nonnegative at the bounce
point, thus

Ω(φ) ≥ F +XFX . (47)

From Eq. (47), at t = tb, we have ρ+ 3p < 0.
Thus the SEC is violated at a bounce. For the LRS
B-I model, 3R = 0, thus Eq. (46) takes the form

−σ2 = 2XFX − F +Ω(φ). (48)

As σ2 ≥ 0, at t = tb we have ρφ ≤ 0. At the
bounce, D = −1. Therefore in an average bounce,
the relation between energy density and shear is con-
stant. Hence we can reach a bounce avoiding a final
singularity, but we have a residual anisotropy in this
scenario.

For the KS model, 3R = 2/a22, thus Eq. (46) takes
the form

1

a22
− σ2 = 2XFX − F +Ω(φ). (49)

As σ2 ≥ 0, if 1/a22 ≥ σ2 at t = tb. We have ρφ ≥ 0.
i.e. ,

2XFX +Ω(φ) ≥ F. (50)

Therefore at bounce, 3R must be dominating over σ2.
Also,

D =
1

a22(2XFX − F +Ω(φ))
− 1. (51)

In Eq. (51), ρφ ≥ 0, and we have D > 0 whenever
3R > 2ρφ. However, D depends on 3R at the bounce
point.

For the B-III model, 3R = −2/a22, thus Eq. (46)
takes the form

1

a22
+ σ2 = −(2XFX − F +Ω(φ)). (52)

At bounce, the l.h.s. is ≥ 0 in the above equation,
thus

F ≥ 2XFX +Ω(φ). (53)
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Thus at a bounce point in B-III space-time with a
general non-canonical scalar field, there is violation
of the WEC and SEC. Now,

D =
−1

a22(2XFX − F +Ω(φ)
− 1. (54)

From Eq. (54), we get D > 0 whenever 3R > 2ρφ (as
at a bounce point ρφ ≤ 0 and 3R < 0).

5. CONCLUSIONS

We have studied spatially homogeneous and ani-
sotropic universes with a general non-canonical
scalar field. We have discussed such a field in three
different cosmologies: (i) cosmology with a constant
potential, (ii) cosmology with a constant equation-of-
state parameter and (iii) cosmology with a constant
speed of sound. We have shown that the general non-
canonical scalar field with a constant potential in the
background of an anisotropic universe plays the role
of a model that unifies dark matter and dark energy.
The model with a constant barotropic index γφ was
investigated. We analyzed the stability of a constant
γφ model and found it to be stable at γ0 = 0 and to be
an attractor for γ0 ≤ 0. Dissipation of the anisotropy
when the universe contains a general non-canonical
scalar field was investigated, as well as the existence
of an average bounce in KS, B-I, and B-III models.
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