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Abstract—We propose an approximate theory describing electromagnetism and gravity as a single direct
particle interaction. A new element in this theory is the assumption on real simultaneous (combined)
existence of retarded and advanced interactions. Another essential principle of this theory is Mach’s
principle, according to which the interaction of particles in a certain local region is inextricably connected
with the dynamics of all particles in the Universe. A consequence of Mach’s principle in this theory is that in
terrestrial experiments the advanced electromagnetic interaction is many orders of magnitude smaller than
the retarded one (but is not precisely zero). We consider a possible mechanism of emergence of particle
masses due to electromagnetic interaction. The proposed theory is relativistic but non-quantum. In this
regard, we consider only three types of particles (electrons, protons, and neutrons), and the difference
of particle masses is explained only at a qualitative level. The resulting equation of motion for particles
is studied in the nonrelativistic approximation. Along with the Lorentz force and the radiative friction
force, it contains terms describing the gravitational interaction. Their form is similar to those known in
gravielectromagnetism, which is an approximation to general relativity.
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1. INTRODUCTION AND OVERVIEW
OF PREVIOUS STUDIES

This work continues the trend of research begun
by the author in [1] and earlier [2, 3]. In these papers,
the interaction of particles was considered to be di-
rect, i.e., interaction without an intermediary, without
an interaction carrier which is called a field in modern
physics. Since this concept is little known nowadays
(although it was developed by well-known authors in
the past), we start with a brief overview of the main
works devoted to a direct electromagnetic interaction
of particles. The theory of direct electromagnetic
interaction, in its most consistent formulation known
today, has been discussed and developed since the
early 20s of the 20th century by a number of authors,
including K. Schwarzschild, H. Tetrode, A.D. Fokker,
Ya.I. Frenkel, and later J. Wheeler and R. Feynman
joined to this line of research. The mathematical
formulation of this theory on the basis of a variational
principle was first published apparently by Tetrode [4].
The same paper also marked the difficulties of this
theory, which were consistently resolved in the papers
by Wheeler and Feynman [5, 6]. We will present the
basics of the formalism of this theory.

The theory is built in the background of Minkow-
ski space-time on the basis of a variational principle.

*E-mail: michaelromashka@gmail.com

The action of a system of electromagnetically inter-
acting particles has the form:

S = −c
∑

a

ma

∫
dsa −

∑

a

∑

b<a

eaeb
c

∫ ∫
uμaubμδ(s

2(a, b))dsadsb, (1)

where uμa = dxμa/dsa is the 4-velocity of a particle
number a, ea and ma are its charge and mass, c is the
speed of light, and the delta function of the squared
interval between events on the world lines of particles
a and b may be presented in the form

δ(s2(a, b)) =
1

2rab
[δ(ctab − rab)

+ δ(ctab + rab)]. (2)

In expression (1), the first sum is a sum of free
actions of the particles, while the second (double)
sum describes their electromagnetic interaction. Un-
like Maxwell’s electrodynamics, in this theory the
electromagnetic field or its potential are not regarded
as a part of objective reality and are absent in the
original expression for the action (1). However, for
convenience of calculations and for comparison of this
theory with Maxwell’s electrodynamics it is possi-
ble to introduce an auxiliary mathematical construct
corresponding to the electromagnetic field potential.
Consider a certain point on the world line of particle
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i. The expression for the potential generated at this
point by another particle k can be written as [4, 6]:

Aμ(i, k) = ek

∫
ukμδ(s

2(i, k))dsk . (3)

Then, for a single selected particle i, the action can be
written in the form

Si = −mic

∫
dsi −

1

c

∑

k �=i

∫
eiu

μ
i Aμ(i, k)dsi. (4)

The equation of motion for particle i was obtained,
for example, in [6], by variation of the action (4) with
respect to the world line of particle i. The poten-
tial Aμ(i, k) was considered as a given function of
the coordinates of particle i (see [6], section “The
equations of motion”). The equation obtained in this
way coincides with the well-known equation of field
electrodynamics,

micημν
d2xνi
ds2i

=
ei
c
uνi Fμν(i), (5)

where the tensor

Fμν(i) =
∑

k �=i

(
∂Aν(i, k)

∂xμi
− ∂Aμ(i, k)

∂xνi

)
(6)

is an auxiliary mathematical construction which is
an analog of the electromagnetic field tensor in the
field formulation of electrodynamics. However, the
theory constructed in such a way has two significant
differences from Maxwell’s generally known electro-
dynamics, and about 20 years they were a “stumbling
block” for this theory.

1. From Eqs. (3) and (2) it can be seen that the
potential defined by Eq. (3) is not purely retarded but
is half-retarded and half-advanced:

Aμ(i, k) =
1

2
Aret

μ (i, k) +
1

2
Aadv

μ (i, k), (7)

where Aret
μ (i, k) is the Lienard-Wiechert well-known

retarded potential, andAadv
μ (i, k) is a similar advanced

potential which differs from the retarded one in that it
is determined by the existence and motion of particle
k in the future relative to the instant when it affected
particle i rather than in the past.

2. Equation (5) does not contain the radiative
friction force.

However, if one correctly considers both differ-
ences together, then everything falls into its proper
place. For this purpose, when describing the inter-
action of two charged bodies, one should consider not
only these two bodies but also the rest of the universe
(that is, take into account Mach’s principle). For
example, the first body acts on all other bodies of
the Universe by its retarded potential (the same ar-
guments are also correct for the advanced potential).

All those other bodies, in turn, are acting with their
advanced potentials on the second body. The same
is true for the second halves of the potentials and for
the second body. If one adds up all the potentials,
the resulting potential will be purely retarded, equal to
the Lienard-Wiechert potential, and the equation of
motion will contain the correct expression for the ra-
diative friction force (also from a sum of the potentials,
but this force is only determined by the first particle’s
motion):

micημν
d2xνi
ds2i

=
ei
c
uνi F

ret
μν (i)

+
2e2i
3c

(
d2uiμ
ds2i

+
duλi
dsi

duiλ
dsi

uiμ

)
. (8)

It is this result that was obtained by Wheeler and
Feynman [5]. Thus it was shown that the theory
of direct electromagnetic interaction of particles is
completely equivalent to the field formulation of elec-
trodynamics in the description of the experimentally
observed results.

However, later the paper [5] was subject to some
revision, first by Hogarth in [7] and then by Hoyle and
Narlikar in [8]. In particular, revised were the main
points of [5]: when considering the role of the whole
Universe in the local electrodynamic phenomena, the
advanced interaction is completely eliminated, the
retarded one is doubled and is obtained in the same
form as in field electrodynamics, while in the equation
of motion of a charged particle there appears a correct
expression for the force of radiative friction. It was
noted that in the derivation of these results, certain
assumptions were used which may not be valid for
our Universe. In [5], four ways of derivation of these
results were proposed, in the ascending order of gen-
erality. The first three ways considered too simplified
models of the Universe, so these methods do not
pretend to prove these statements rigorously. The
most general method 4 was based on the concept of
an “absolute absorber.” To define this notion, we in-
troduce the original notations of [5]. Let F (k)

ret and F
(k)
adv

be the electromagnetic “field” tensor created by par-
ticle number k at some arbitrary point in Minkowski
space. The word “field” is used in quotation marks
because it denotes now an auxiliary mathematical
construction describing the direct particle interaction;
and the tensor indices are omitted here for brevity.
The concept of an “absolute absorber” implies that
in the three-dimensional coordinate space there is a
region of finite-size, including all charged particles,
while outside this region the sum of “fields” created
by all particles is exactly zero (see Eq. (33) in [5]):

∑

k

(
1

2
F

(k)
ret +

1

2
F

(k)
adv

)
= 0. (9)
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Equation (9) is valid everywhere outside the region
under consideration (outside the absorber). Then at
a sufficiently large distance from the absorber, the
first part in the sum (9) describes electromagnetic
“waves” propagating from the absorber, while the
second part describes “waves” converging from infin-
ity towards the inner region of the absorber. Since a
destructive interference between such waves simulta-
neously at all points of space is impossible, it follows
that outside the absorber the two sums are equal to
zero each separately:

∑

k

F
(k)
ret = 0, (10)

∑

k

F
(k)
adv = 0. (11)

It then follows that everywhere outside the absorber
the following equality holds:

∑

k

(
1

2
F

(k)
ret − 1

2
F

(k)
adv

)
= 0. (12)

But the left-hand side of this equation is a solution
to Maxwell’s equations without sources. Therefore,
if it is equal to zero outside the absorber, it is equal
to zero in the whole space including the points of the
world lines of all particles. But then the tensor in the
right-hand side of Eq. (5) can be transformed using
the following equality:

∑

k �=i

(
1

2
F

(k)
ret +

1

2
F

(k)
adv

)
=

∑

k �=i

F
(k)
ret

+

(
1

2
F

(i)
ret − 1

2
F

(i)
adv

)

−
∑

k

(
1

2
F

(k)
ret − 1

2
F

(k)
adv

)
. (13)

In the right-hand side of this equation, the first term
gives a purely retarded interaction, the second term
gives the radiative friction force in accordance with
Dirac’s work [9], and the third term is exactly equal
to zero. Thus Eq. (5) passes on to Eq. (8).

It is clear that the above model of an “absolute
absorber” does not correspond to the cosmological
models discussed when the later papers [7] and [8]
were written (the early 1960s). The authors of [7]
and [8] developed more consistent theories of an ab-
sorber (i.e., theories taking into account the ambient
world in the electromagnetic interaction of two parti-
cles). Hoyle and Narlikar [8] first built a generaliza-
tion of the theory of direct electromagnetic interaction
of particles for curved Riemannian space-time. After
that, a theory of the absorber was built, generalizing
the ideas of [5] to the case of Riemannian space-time.

Hoyle and Narlikar noted that the quantity in the left-
hand side of Eq. (9) cannot be put exactly equal to
zero outside a certain finite region of space. Instead,
it is necessary to study the asymptotic behavior of

the “fields” F
(k)
ret and F

(k)
adv at an infinite distance from

the event creating them. During this study, the au-
thors of [8] formulated criteria (necessary and suffi-
cient conditions) under which the interaction in local
electrodynamic phenomena is either purely retarded
or purely advanced (Eqs. (63) in [8] and the remark
following them). If none of these conditions holds,
the interaction is mixed (includes both retarded and
and advanced parts, possibly not equal in magnitude).
Next, the authors considered two cosmological mod-
els: the Einstein-de Sitter model and the stationary
universe model whose foundations had been provided
by G. Bondi and T. Gold [10] and F. Hoyle [11].
The authors came to the conclusion that in the first
model the interaction is purely advanced, and in the
second model it is purely retarded. Apparently, at
that time they decided that the problem of advanced
and retarded interactions was solved, because they
themselves were inclined to use the second model and
continued its development. All calculations were car-
ried out for the flat version of the Friedmann metric,
although it was pointed out that a simple generaliza-
tion of these results could extend them to an arbitrary
Friedmann metric.

It is easy, however, to present examples of cosmo-
logical models for which none of the criteria (Eqs. (63)
in [8]) is satisfied. The author of the present paper
asked a question of whether or not some of these
criteria holds in the modern ΛCDM model. Due to
a limited size of this paper, we will present the re-
sults of the analysis without intermediate calculations
because it is not the main subject of this work. In
the framework of Friedmann’s flat metric, the exis-
tence criterion of a purely retarded interaction can
be reduced to a study of the time dependence of the
scale factor a(t) as t → +∞. The necessary and
sufficient condition of a purely retarded interaction
is an increasing of a as t1/3 or slower as t → +∞.
Otherwise (if a grows faster than t1/3 at large t) the
condition does not hold. According to the modern
ideas, in the modern epoch the Universe expands with
acceleration (i.e., a grows faster than t1). Thus the
existence of a purely retarded interaction requires that
in the future the expansion of the Universe should
slow down. By modern concepts on matter filling
the Universe, such a scenario is extremely unlikely.
Accordingly, in this model, the interaction cannot
be purely retarded. We conclude that the interaction
is mixed. This result was one of the points motivating
the present work and one of the main ideas used in
it. We will assume that the in our Universe, in local
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electrodynamic phenomena, there are manifesta-
tions of both retarded and advanced interaction,
but the advanced interaction is by many orders
of magnitude smaller than the retarded one, and
therefore we do not notice it in the known phe-
nomena.

Hugo Martin Tetrode was one of the first who
admitted the real existence of an advanced electro-
magnetic interaction along with the retarded one and
studied a theory with such a mixed interaction in his
paper [4]. In such a theory, all conclusions of special
relativity are valid, with one important reservation:
in such a theory, the causality concept is changed.
Events A and B involving charged particles can be
causally connected if they lie on the light cones of
each other (i.e., the interval between them is equal
to zero). But on a fundamental level, there is no
separation of events into causes and effects, the
causal relationship is mutual and symmetric. In
the theory, this fact is expressed in the symmetry
between the advanced and retarded interactions in
the original equations, and in the invariance of these
equations under time reversal. It was shown that
such a theory is intrinsically free of contradictions.
Such a theory may contain seeming paradoxes such
as the paradox of predicting the future. It may seem
that the presence of an advanced interaction can in
principle allow one to predict some event in the future,
which further on he is able to willfully change. A
solution to this paradox lies in the fact that the theory
in Tetrode’s version [4], with appropriately specified
initial conditions, is deterministic. Therefore, even
if we can predict something, we will not be able to
change it. The consistency of a theory of this kind
was also discussed by Wheeler and Feynman in [6]
(see the section entitled “The paradox of advanced
interactions’).

Let us now consider the well-known theories of
direct gravitational interaction of particles. The first
and one of the most famous ones among them was the
Hoyle-Narlikar theory formulated in [12, 13]. After
almost 40 years, this theory was reviewed by Narlikar
in [14]. A concise but sufficiently informative review
of this theory can be found in [1]. This theory is based
on Mach’s principle which was interpreted as the
assertion that the mass of each particle is determined
by the whole set of all other particles in the Universe.
The action functional of the Hoyle-Narlikar theory
has a simple form coinciding with the form of a free
action in the classical theory of gravity:

S = −c
∑

a

∫
madsa

= cλ
∑

a

∑

b�=a

∫ ∫
G(A,B)dsadsb. (14)

However, this action, as is seen from the second
equality, contains a fundamental difference from the
free action: the mass ma of each particle is not fixed
but is connected with the distribution and properties
of motion of all other particles in the Universe via
Green’s function G, satisfying a certain equation in
Riemannian curved space. But one of the points
of criticism of this theory was its eclecticism: the
mass was presented in it by a direct scalar interac-
tion of particles, whereas gravity was still described
using a geometric approach. As in general relativ-
ity, gravity was described by space-time curvature
rather than a direct interaction of particles, although
related to it. Other versions of the theory of direct
gravitational interaction of particles were developed
by Soviet authors: Granovsky and Pantyushin [15,
16], Pyragas and Zhdanov [17, 18], Turygin and
Vladimirov [19, 20]. The theories presented in [15–
18] were approximate: the gravitational interaction
was described there by linear differential equations
whereas the Einstein equations for the metric in gen-
eral relativity are nonlinear. A more complete and
consistent theory of direct interactions of particles
was initiated in [19] and then developed and described
in detail in the book by Vladimirov and Turygin [20].
This theory was constructed by iteration (a method
of successive approximations, the first of which was
a linear theory, as in [15–18]). After introduction of
an effective metric (“geometrization” of the theory) it
was shown that this theory is completely equivalent to
Einstein’s classical theory of gravity. However, grav-
ity was completely described as a direct interaction
of particles in the background of Minkowski space.
The possibility of such a description is of fundamental
importance for the present work since here we will use
a similar approach.

2. NEW APPROACH: A STUDY
OF THE ADVANCED INTERACTION

Hoyle and Narlikar [12] built the theory of gravity
discussed above, where the Einstein-Hilbert action,
from which, by a variational method, a classical the-
ory of gravity is constructed, was replaced by a sim-
pler action in the form of a sum of double integrals
over the world lines of particles (the right-hand side
of Eq. (14)). In the same paper, Hoyle and Narlikar
advanced a hypothesis on the possibility of construct-
ing a unified theory of gravitation and electricity, in
which the action would have the form of a similar
sum of double integrals ([12], p. 193, the paragraph
before the new section). This problem was partly
solved in [1]. However, the paper [1] was subject to
criticism which was understood by its author himself.
Firstly, the resulting theory was not entirely unified
since electromagnetism and gravity were described as
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two separate interactions rather than as two manifes-
tations of a single interaction. Secondly, the theory
was eclectic since electromagnetism and gravitation
were finally described in different ways and in dif-
ferent paradigms. Electromagnetism was described
as a direct interaction of particles, while to describe
gravity it was still necessary to use another, geometric
approach using a Riemannian curved space. To build
a more consistent theory, we had to make a choice:
either to geometrize the electromagnetic interaction,
or to present gravity as a direct interaction of particles
without introducing a coordinate-dependent metric.
Adhering to the concept of direct particle interaction,
we choose the second alternative. We will abandon
using a Riemannian space and describe the gravita-
tional effects as those of direct interaction of particles
in Minkowski space.

The initial equations of the theory, that is, the
equations of motion of charged particles, are obtained
on the basis of the extremal action principle. The
action of this theory has a form completely identical
to (1) but without the free action. Thus we follow
the idea of Hoyle and Narlikar that the full action of
a system of particles is described by a sum of double
integrals like (14), and the mass of each particle is not
a given constant but is determined by all other parti-
cles of the Universe. Meanwhile, we wish to describe
the electromagnetism, the origin of particle masses
and gravity as a single interaction, and, moreover, we
choose Green’s function in precisely the same as in
(1), following the simplest assumption. However, an
important distinction of the new theory from the one
developed in [5, 6] is that we admit a joint existence of
retarded and advanced interactions. A consideration
of the response of the Universe to the interaction of
any two particles leads to the fact that the advanced
interaction is many orders of magnitude weaker than
the retarded one but is not strictly zero.

The variational problem statement, as well as a
formulation of the initial conditions for the equations
of motion have in this theory features of their own.
As noted by Tetrode in [4], to describe the motion
of a system of charged particles in such a theory, it
is not sufficient to specify the initial coordinates and
velocities of particles and the total strengths of the
“fields” (or potentials) only at initial time. Instead,
one can specify segments of the world lines of all par-
ticles in a certain period of time. Moreover, this period
of time is finite only in the case where all particles
are concentrated in a finite region of space. Let Dm

be the size of a three-dimensional region of space in
which the particles move within a time interval T (Dm

is the greatest of all distances between the location
points of the particles within the time T ). Then the
initial conditions for the equations of motion will be
set correctly if cT ≥ Dm, c being the speed of light.

Moreover, Tetrode has noted that the equations of
motion will have a solution not for all initial conditions
(not for any form of the of set of segments of world
lines in the interval T ).

In connection with the above-said, one cannot put
variations of the world lines equal to zero only at two
time instants, the initial and final ones. Moreover,
we do not know in advance, whether or not we can
assume that variations of world line segments of finite
length are equal to zero. This is because we do not
know in advance whether or not we can consider
the Universe as a set of particles concentrated in a
finite volume, or the particles fill an infinite space.
Therefore, we will proceed as follows. We will assume
that somewhere in the remote past there is a time
instant Tpast before which all world lines of particles
are specified (i.e., we put their variations equal to
zero). Similarly, somewhere in the remote future
there is a time instant Tfuture after which all particle
world lines will be fixed. We will suppose that these
parts of the world lines are specified in such a way
that the equations of motion we want to obtain have
solutions on the time interval (Tpast;Tfuture). Then we
can correctly formulate the variational problem.

We will also take into account that we want to
obtain a self-consistent set of equations of motion
for all particles rather than an equation of motion of
a single particle in a given potential. In a theory
of the type under consideration, in the general case,
one cannot neglect the influence of a single selected
particle on the ambient world. Therefore we vary the
action with respect to the world lines of all particles
simultaneously. The equations of motion having been
obtained, it is possible to use various approximations
in order not to solve a set of a large number of equa-
tions in practice. A solution of the variational problem
posed will differ from (5) only in that the left-hand side
of the equation will be equal to zero (due to absence
of a free action term, as mentioned above). Consider
a fixed particle number i. Its equation of motion will
be written as

0 =
ei
c
uμi

∑

k �=i

(
1

2
F ret
νμ(i, k) +

1

2
F adv
νμ (i, k)

)
. (15)

According to the idea of Wheeler and Feynman [5,
6], this particle acts on all other particles of the Uni-
verse by its retarded potential, and all other particles
act on it in response by their advanced potential. A
result of summing all the potentials is doubling of
the retarded potential and emergence of the radiative
friction force f rad

ν (with the remark that in [5, 6] each
particle had a given mass, while in our work we are
only going to obtain it; however, the fourth way of
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proving the above statement in [5] does not rely on
the presence of fixed particle masses):

0 =
ei
c
uμi

∑

k �=i

F ret
νμ(i, k) + f rad

ν . (16)

But let us suppose that this result holds not exactly
but approximately, and, in fact, after summing all po-
tentials there remains a weak but nonzero advanced
interaction. We will denote all quantities characteriz-
ing this advanced interaction by letters with a tilde. In
this case, instead of Eq. (16), we obtain an equation
with an additional term:

0 =
ei
c
uμi

∑

k �=i

F ret
νμ (i, k) + f rad

ν

+
ei
c
uμi

∑

k �=i

F̃ adv
νμ (i, k). (17)

Let us denote the sum of advanced potentials at
some point along the world line of particle i created
by all other particles of the Universe by the symbol
Ãadv

μ . In agreement with the concept of Wheeler
and Feynman on the response of the universe, the
quantity Ãadv

μ may be represented as a function of
many variables, i.e., of the retarded potentials acting
from particle i on all other particles (this is possible
due to the deterministic nature of this theory, which
is a key point in our reasoning). Let us emphasize
that Ãadv

μ is a function of only retarded potentials in-
duced by source i, as was mentioned by Wheeler and
Feynman [5, p. 160]. This function is complex since
the response of the Universe cannot be presented as
a sum of simple processes in which particle i acts
on particle k, while particle k acts back on particle
i. Instead, we should also consider more complex
chains of interactions, where, for example, i acts on a,
a acts on b, b acts on c, c is acts again on i. Wheeler
and Feynman [5] took into account these chains by
introducing a medium with a certain refractive index
and attenuation factor. But we assume that the
conclusions of [5] are approximate, and wish to find
a correction to them. Suppose that the function to
be found is decomposable into a Taylor series with
tensor coefficients, and in some approximation we can
restrict ourselves to the linear term in the expansion.
Then for the quantity Ãadv

μ we can write

Ãadv
μ =

∑

k �=i

KμσA
ret σ(k, i), (18)

where Kμσ are tensor expansion coefficients. To find
the form of these coefficients, it is necessary to make
some assumptions about the cosmological model. It
is the cosmological model that, according to the idea

of Hoyle and Narlikar [5], is responsible for the asym-
metry of retarded and advanced interactions. Since
we are building a new theory of gravitation which will
not operate in curved space-time, the cosmological
model should also be built anew. We will not do
that in this paper and restrict ourselves to some basic
assumptions about the Universe. The Universe is
homogeneous and isotropic at large scales, and we
can introduce some characteristic radius R corre-
sponding to the horizon radius of the Universe in the
usual theory. If the right-hand side of (18) contains
terms that decay with distance r to particle k more
slowly than 1/r2, then the main contribution to a sum
of such terms will be obtained from particles more
distant (of order R) from particle i. We will consider
particles separated by a large distance. For them,
due to isotropy and homogeneity of the Universe,
the tensor expansion coefficients can be written in a
simple form:

Kμσ = kημσ , (19)

where k is a certain number, and ημσ is the metric
tensor of Minkowski space. Hence the third term in
the right-hand side of (17) contains a sum of terms of
the form

uμi

(
∂Aret

μ

∂xνi
− ∂Aret

ν

∂xμi

)
= uμi

∂Aret
μ

∂xνi
− dAret

ν

dsi

= uμi
∂Aret

μ

∂xνi
− ei

Rλuiλ

duiν
dsi

+
eiuiσuiν
(Rλuiλ)2

dRσ

dsi

+
eiuiν

(Rλuiλ)2
Rσ duiσ

dsi
, (20)

where Rλ = {c(tk − ti), �rk − �ri} is the 4-vector join-
ing events on the world lines of the interacting parti-
cles, and in the last transformation for the retarded
potential induced by particle i on the world line of
particle k we have used the representation

Aret
μ (k, i) = ei

uiμ
Rσuiσ

. (21)

Consider the expression obtained in the transfor-
mation (20). We will assume that the particle i, for
which we wish to obtain the equation of motion, is
moving at speed much smaller than the speed of light.
In this case, the main contribution to the expression
Rσuiσ is made by the product of temporal compo-
nents, and if we, as mentioned above, consider a par-
ticle very distant from particle i, we can assume this
expression to be approximately equal to the horizon
radius of the universe,: Rσuiσ ≈ R. Then, while sum-
ming the expressions (20) over all remote particles,
the first and the last terms in (20) can be neglected
due to isotropy of the Universe and smallness of the
particle i velocity ratio to the speed of light. Indeed,
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in the first and last terms there are vectors related
to particle i (uμi and duiν/dsi), which are contracted
with a tensor and a vector involving the position and
velocity of some remote particle k. When summing
such contractions over all remote particles, the spatial
components of the resulting sum will be equal to zero
due to isotropy of the Universe, while the temporal
component includes the ratio v/c which we neglect.
The term before last in (20) decreases as 1/R2 at large
R, therefore it can be neglected as compared with
the terms decreasing as 1/R. and there remains the
second term in (20), of utmost interest for us. Under
the above assumptions, it approximately equals to
(−ei/R)duiν/dsi. Substituting this expression into
(17) carrying out the summation over all remote par-
ticles k and transferring the resulting term to the left-
hand side of the equation, we get

e2i kN

cR
· duiν
dsi

=
ei
c
uμi

∑

k �=i

F ret
νμ (i, k)

+ f rad
ν +

ei
c
uμi

∑

n

F̃ adv
νμ (i, n), (22)

where N is the number of particles within the horizon
of the Universe, and the second sum in the right-
hand side is taken over all particles n at distances
from particle i much smaller than the characteristic
scale R of the Universe. The left-hand side of this
equation contains a product of a constant and the
4-acceleration of particle i. Suppose that it is, as
in the well-known equation of motion of a charged
particle, equal to mic duiν/dsi, where mi is the mass
of particle i. Since particles of different sorts have
different masses, the values of k must be different for
them. Consider an electron as particle i. It can be
assumed that for a proton and a neutron the constant
k has other values due to a composite structure of
these particles (they consist of quarks), and in a de-
scription of leptons and quarks of higher generations
it is necessary to use a quantum theory. We introduce
the classical electron radius re defined by the equality
mc2 = e2/re, where m and e are the electron mass
and charge. Then we can write the following chain of
equalities:

mc2 =
e2kN

R
=

e2

re

kNre
R

= mc2
kNre
R

. (23)

This shows that the fraction in the right-hand side
must be equal to one. Let us estimate the dimension-
less constant k. To do that, we take into account one
of the well-known cosmological coincidences, the so-
called Eddington formula, which we will accept as an
empirical fact:

R/re ≈
√
N. (24)

From (23) and (24) it follows that the constant k
is approximately expressed through the number of
particles inside the horizon of the Universe:

k ≈ 1/
√
N. (25)

Let us now consider a small region of the Universe,
whose linear size is much smaller than the charac-
teristic scale R, and transform the last term in the
right side of (22). Due to smallness of the advanced
interaction, we can again, as in Eq. (18), represent the
total potential in the form of a Taylor series expansion
and restrict ourselves to the linear approximation:

Ãadv
μ =

∑

n

QμσA
ret σ(n, i), (26)

where Qμσ are some new tensor expansion coeffi-
cients. Since the region under consideration is very
small, we can again write due to the homogeneity and
isotropy of the Universe:

Qμσ = qημσ, (27)

where q is a new dimensionless constant (just as k,
this constant can be different for particles of different
sorts). For convenience, let us introduce two tensors
which do not contain the charge of particle i:

Gret
μ (n, i) =

1

ei
Aret

μ (n, i), (28)

Gret
νμ(n, i) =

∂Gret
μ (n, i)

∂xνi
− ∂Gret

ν (n, i)

∂xμi

= −
(
∂Gret

μ (n, i)

∂xνn
− ∂Gret

ν (n, i)

∂xμn

)
. (29)

The last equality holds due to representation (21) for
the potential Ãret

μ . The expression inside the paren-
theses in (29) can be interpreted as a “field” which
acts on particle n due to particle i. Then the equation
of motion of particle i takes the form

mic
duiν
dsi

=
ei
c
uμi

∑

k �=i

F ret
νμ (i, k) + f rad

ν

− qe2i
c

uμi

∑

n

Gret
νμ(n, i). (30)

We have obtained an equation having rather an un-
usual form: in the last term of its right-hand side there
is the tensor Gret

νμ(n, i) instead of Gret
νμ(i, n). Note

that this term does not depend on the sign of the
charge of particle i (it is proportional to the squared
charge). Unlike the first term on the right-hand side
of (30), which depends on the product of particle
charges, the last term describes an interaction which
is always either attractive or repulsive, depending on
the sign of the constant q (we mean an analogy with
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the electrostatic interaction). It is natural to suppose
that this additional interaction is nothing else than
gravity.

In this paper we restrict ourselves to the the non-
relativistic limit of Eq. (30), assuming that the veloc-
ity of particle i under consideration is much smaller
than the speed of light. Then, in the SI system of
units, the spacelike part of (30) is rewritten in the form

mi�a = ei
∑

k �=i

(
�E(i, k) + �vi × �B(i, k)

)
+ �f rad

− qe2i
∑

n

(
�Eg(n, i) + �vi × �Bg(n, i)

)
, (31)

where �E(i, k) and �B(i, k) are strengths of the electric
and magnetic “fields,” created by particle k at the
location of particle i, while �Eg(n, i) and �Bg(n, i) are
similar quantities that do not include the charge of
particle i, being a source of these “fields” (we re-
member that the “fields” are understood as auxiliary
constructions describing the direct interaction of par-
ticles). Equation (31) is similar to the equation of
motion in gravitoelectromagnetism (the well-known
approximation in GR). In the case of electrostatics,
we have the following expressions for field strengths:

�E(i, k) = −�E(k, i) = ke
ek
R3

ki

�Rki,

�Eg(i, n) = − �Eg(n, i) = ke
1

R3
ni

�Rni, (32)

where ke is a proportionality factor in Coulomb’s law,
and �Rik is the difference of particles’ radius vectors.
To obtain the Newtonian force of universal gravity in
the right-hand side of (31), q must satisfy the relation

qe2i ke = Gmimn, (33)

where G is the gravitational constant. Let us estimate
the dimensionless constant q. To do that, we take into
account one more well-known cosmological coinci-
dence: the ratio of electromagnetic and gravitational
interaction forces of the electron and the proton in the
classical theory is approximately

e2i ke
Gmimn

≈
√
N. (34)

Hence it is evident that the constant q, as well as the
previously introduced constant k, are approximately
(up to about two orders of magnitude)

q ≈ k ≈ 1/
√
N. (35)

Since Eq. (31) is linear in the “field” strengths,
it is also applicable to macroscopic bodies, and
additivity of the charge and mass takes place. Thus
we have shown that under the assumption of a

nonzero advanced electromagnetic interaction and
a few additional assumptions, the emergence of
particle masses and gravity are consequences of
electromagnetism. The main additional assump-
tions of this theory are a restriction to linear terms in
the Taylor expansions (18) and (26) of the potentials,
the cosmological coincidences (24) and (34), the
existence of a characteristic distance scale R, and the
assumption of different values of the constants q and
k for the electron, proton and neutron.
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