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Abstract—A D-dimensional gravitational model with a Gauss–Bonnet term and the cosmological con-
stant Λ is considered. Assuming diagonal cosmological metrics, we find, for certain Λ > 0, new examples
of solutions with an exponential time dependence of two scale factors, governed by two Hubble-like
parameters H > 0 and h < 0, corresponding to submanifolds of dimensions m and l, respectively, with
(m, l) = (4, 2), (5, 2), (5, 3), (6, 7), (7, 5), (7, 6) and D = 1 + m + l. Any of these solutions describes an
exponential expansion of our 3-dimensional factor space with the Hubble parameter H and zero variation
of the effective gravitational constant G. We also prove the stability of these solutions in the class of
cosmological solutions with diagonal metrics.
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1. INTRODUCTION

In this paper we consider a D-dimensional grav-
itational model with a Gauss–Bonnet term and a
cosmological constant. We note that at present the
so-called Einstein–Gauss–Bonnet (EGB) gravita-
tional model and its modifications, see [1–11] and
references therein, are intensively studied in cosmol-
ogy, e.g., for a possible explanation of accelerated
expansion of the Universe following from supernovae
(type Ia) observational data [15–17].

Here we deal with cosmological solutions with
diagonal metrics, governed by n > 3 scale factors
depending on one variable, the synchronous time.
We restrict ourselves to solutions with an exponential
dependence of the scale factors and present six new
examples of such solutions: five in dimensions D =
7, 8, 9, 13 and two for D = 14. Any of these solutions
describes an exponential expansion of 3-dimensional
factor-space with Hubble parameters H > 0 [18]
and has a constant volume factor of the internal
space, which implies zero variation of the effective
gravitational constant G either in Jordan or Einstein
frame [19, 20], see also [21, 22] and references therein.
These solutions obey the most severe restrictions on
variation of G [23].

We study the stability of these solutions in a class
of cosmological solutions with diagonal metrics by
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using the results of [13, 14] and show that all solu-
tions presented here are stable. It should be noted
that two exponential solutions with two factor spaces
(one of which is expanding and the other one con-
tracting) and constant G were found for D = 22, 28
and Λ = 0 in [11]. In [22] it was proved that these
solutions are stable.

2. THE COSMOLOGICAL MODEL

The action reads

S =
∫

M

dDz
√

|g|{α1(R[g] − 2Λ) + α2L2[g]}, (1)

where g = gMNdzM ⊗ dzN is the metric defined on
the manifold M , dim M = D, |g| = |det(gMN )|, Λ is
the cosmological constant,

L2 = RMNPQRMNPQ − 4RMNRMN + R2

is the standard Gauss–Bonnet term, and α1, α2 are
nonzero constants.

We consider the manifold

M = R × M1 × . . . × Mn (2)

with the metric

g = −dt ⊗ dt +
n∑

i=1

Bie
2vitdyi ⊗ dyi, (3)
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where Bi > 0 are arbitrary constants, i = 1, . . . , n,
and M1, ...,Mn are one-dimensional manifolds (ei-
ther R or S1) and n > 3.

The equations of motion for the action (1) give us
the set of polynomial equations [13]

Gijv
ivj + 2Λ − αGijklv

ivjvkvl = 0, (4)[
2Gijv

j − 4
3
αGijklv

jvkvl

] n∑
i=1

vi

− 2
3
Gijv

ivj +
8
3
Λ = 0, (5)

i = 1, . . . , n, where α = α2/α1. Here Gij = δij − 1
and Gijkl = GijGikGilGjkGjlGkl are, respectively,
the components of two metrics on R

n [9, 10]. The first
one is a 2-metric, and the second one is a Finslerian
4-metric. For n > 3 we get a set of fourth-order
polynomial equations.

For Λ = 0 and n > 3 the set of equations (4)
and (5) has an isotropic solution v1 = . . . = vn = H
only if α < 0 [9, 10]. This solution was generalized
in [8] to the case Λ �= 0.

It was shown in [9, 10] that there are no more than
three different numbers among v1, . . . , vn if Λ = 0.
This is also valid for Λ �= 0 if

∑n
i=1 vi �= 0 [14].

3. SOLUTIONS WITH CONSTANT G

In this section we present several solutions to the
set of equations (4), (5) of the following form

v = (H, . . . ,H, h, . . . , h). (6)

where H is the Hubble-like parameter correspond-
ing to an m-dimensional subspace with m > 3 and
h is the Hubble-like parameter corresponding to an
l-dimensional subspace, l > 1. We put H > 0 for
the description of an accelerated expansion of a 3-
dimensional subspace (which may describe our Uni-
verse) and also put

h = −(m − 3)H/l < 0 (7)

for the description of a zero variation of the effective
gravitational constant G.

We remind the reader that the effective gravita-
tional constant G = Geff in the Brans–Dicke–Jordan
(or simply Jordan) frame [19] (see also [20]) is propor-
tional to the inverse volume scale factor of the internal
space, see [21, 22] and references therein.

According to the ansatz (6), the m-dimensional
subspace is expanding with the Hubble parameter
H > 0, while the l-dimensional subspace is contract-
ing with the Hubble-like parameter h < 0.

For Λ = 0, m = 11, l = 16 and α = 1 the solution
with H = 1/

√
15, h = −1/(2

√
15), describing zero

variation of G, was found in [11]. Another solution
of such type with Λ = 0, H = 1/6, h = −1/3 and
constant G appears for m = 15, l = 6 and α = 1 [11].
It was proved in [13] that these two solutions are
stable.

Here we present three solutions with constant G
for α < 0:

H =
1√
6|α|

, h = − 1
2
√

6|α|
(8)

for Λ = 7/(8|α|), (m, l) = (4, 2);

H =
1√
8|α|

, h = − 1√
8|α|

(9)

for Λ = 17/(16|α|), (m, l) = (5, 2), and

H =
3

2
√

10|α|
, h = − 1√

10|α|
(10)

for Λ = 177/(80|α|), (m, l) = (5, 3).

We also present three solutions with constant G
for α > 0:

H =
7

2
√

5α
, h = − 3

2
√

5α
(11)

for Λ = 928.2α−1 = 4641/(5α), (m, l) = (6, 7);

H =
5

6
√

α
, h = − 2

3
√

α
, (12)

for Λ = 169.72(2)α−1 = 3055/(18α), (m, l) = (7, 5),
and

H =
3

2
√

5α
, h = − 1√

5α
(13)

for Λ = 84.9α−1 = 849/(10α), (m, l) = (7, 6). All six
solutions may be verified by MAPLE. The derivation
of a more general class of solutions will be presented
in a separate paper.

4. STABILITY ANALYSIS

In [13, 14] we restricted ourselves to the expo-
nential solutions (3) with a nonstatic volume factor,
which is proportional to exp(

∑n
i=1 vit), i.e., we put

K = K(v) =
n∑

i=1

vi �= 0. (14)

We consider the matrix

L = (Lij(v)) = (2Gij − 4αGijksv
kvs)

and put the restriction [13, 14]

(R) det(Lij(v)) �= 0. (15)
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For a general cosmological setup with the metric

g = −dt ⊗ dt +
n∑

i=1

e2βi(t)dyi ⊗ dyi,

we have obtained in [13, 14] the (mixed) set of alge-
braic and differential equations

f0(h) = 0, (16)

fi(ḣ, h) = 0, (17)

i = 1, . . . , n, where h = h(t) = (hi(t)) = (β̇i(t)) is
the set of Hubble-like parameters; f0(h) and fi(ḣ, h)
are fourth-order polynomials in hi; fi(ḣ, h) are first-
order polynomials in ḣi, see [13, 14]. The fixed-point
solutions hi(t) = vi (i = 1, . . . , n) to Eqs. (16), (17)
correspond to the exponential solutions (3) which
obey Eqs. (4), (5).

It has been proved in [14] that a fixed-point solu-
tion (hi(t)) = (vi) (i = 1, . . . , n; n > 3) to Eqs. (16),
(17) obeying the restrictions (14), (15) is stable under
perturbations hi(t) = vi + δhi(t), i = 1, . . . , n, (as
t → +∞) if

K(v) =
n∑

k=1

vk > 0, (18)

and it is unstable (as t → +∞) if K(v) =
∑n

k=1 vk <
0.

As was shown in [14] for the vector v from (6),
obeying

mH + lh �= 0, H �= h, (19)

the matrix L has a block-diagonal form:

(Lij) = diag(Lμν , Lαβ), (20)

where

Lμν = Gμν(2 + 4αSHH), (21)

Lαβ = Gαβ(2 + 4αShh), (22)

and

SHH = (m − 2)(m − 3)H2 + 2(m − 2)lHh

+ l(l − 1)h2, (23)

Shh = m(m − 1)H2 + 2m(l − 2)Hh

+ (l − 2)(l − 3)h2. (24)

The matrix (20) is invertible if and only if m > 1,
l > 1 and

SHH �= − 1
2α

, Shh �= − 1
2α

. (25)

Recall that the matrices (Gμν) = (δμν − 1) and
(Gαβ) = (δαβ − 1) are invertible only if m > 1 and
l > 1.

The first condition (18) is obeyed for the solutions
under consideration since due to (7) we get K(v) =
3H > 0 [14].

Now, let us verify the second condition (25). Cal-
culations give us

(−2α)SHH = −0.5, −1, −1.5, 21, 10, 6, (26)

(−2α)Shh = 4, 5, 6, −39, −17, −9. (27)

for solutions with (m, l) = (4, 2), (5, 2), (5, 3), (6, 7),
(7, 5), (7, 6), respectively. Thus the conditions (25)
are satisfied for by our solutions. Hence all six so-
lutions are stable in a class of cosmological solutions
with diagonal metrics.

5. CONCLUSIONS

We have considered a D-dimensional Einstein–
Gauss–Bonnet (EGB) model with a cosmological
constant. By using the ansatz with diagonal cos-
mological metrics, we have found, for certain Λ >
0 and α = α2/α1, six new solutions with exponen-
tial dependence of two scale factors on synchronous
time t in dimensions D = 1 + m + n, where (m, l) =
(4, 2), (5, 2), (5, 3), (6, 7), (7, 5), (7, 6). Here m > 3
is the dimension of the expanding subspace, and l > 1
is the dimension of the contracting subspace. The
first three solutions correspond to α < 0, the other
three to α > 0.

Any of these solutions describes an exponential
expansion of our 3-dimensional factor space with the
Hubble parameter H > 0 and an anisotropic behavior
of the (m − 3 + l)-dimensional internal space: ex-
pansion in (m − 3) dimensions with the Hubble-like
parameter H and contraction in l dimensions, with
the Hubble-like parameter h < 0. Each solution has
a constant volume factor of internal space, and hence
it describes zero variation of the effective gravitational
constant G. By using the results of [14] we have
proved that all these solutions are stable as t → +∞.
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