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Abstract—In 6D general relativity with a scalar field as a source of gravity, a new type of static wormhole
solutions is presented: such wormholes connect our universe with a small 2D extra subspace with a
universe where this extra subspace is large, and the whole space-time is effectively 6-dimensional. We
consider manifolds with the structure M0 ×M1 ×M2, where M0 is 2D Lorentzian space-time while each of
M1,2 can be a 2-sphere or a 2-torus. After selecting possible asymptotic behaviors of the metric functions
compatible with the field equations, we give two explicit examples of wormhole solutions with spherical
symmetry in our space-time and toroidal extra dimensions. In one example, with a massless scalar field (it
is a special case of a well-known more general solution), the extra dimensions have a large constant size
at the “far end”; the other example contains a nonzero potential V (φ) which provides a 6D anti-de Sitter
asymptotic, where all spatial dimensions are infinite.
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1. INTRODUCTION

Multidimensional theories suggest a great vari-
ety of geometries, topologies and compactification
schemes (for reviews see, e.g., [1–4] and references
therein). However, there still emerge new ideas on
how our 4D space-time may be inscribed in a mul-
tidimensional world. One recently suggested idea [5]
is that of exchanging roles of different dimensions in
different parts of space-time.

More specifically, considered was [5] a 6D static
space-time of the form M = M0 × M1 × M2, where
M0 is 2D Lorentzian space-time parametrized by
time t and a “radial” coordinate x while M1,2 are two-
spheres with radii r1(x) and r2(x). Moreover, as x →
−∞, r1 → ∞ (so that the 4D space-time M0 × M1 is
asymptotically flat) while r2 tends to a small constant
value, and M2 is thus a spherical extra space. The
same picture occurs in the other asymptotic region,
x → +∞, but, on the contrary, M1 is small and M2 is
large, and now M0 × M2 is asymptotically flat. The
spatial section of M0 × M1 looks like a funnel open
to the left and narrow on the right, that of M0 × M2

like a funnel open to the right and narrow on the
left. The whole structure resembles a wormhole (and
we suggest to call it a Rubin wormhole) since it
connects two large space-time regions, but now these
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regions belong to different sections of a multidimen-
sional manifold1.

Such a solution was obtained in [5] in a certain
approximation from R2 gravity. Inspired by this work,
we tried to find similar solutions in 6D general rel-
ativity (GR) with a minimally coupled scalar field
as a source. Such an attempt looks natural since
f(R) gravity is known to be equivalent to a certain
class of scalar-tensor theories whose Einstein frame
formulation has the form of GR with a a minimally
coupled scalar field. For more generality, we admit
both spherical and toroidal forms of the compact 2D
manifolds M1 and M2. Toroidal geometry of extra
dimensions is often considered, and it should be noted
that this symmetry in our universe also seems to be
compatible with observations [11, 12].

It turns out, however, that in this framework Ru-
bin wormhole solutions do not exist since the field
equations do not admit the needed asymptotic be-
havior, but, instead, other structures of interest are
discovered: these are wormholes which connect an
effectively 4D space-time region where extra dimen-
sions are small with an effectively multidimensional
region, where the potentially observable physical pic-
ture should be drastically different from ours. We

1For reviews of wormhole physics in different contexts, in
particular, in theories of gravity alternative to GR see, e.g., [1,
6, 7] and also more recent papers, e.g., [8–10].
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give two explicit examples of such solutions, one
with a zero potential (actually, a special case of a
general solution known for a long time), the other
with a nonzero potential; in both cases, the scalar field
should be phantom, i.e., have a wrong sign of kinetic
energy. The necessity of a phantom (or exotic) nature
of a source of gravity for obtaining wormhole and
other regular models in general relativity and its many
extensions like scalar-tensor and f(R) gravity is well
known (see, e.g., [1, 13–15]) and can be avoided by
invoking alternative geometries (e.g., [9, 16]) or/and
more general gravitational actions [17, 18]. There are
theoretical arguments both pro et contra the possible
existence of phantom fields, see, e.g., discussions
in [6, 7, 14, 19]. In this paper, as in many others, we
admit it as a working hypothesis.

The next section presents the field equations for
the system to be studied. Section 3 is devoted to
an analysis of asymptotic properties of the metric
admitted by the field equations. Section 4 describes
two examples of wormhole models with large extra
dimensions beyond the throat, and Section 5 contains
our concluding remarks.

2. EQUATIONS IN 4 + 2 DIMENSIONS

We consider 6D GR with a minimally coupled
scalar field φ with a potential V (φ) as the only source
of gravity. So the total action is

S =
m2

6

2

∫ √
|g6|

×
[
R6 + 2εφgAB∂Aφ∂Bφ − 2V (φ)

]
, (1)

where m6 is the 6D Planck mass, R6 and g6 are
the 6D Ricci scalar and metric determinant, respec-
tively, εφ = 1 for a normal, canonical scalar field,
εφ = −1 for a phantom one, and A,B, . . . = 0, 5.
The corresponding equations of motion are the scalar
field equation 2εφ�6φ + dV/dφ = 0 and the Einstein
equations which can be written as

RA
B = −T̃A

B ≡ −TA
B − 1

4δA
BTC

C

≡ −2εφ∂Aφ∂Bφ + 1
2V (φ)δA

B , (2)

where RA
B is the 6D Ricci tensor and TA

B is the stress-
energy tensor (SET) of the scalar field.

Now, we consider the 6D manifold with the struc-
ture of a direct product of three 2D spaces, M =
M0 × M1 × M2, where M0 is 2D space-time with
the coordinates x0 = t and x1 = u, while M1 and
M2 are compact 2D spaces of constant nonnegative
curvature, i.e., each of them can be a sphere or a torus.
The metric is taken in the form:

ds2 = e2γdt2 − e2αdu2 − e2βdΩ2
1 − e2λdΩ2

2, (3)

where α, β, γ, λ are functions of an arbitrarily cho-
sen “radial” coordinate u, while dΩ2

1 and dΩ2
2 are u-

independent metrics on 2D manifolds M1 and M2 of
unit size. We also assume φ = φ(u).

So, we do not fix which of M1,2 belongs to our
4D space-time and which is “extra”: everything de-
pends on their size. For example, if M1 is large and
spherical while M2 is small and toroidal, we have a
static, spherically symmetric configuraton in 4D and
a toroidal extra space, and so on.

The nonzero components of the Ricci tensor are

Rt
t = −e−2α

[
γuu + γuηu

]
, (4)

Ru
u = −e−2α

[
γuu + γ2

u − αuγu + 2βuu + 2β2
u

− 2αuβu + 2λuu + 2λ2
u − 2αuλu

]
, (5)

Ra
a = ε1e

−2β − e−2α
[
βuu + βuηu

]
, (6)

Rm
m = ε2e

−2λ − e−2α
[
λuu + λuηu

]
, (7)

where the subscript u denotes d/du; the indices
a, b, ... = 2, 3 (they belong to M1); m,n, ... = 4, 5
(they belong to M2); there is no summing over an
underlined index; ε1 = 1 or 0 if M1 is a sphere or a
torus, respectively, and similarly for ε2; lastly,

η ≡ −α + γ + 2β + 2λ. (8)

We notice that the scalar field equation is a conse-
quence of the Einstein equations, and the SET of the
scalar field has the components

T̃ t
t = T̃ a

a = T̃m
m = −1

2V (φ),

T̃ t
t − T̃ u

u = 2εφe−2αφ2
u. (9)

Let us choose the quasiglobal coordinate u = x,
such that α + γ = 0, and denote

e2γ = e−2α = A(x),

e2β = r2(x) ≡ R(x),

e2λ = p2(x) ≡ P (x). (10)

Due to the symmetry of the problem and the proper-
ties (9) of the SET, there are four independent equa-
tions, and it is convenient to use the following ones
(the prime denotes d/dx)):

Rt
t = −T̃ t

t ⇒ − 1
PR

(A′PR)′ = V (φ), (11)

Rt
t−Rx

x = −T̃ t
t +T̃ x

x ⇒ r′′

r
+

p′′

p
= −εφφ′2, (12)

Rt
t−Ra

a = 0 ⇒ [P (AR′ − A′R)]′ = 2ε1P, (13)

Rt
t−Rm

m = 0 ⇒ [R(AP ′ − A′P )]′ = 2ε2R. (14)
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Equations (13) and (14) contain only the metric
functions A(x), P (x), R(x). Therefore, considering
them separately, these are two equations for three
unknown functions, so there is arbitrariness in one
function; if these functions are known, the other two
Einstein equations can be used to find the scalar φ
and the potential V . From Eq. (12) it follows that
solutions with r > 0 and p > 0 in the whole range
x ∈ R can only exist with εφ = −1, i.e., a phantom
field, since such solutions require r′′ > 0 and p′′ > 0.

3. POSSIBLE ASYMPTOTIC BEHAVIOR
OF THE METRIC

The metric under consideration describes the fol-
lowing types of geometries:

1. SS (double spherical) space-times: the
case ε1 = ε2 = 1. If the spheres M1 are large and
M2 are small (or vice versa), we have static spherical
symmetry in our space-time and a spherical extra
space. It is also possible that both spheres are large,
then we have a 6D space-time where all dimensions
are observable.

2. ST (spherical-toroidal) space-times: the
case ε1 = 1, ε2 = 0 (or vice versa). If M1 is large and
M2 small, we have static spherical symmetry in our
space-time and a toroidal extra space. The opposite
situation is also possible as well as a total observable
6D geometry.

3. TT (double toroidal) space-times: if ε1 =
ε2 = 0, we have the same as before but both M1 and
M2 are toroidal.

Our interest is in finding configurations where
x ∈ R and there are different geometries in the two
asymptotic regions x → ±∞. In particular, there can
be two 4D flat asymptotic regions at large positive
and negative x, where at one end the large 4D space
contains M1, parametrized by the coordinates t, x, xa

(a = 2, 3), while at the other end such a 4D space
contains M2 and is parametrized by t, x, xm (m =
4, 5), and in each case the remaining 2D subspace
has a small constant size. Other solutions are think-
able, where one or both asymptotic regions have the
anti-de Sitter (AdS) geometry. In this section we
do not consider the properties of the scalar field but
only analyze which kinds of asymptotic behavior are
compatible with Eqs. (13) and (14) for each of the
types 1–3 of 6D geometry.

3.1. Double Spherical (SS) Space-Times
SS1. Consider first an asymptotically flat 4D

space-time with constant extra dimensions. Without
loss of generality, this means that2

A(x) → fin, R(x) ∼ x2, P (x) → fin (15)

2Here and henceforth the symbol “fin” means a positive con-
stant.

as x → ∞. Let us substitute these conditions to
Eqs. (13) and (14). According to (15), R′ ∼ x, A′ ∼
x−2 or even smaller (due to the expansion A = A− +
A−1/x + . . .), and the l.h.s. of (13) tends, in general,
to a nonzero constant, which agrees with the require-
ment to P that stands on the r.h.s.. However, in (14)
the expression in square brackets tends to a constant,
hence its derivative vanishes, while the r.h.s., equal to
2R, should behave as x2.

We conclude that the asymptotic conditions
(15) are incompatible with the field equations.

On equal grounds we could consider x → −∞
and/or exchange R(x) and P (x).

SS2. Next, an asymptotically AdS 4D geometry
with constant extra dimensions corresponds to

A(x) ∼ x2, R(x) ∼ x2, P (x) → fin (16)

as x → ∞. Assuming the expansions A(x) = A2x
2 +

A1x + . . ., R(x) = R2x
2 + R1x + . . . and substi-

tuting them to Eq. (13), it is easy to see that in
square brackets there is O(x2), hence its derivative
is O(x) while we need it to be O(1) to satisfy the
equation. However, such a behavior is achieved
under the condition A1R2 = A2R1 for the expansion
parameters. Furthermore, in Eq. (14) one has AP ′ =
O(1), PA′ = O(x), hence in the whole square bracket
there is O(x3) which agrees with O(x2) on the r.h.s..
However, the expression on the l.h.s. is necessarily
negative and cannot be equal to 2R. A similar con-
clusion could be obtained by considering the limit
x → −∞. Therefore, as before, the behavior (16)
is incompatible with the field equations.

SS3. Let us check whether both spheres M1 and
M2 can be asymptotically large, so that R ∼ x2 and
P ∼ x2 as x → ±∞. An inspection similar to the pre-
vious one shows that such a behavior can occur both
with A → fin and A ∼ x2, though in the latter case a
solution is only possible under special conditions on
the expansion parameters of the functions involved.

3.2. Spherical-Toroidal (ST) Space-Times

For this kind of geometry, Eq. (13) has the same
form as before, but Eq. (14) has now a zero r.h.s., and
its first integral reads

A2R(P/A)′ = K = const. (17)

We have to distinguish the cases K �= 0 and K = 0.
ST1. Consider the conditions (15). As before,

Eq. (13) does not contradict them. As to (17), in its
l.h.s. we have R ∼ x2 while, in general, (P/A)′ ∼
x−2, therefore Eq. (17) can hold with K �= 0. If
K = 0, we simply have P (x) = kA(x), which is also
admissible.
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ST2. Unlike SS space-times, here the metric
coefficients R and P are not equivalent, therefore,
besides (15), we should consider the conditions for
an asymptotically flat toroidal 4D space-time with
spherical extra dimensions such that

A(x) → fin, P (x) ∼ x2, R(x) → fin (18)

as x → ∞. Proceeding as before, we see that the l.h.s.
of Eq. (13) vanishes at infinity, contrary to a growing
r.h.s.. Thus such a behavior is impossible.

ST3. Consider an asymptotically AdS spherical
4D space-time with toroidal extra dimensions, we
return to the conditions (16) and see that Eq. (13) can
hold as x → ∞ under the condition A1R2 = A2R1, as
in item SS2. However, Eq. (17) cannot hold since its
l.h.s. grows as x3. So this behavior is excluded.

ST4. The opposite case of an asymptotically AdS
toroidal 4D space-time with spherical extra dimen-
sions corresponds to the conditions

A(x) ∼ x2, P (x) ∼ x2, R(x) → fin (19)

as x → ∞. In Eq. (13) we obtain the same situation
with signs as in item SS2, excluding this kind of
behavior.

ST5. In the same way as in item SS3, it can be
verified that solutions where both M1 (sphere) and M2

(torus) are asymptotically large, are not excluded. so
that R ∼ x2 and P ∼ x2 as x → ±∞. An inspection
again shows that such a behavior can occur both with
A → fin and A ∼ x2, but if K �= 0 in Eq. (17), there
emerge special conditions on the expansion parame-
ters of the functions involved. If K = 0, then Eq. (17)
simply leads to P (x) = kA(x), and solutions where
all three functions grow as x2 are allowed.

3.3. Double Toroidal (TT) Space-Times

In a TT system, in addition to (17), we have an
integral of Eq. (13):

A2P (R/A)′ = L = const. (20)

Now R(x) and P (x) are again interchangeable,
which reduces the number of opportunities.

TT1. Consider the opportunity (15). Then from
(20) it follows either R ∼ x or R → fin, both cases
contrary to the assumption R ∼ x2. Substituting
it to Eq. (17), we see that (since at best (P/A)′ ∼
1/x2) its l.h.s. vanishes at large |x|, which leads to
K = 0, hence P = cA, c = const. Thus R ∼ x and
P = cA → fin is a possible asymptotic behavior of our
solution.

TT2. The conditions (16), being substituted to
(17), leads to a l.h.s. growing as x3, so this behavior
is excluded.

Asymptotic behaviors compatible with Eqs. (13) and (14).
Notations: the symbols + or − mean that the correspond-
ing behavior is possible or impossible, respectively, ± that
it is possible under special conditions for the functions in-
volved, and n/a that such an opportunity is not applicable.
The words “4D flat spherical” mean a 4D asymptotically
flat spherically symmetric space-time and the size of the
extra subspace tends to a constant, and so on.

Asymptotic
behavior

6D geometries

SS ST TT

4D flat spherical – + n/a

4D flat toroidal n/a – ±
4D AdS spherical – – n/a

4D AdS toroidal n/a – –

6D AdS ± ± ±

TT3. As before, solutions with both R ∼ x2 and
P ∼ x2 as x → ±∞ are not excluded, but, as follows
from (17) and (20), only with A(x) growing in the
same manner and only under special conditions on
the expansion parameters, leading to R/A = const +
O(x−5) and P/A = const + O(x−5).

TT4. In the case K = L = 0, a “trivial” asymp-
totic behavior where all three functions tend to con-
stant values, is also compatible with the equations.
One or both sizes R and P can certainly be large to
make the corresponding 2-space visible.

The results of this analysis are summarized in the
table which shows rather a narrow choice of opportu-
nities.

3.4. Possible Solutions

We see that in SS geometry the only possible
asymptotic conditions among those we have consid-
ered are those where all dimensions are large.

In ST geometry, in addition to such effectively
6D asymptotics, there is one more opportunity with
asymptotically flat spherically symmetric 4D space-
time and constant extra dimensions. Thus, having a
usual 4D space-time at one end, we can have another
similar asymptotic (though maybe with a drastically
different size of extra dimensions), or arrive at an
effectively 6D space-time with R(x) and P (x) both
growing. In what follows we will give examples illus-
trating both opportunities.

Similar variants exist in TT geometry: 4D space-
time can be asymptotically flat (R → const or slowly
growing, with R ∼ x) with constant extra dimen-
sions, or there can be all six large dimensions. Such
solutions will not be considered here.
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4. EXAMPLES

Of utmost interest for us are space-times with
asymptotically flat spherically symmetric geometry in
one asymptotic region and something different in the
other. As follows from the above-said, there can
be two kinds of such solutions from the ST class:
(i) wormholes with strongly different size of extra
dimensions at the two ends, which exist, in particular,
among well-known solutions for a massless scalar,
V = 0 [20, 21], and (ii) wormholes with infinitely
growing extra dimensions at the other end.

4.1. Example 1: ST Wormholes
with a Massless Scalar

Consider Eqs. (2) for the ST metric (3) (that is,
ε1 = 1, ε2 = 0) and a massless (V = 0) scalar field
φ. Following the well-known method [20–22], we
choose the gauge η = 0 (see (8))3 and solve the equa-
tion Ru

u + R
a
a = 0, which has the form (α − β)uu =

e2α−2β and gives

eβ−α = s(k, u) :=

⎧⎪⎨
⎪⎩

k−1 sinhku, k > 0,
u, k = 0,
k−1 sin ku, k < 0,

(21)

where k is an integration constant, and one more con-
stant has been removed by choosing the zero point of
u. Other Einstein equations lead to γuu = λuu = 0,
and the resulting metric reads

ds2 = e2mudt2 − e−2mu−4nu

s2(k, u)

(
du2

s2(k, u)
+ dΩ2

1

)

− e2nudΩ2
2, (22)

where m,n are integration constants; two more con-
stants are excluded by choosing the time scale and a
length unit equal to the size of the toroidal subspace
M2 at u = 0, which now corresponds to flat spatial
infinity in M0 × M1. Without loss of generality we
take u > 0 for the whole u range of the solution.

Next, the scalar field equation leads to φ = Cu,
C = const, and lastly, there is a relation between the
constants that follows from the constraint equation
Ru

u − 1
2R6 = −T u

u :

k2signk = 2εφC2 + m2 + 3n2 + 2mn. (23)

Of interest for us is the solution with k < 0, which
exists if and only if εφ = −1. In this case the u

3This choice of the u coordinate, the “harmonic” one [1, 22]
(specified by η ≡= −α + γ + 2β + 2λ = 0), is quite different
from the “quasiglobal” one, u = x (specified by α + γ = 0),
used in Eqs. (11)–(14) and further in most of the paper. So,
in this subsection, instead of Eqs. (11)–(14), we directly use
the expressions (4)–(7) with η = 0.

coordinate ranges from 0 to π/|k|, it can be easily
verified that the metric in M0 × M1 is asymptotically
flat as u → π/|k|, and the whole metric is everywhere
regular. It is thus a wormhole geometry, as required.

Let us consider, for simplicity. the case m = 0 (a
“force-free” gravitational field with zero Schwarzs-
child mass since g00 ≡ 1), denote −k = k > 0 and
make the substitution

ku = cot−1(−z/k). (24)

The metric takes the form

ds2 = dt2 − e−4nu
[
dz2 + (z2 + k

2)dΩ2
1

]
− e2nudΩ2

2. (25)

It describes a spherically symmetric, twice asymptot-
ically flat wormhole in the 4D subspace M0 ×M1 with
a toroidal extra space M2 having a unit size, p− at
u = 0 (that is, z = −∞) and the size p+ = enπ/kp− at
the other end, u = π/k, corresponding to z = +∞.4

The wormhole throat is a minimum of r(z) =
eβ(z) = e−2nu(z2 + k

2)1/2, it is located at z = 2n and
has the radius

rmin =
√

k
2 + 4n2 exp

(
2n
k

cot−1 2n
k

)
. (26)

Suppose that the size of extra dimensions p− on
the left end, z = −∞, is small enough to be invisible
by modern instruments, say, p− = 10−17 cm. It is
clear that the size p+ on the other end will be much
larger if we take a large enough value of n/k. For
example, to obtain p+ ∼ 1 m, one should take n/k ≈
14.

On the other hand, the throat radius (26) depends
on the same constants n and k and will not be too
large if they take modest values. Thus, for n/k =
14, Eq. (26) gives rmin ≈ 76kp−. To obtain a large
enough throat for passing of a macroscopic body, say,
rmin = 10 meters, one has to suppose k ∼ 1018.

4.2. Example 2: ST Asymptotically AdS Wormholes

With nonzero potentials V (φ), in most cases so-
lutions can be found only numerically, with one ex-
ception: the case K = 0 in Eq. (17). It then follows
P = cA, c = const, and Eq. (13) takes the form

[A3(R/A)′]′ = 2A. (27)

4In the trivial case n = 0 we obtain the well-known 4D Ellis
wormhole [22, 23] times a toroidal extra space of constant
size.
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Fig. 1. The scalar field φ(x) (a) and the potential V (x) (b) in Example 2.

It is a single equation for two functions A(x) and
R(x). It can be solved by quadratures if one specifies
A(x): indeed, Eq. (27) can be rewritten as(

R

A

)′
=

2
A3

∫
A(x)dx. (28)

We here want to obtain an example with an asymptot-
ically flat 4D space-time on the left end and an AdS
asymptotic on the right, which corresponds to A → 1
as x → −∞ and A ∼ x2 as x → +∞. It is, however,
hard to find A(x) with the above properties that would
lead to good analytic expressions of other quantities.
We therefore consider an example with the following
piecewise smooth function A(x):

A(x) =

{
1, x ≤ 0,
1 + 3x2/a2, x ≥ 0,

(29)

with a = const > 0. Then we must further solve the
equations separately for x < 0 and x > 0 and match
the solutions at x = 0. At x < 0 Eq. (27) leads to
R′′ = 2, hence we can take

R(x) ≡ r2(x) = x2 + b2 (x ≤ 0) (30)

with b = const > 0 (evidently, this means that x = 0
will be a throat of radius b). Further on, from (11) and
(12) we find without loss of generality

V (x) ≡ 0, φ(x) = arctan(x/b) (x ≤ 0). (31)

The same functions at x > 0 are also easily calcu-
lated: from (28) it follows

R(x) =
(

1 +
3x2

a2

)[
b2 +

x2(1 + 2x2/a2)
(1 + 3x2/a2)2

]
, (32)

where the emerging integration constant is chosen to
provide continuity at x = 0. The potential V (x) is
then found from (11) (recall that P (x) = cA(x)):

V (x) = −30
a2

+
12[b2x2 + a2(2b2 + x2)]

9b2x4 + a4(b2 + x2) + 2a2x2(3b2 + x2)
. (33)

At large x (x → ∞), we have

R(x) =
(

2
3

+
3b2

a2

)
x2 + O(1), P (x) =

3cx2

a2
+ c,

V (x) = −30
a2

+
12(a2 + b2)

(2a2 + 9b2)x2
+ o(x−2). (34)

Thus the solution has a 6D AdS asymptotic behavior
(with the curvature radius a/

√
3), corresponding to

a negative constant V which here plays the role of
a cosmological constant. As already mentioned, the
potential V is zero at negative x and has a jump at
x = 0 due to a jump in A′′. The expression for φ(x)
is found from (12) numerically, see the figure; this
function is made continuous at x = 0 by choosing
the integration constants, but the derivative φ′ suffers
a jump (though it is not evident in the plot). The
monotonic nature of φ(x) makes the potential V (φ)
well defined. The jumps in both V (x) and φ′(x) at x =
0 could be easily removed by choosing A(x) smoother
than C1 at x = 0, which is possible by making a
suitable arbitrarily small addition to (29).

5. CONCLUDING REMARKS

The results can be summarized as follows. We
have considered static solutions with the metric (3)
in 6D GR with a minimally coupled scalar field as a
source of gravity and selected the kinds of asymptotic
behavior of the metric functions compatible with the
field equations. It has turned out that the choice
of possible behaviors is rather narrow, and in par-
ticular, Rubin wormholes (as described in the intro-
duction) are impossible in this framework. Instead,
we have found another type of wormhole which lead
from our universe with small extra dimensions to a
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universe with large extra dimensions where space-
time is effectively 6-dimensional and should possess
quite unusual physics. In our explicit examples of
such configurations the extra dimensions have the
geometry of a 2-torus. The first example represents
a special case of a well-known general solution with
a massless scalar field [20, 21], where the extra factor
space has a large constant size at the “far end”; in the
other example, with a nonzero potential V (φ), the “far
end” has a 6D AdS geometry.

The existence of such configurations or their
analogs with a different number of extra dimensions
in our universe cannot be a priori excluded, and
their possible astrophysical consequences could be
a subject of further studies.

It should be noted that the analysis performed in
Section 3 certainly did not cover all opportunities: we
only considered asymptotically flat and AdS behav-
iors of the metric, whereas other, more complicated
cases are also possible. For instance, of particular
interest is a de Sitter asymptotic which will lead to
space-times with horizons and very probably to new
cosmological models of “black universe” type, where
the cosmological expansion starts from a Killing hori-
zon instead of a singularity, see, e.g. [1, 24–26] and
references therein.

One more subject of a future study can be a re-
lationship between the present scalar-vacuum sys-
tem and multidimensional gravity with curvature-
nonlinear actions [1, 5] in different conformal frames
in application to space-times of the type considered
here and in [5].

ACKNOWLEDGMENTS

We thank Sergei Rubin and Sergei Bolokhov for
numerous helpful discussions. The work of KB was
partly performed within the framework of the Center
FRPP supported by MEPhI Academic Excellence
Project (contract No. 02.a03.21.0005, 27.08.2013).
This work was also funded by the Ministry of Ed-
ucation and Science of the Russian Federation on
the program to improve the competitiveness of the
RUDN University among the world leading research
and education centers in 2016–2020 and by RFBR
grant 16-02-00602.

REFERENCES
1. K. A. Bronnikov and S. G. Rubin, Black Holes, Cos-

mology, and Extra Dimensions (World Scientific,
2012).

2. V. N. Melnikov, Grav. Cosmol. 22, 80–96 (2016).

3. V. D. Ivashchuk and V. N. Melnikov, Grav. Cosmol.
22, 166–178 (2016).

4. T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis,
“Modified gravity and cosmology,” Phys. Rep. 513,
1–189 (2012); arXiv: 1106.2476.

5. S. G. Rubin, “Interpenetrating subspaces as a funnel
to extra space,” Phys. Lett. B 759, 622 (2016); arXiv:
1603.03880.

6. M. Visser, Lorentzian Wormholes: from Einstein to
Hawking (AIP, Woodbury, 1995).

7. F. S. N. Lobo, “Exotic solutions in general rela-
tivity:traversable wormholes and warp drive" space-
times,” in Classical and Quantum Gravity Re-
search (Nova Sci. Pub., 2008), p. 1–78; arXiv:
0710.4474.

8. V. Dzhunushaliev, V. Folomeev, and A. Urazalina,
Int. J. Mod. Phys. D 24, 1550097 (2015); arXiv:
1506.03897.

9. K. A. Bronnikov and A. M. Galiakhmetov, Grav. Cos-
mol. 21, 283 (2015); arXiv: 1508.01114.

10. R. Myrzakulov, L. Sebastiani, S. Vagnozzi, and
S. Zerbini, Class. Quantum Grav. 33 (12), 125005
(2016); arXiv: 1510.02284.

11. R. Aurich, S. Lustig, F. Steiner, and H. Then, Class.
Quantum Grav. 21, 4901 (2004); astro-ph/0403597.

12. Frank Steiner, “Do black holes exist in a finite uni-
verse having the topology of a flat 3-torus?,” arXiv:
1608.03133.

13. D. Hochberg and M. Visser, Phys. Rev. D 56, 4745
(1997); gr-qc/9704082.

14. K. A. Bronnikov and A. A. Starobinsky, Pis’ma v
ZhETF 85, 3–8 (2007); JETP Lett. 85 1–5 (2007);
gr-qc/0612032.

15. K. A. Bronnikov, M. V. Skvortsova, and
A. A. Starobinsky, Grav. Cosmol. 16, 216–222
(2010); ArXiv: 1005.3262.

16. K. A. Bronnikov and Sung-Won Kim, Phys. Rev. D
67, 064027 (2003); gr-qc/0212112.

17. G. Dotti, J. Oliva, and R. Troncoso, Phys. Rev. D 76,
064038 (2007); arXiv: 0706.1830.

18. T. Harko, F. S. N. Lobo, M. K. Mak, and
S. V. Sushkov, Phys. Rev. D 87, 067504 (2013); arXiv:
1301.6878.

19. K. A. Bronnikov, J. C. Fabris, and S. V. B. Gonçalves,
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