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Abstract—We study stationary axially symmetric solutions of the Einstein vacuum field equations that
can be used to describe the gravitational field of astrophysical compact objects in the limiting case of
slow rotation and slight deformation. We derive explicitly the exterior Sedrakyan–Chubaryan approximate
solution, and express it in an analytical form, which makes it practical in the context of astrophysical
applications. In the limiting case of vanishing angular momentum, the solution reduces to the well-known
Schwarzschild solution in vacuum. We demonstrate that the new solution is equivalent to the exterior
Hartle–Thorne solution. We establish mathematical equivalence between the Sedrakyan–Chubaryan,
Fock–Abdildin and Hartle–Thorne formalisms.
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1. INTRODUCTION

To study the gravitational field of slowly uniformly
rotating and slightly deformed relativistic objects,
Hartle developed in his original work [1] a method in
the slow rotation approximation, extending the well-
known exterior and interior Schwarzschild solutions.
The method allows one to investigate the physical
properties of rotating stellar objects in hydrostatic
equilibrium. It was first applied to real astrophysical
objects by Hartle and Thorne [2], employing the
Harrison-Wheeler, Tsuruta-Cameron and Harrison-
Wakano-Wheeler equations of state. Soon after,
the method became known as the Hartle–Thorne
approach, and there appeared a new series of research
papers extending, modifying and improving the orig-
inal approach by including higher-order multipole
moments and corrections in the angular momentum,
etc. [5, 6]. Furthermore, the Hartle formalism was
tested, compared and contrasted with numerical
computations in full general relativity [3, 4]. As a
result, it was shown that the Hartle formalism can be
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safely used to study stellar objects with intermediate
rotation periods. Only for higher angular velocities,
close to the mass-shedding limit, it shows noticeable
discrepancies from the full general-relativistic simu-
lations [3–5].

Similar approaches were developed by Bradley
et al. in [7–10], where the slow rotation approxima-
tion is used in order to construct interior and exterior
solution to the Einstein field equations. Unlike
Hartle, Bradley et al. solved the six independent
Einstein equations without involving the integral of
the equation of hydrostatic equilibrium for uniformly
rotating configurations. Moreover, the Darmois-
Israel procedure was applied to match the interior and
exterior solutions. In some particular cases, Bradley
et al. [7–10] included the electric charge by solving
the Einstein-Maxwell equations.

In addition, Konno et al. [11] generalized Hartle’s
approach in the static case to include deformations
of relativistic stars due to the presence of magnetic
fields. Afterwards, Konno and coworkers [12] cal-
culated the ellipticity of deformed stars due to the
presence of both magnetic field and rotation, extend-
ing their previous results. This method has become
popular and found its astrophysical application in the
physics of all types of magnetic stars [13–17].
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On the other hand, independently from Hartle,
Sedrakyan and Chubaryan [18] formulated their own
distinctive approach for calculating the exterior grav-
itational structure of equilibrium rigidly rotating su-
perdense stars in the small angular velocity approx-
imation, though it is not well known in the scien-
tific community. The corresponding interior solution,
together with the matching procedure, was obtained
in their subsequent paper [19]. The manner of solv-
ing the Einstein equations was markedly different
from Hartle’s approach. Further applications of the
Sedrakyan–Chubaryan solution to white dwarfs and
neutron stars were considered in a number of pa-
pers, e.g., [20–22]. Numerical results obtained by
Arutyunyan et al. [21] were in agreement with the
ones computed by Hartle and Thorne [2], implying
that there was no contradiction between these two
solutions.

Besides, the exterior Sedrakyan–Chubaryan so-
lution was written in an analytic form [18–22], and
it required additional integration of one of the metric
functions under a careful consideration of the bound-
ary conditions. Maybe this was one of the main
causes of why the Sedrakyan–Chubaryan solution is
still less known in the scientific community. Indeed,
this fact does not allow one to compare and contrast it
with the exterior Hartle–Thorne solution straightfor-
wardly. The main goal of the present work is to derive
explicitly the exterior Sedrakyan–Chubaryan solu-
tion and to establish its relationship with the Hartle–
Thorne solution. In fact, we will show that they
are related by means of a coordinate transformation
whose non-trivial part includes only the radial coor-
dinate, and a redefinition of the parameters entering
the solution.

This paper is organized as follows. In Sec. 2,
we present the explicit form of the exterior Hartle–
Thorne metric. In Sec. 3, we use a particular line
element to derive explicitly all components of the
stationary Sedrakyan–Chubaryan metric up to the
second order in the angular velocity. In Sec. 4, we find
the transformation that establishes the equivalence
of the two metrics under consideration. Finally, in
Sec. 5, we review our results. We will follow the
notation of [18] and use the geometric units with G =
c = 1 throughout the paper.

2. THE HARTLE–THORNE APPROXIMATE
SOLUTION

The Hartle–Thorne exterior metric describes the
gravitational field of a slowly rotating slightly de-
formed source in vacuum. In geometric units, the
metric is given by [1]

ds2 = −
(

1 − 2M
r

)[
1 + 2k1P2(cos θ)

+ 2
(

1 − 2M
r

)−1 J2

r4
(2 cos2 θ − 1)

]
dt2

+
(

1 − 2M
r

)−1 [
1 − 2k2P2(cos θ)

− 2
(

1 − 2M
r

)−1 J2

r4

]
dr2

+ r2[1 − 2k3P2(cos θ)](dθ2 + sin2 θdφ2)

− 4J
r
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Q1
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,

P2(x) =
1
2
(3x2 − 1),

Q1
2(x) = (x2 − 1)1/2

[
3x
2

ln
x + 1
x − 1

− 3x2 − 2
x2 − 1
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,

Q2
2(x) = (x2 − 1)

[
3
2

ln
x + 1
x − 1

− 3x3 − 5x
(x2 − 1)2

]
. (2)

Here P2(x) is Legendre polynomials of the first kind,
Qm

l are the associated Legendre polynomials of the
second kind, and the constants M , J , and Q are
the total mass, angular momentum and quadrupole
moment of the rotating source, respectively.

Unlike other solutions of the Einstein equations,
the Hartle–Thorne solution has an internal coun-
terpart, which makes it more practical with respect
to the exact solutions. All internal functions are
interrelated with the external ones. Thus, the total
mass, angular momentum and quadrupole moment of
a rotating star are determined through the constants
obtained by numerical integration of both interior and
exterior solutions, by applying the matching condi-
tions on the surface of the star.

3. THE SEDRAKYAN–CHUBARYAN
SOLUTION

In this section, we derive the Sedrakyan–Chu-
baryan approximate solution [18] in detail. We will
restrict ourselves to the exterior solution for which we
derive all the metric functions.
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Following the procedure presented in [18], we con-
sider the line element for axially symmetric rotating
stars in the form

ds2 = (ω2eμ sin2 θ − eν)dt2 + eλdr2

+ eμ
(
dθ2 + sin2 θdφ2

)
+ 2ωeμ sin2 θ dφdt, (3)

where λ = λ(r, θ), μ = μ(r, θ), ω = ω(r, θ) and ν =
ν(r, θ) are functions of the radial r and angular θ
coordinates. Note that ω is proportional to odd pow-
ers of the angular velocity Ω, whereas the remaining
functions are proportional to even powers of Ω. We
will consider here an approximation up to the second
order in Ω. We now demand that the above metric
satisfy Einstein’s vacuum equations in the form

Gα
β = Rα

β − 1
2
Rδα

β = 0 . (4)

In the limiting case of a static star, the angular
velocity Ω = 0 and the function ω = 0; then, λ, ν and
μ are functions of the radial coordinate r only. Ob-
viously, for this special case we automatically obtain
the exterior Schwarzschild solution,

eν = eν0 =
(

1 − 2m
r

)
, (5)

eλ = eλ0 =
(

1 − 2m
r

)−1

, (6)

eμ = eμ0 = r2, (7)

where m is the static mass.
We now consider the line element (3) for a slowly

rotating relativistic star. In this case, we can ex-
pand the functions λ, μ, ν, and ω in powers of the
angular velocity of the star Ω, assuming that Ω is
small. As a parameter for Taylor expanding the metric
tensor components, it is convenient to introduce the
dimensionless quantity β = Ω2/(8πρc), where ρc is
the central density of the configuration. Thus, we
define the metric functions as

eν(r,θ) = eν0 [1 + βΦ(r, θ)], (8)

eλ(r,θ) = eλ0 [1 − βf(r, θ)], (9)

eμ(r,θ) = eμ0 [1 + βU(r, θ)], (10)

ω(r, θ) =
√

βq(r), (11)

where the functions μ0, ν0, and λ0 represent the
Schwarzschild solution, and U , Φ, and f are un-
known functions. To find the independent differential
equations from the Einstein field equations, we make
use of the following combinations

G1
1 − G0

0 = 0, G2
2 + G3

3 = 0,

G1
2 = 0, G3

0 = 0. (12)

To solve each component of Eqs. (12), all met-
ric functions are expanded in spherical harmonics.
In turn, this procedure allows one to separate vari-
ables. Retaining only the terms responsible for the
quadrupolar deformation, we have

Φ(r, θ) =
∞∑
l=0

Φl(r)Pl(cos θ)

≈ Φ0(r)P0(cos θ) + Φ2(r)P2(cos θ), (13)

f(r, θ) =
∞∑
l=0

fl(r)Pl(cos θ)

≈ f0(r)P0(cos θ) + f2(r)P2(cos θ), (14)

U(r, θ) =
∞∑
l=0

Ul(r)Pl(cos θ)

≈ U0(r)P0(cos θ) + U2(r)P2, (cos θ), (15)

where P0(cos θ) and P2(cos θ) are the Legendre poly-
nomials of the first kind,

P0(cos θ) = 1,

P2(cos θ) = −1
2
(1 − 3 cos2 θ). (16)

Note that because the axis of symmetry is oriented
along the rotation axis, the expansion in spherical
harmonics contains only even values of l. Moreover,
in the slow rotation approximation l takes only two
values: l = 0 and l = 2.

The components of the Einstein tensor G0
3 or G3

0
yield a differential equation which is proportional to Ω,

q,rr +
4 q,r

r
= 0, (17)

where q,r = ∂q/∂r, etc. The solution to the last
equation is

q(r) =
Cq

r3
, (18)

where Cq is a constant to be determined from match-
ing between the interior and exterior solutions.

Now we can substitute Eqs. (13), (14), and (15)
to Eq. (12). The resulting equation can then be ex-
panded up to the first order in β for different values of l.
In the case l = 0, we obtain the following differential
equations:

U0,rr +
1
r

[
2U0,r + f0,r − Φ0,r

]
= 0, (19)

Φ0,rr + U0,rr +
1

r(r − 2m)

[
(m + r)Φ0,r

+ (r − m)(f0,r + 2U0,r) −
6
r4

C2
q

]
= 0. (20)

GRAVITATION AND COSMOLOGY Vol. 22 No. 4 2016



308 BOSHKAYEV et al.

In general, it is not possible to solve the above set
of equations because the number of unknown func-
tions is greater than the number of differential equa-
tions. It is therefore necessary to impose an additional
equation that closes this set of equations. Several
possibilities are available. An analysis of the line
element (3) shows that in the lowest approximation
of a spherically symmetric field, the metric compo-
nents gtt and grr satisfy the relationship grr = −1/gtt.
Consequently, we can assume the following condition
f0(r) = Φ0(r) which allows one to easily solve the
equations [18]. In addition, if at large distances we
impose the conditions U0(r → ∞) = 0, then Φ0(r →
∞) = 0 and f0(r → ∞) = 0, we find

U0(r) =
CU0

r
, (21)

Φ0(r) = f0(r) =
C2

q + 2CU0mr2 − 2Cf0r
3

2 r3(r − 2m)
, (22)

where CU0 and Cf0 are the integration constants of
the corresponding functions.

From Eqs. (12) we can reduce the field equations
with l = 2 terms to

U2,rr +
1
r

[
2U2,r + f2,r − Φ2,r

+
3

r − 2m
(Φ2 + f2)

]
= 0, (23)

Φ2,rr + U2,rr +
r − m

r(r − 2m)

[
2U2,r

+ f2,r +
1

r − m

(
(r + m)Φ2,r

+ 3(f2 − Φ2) +
6C2

q

r4

)]
= 0, (24)

Φ2,r + U2,r −
1

r (r − 2m)[
(r − 3m)Φ2 − (r − m)f2

]
= 0. (25)

To solve these equations, we isolate U2,r from
Eq. (25), then we calculate U2,rr and substitute the
resulting expressions in Eq. (24). This gives the
relationship

f2(r) = Φ2(r) −
3 C2

q

r4
. (26)

Hence the solutions of Eqs. (23), (24), and (25) can
be expressed as

Φ2(r) =
C2

q

2

(
1

mr3
+

1
r4

)

− 3CΦ2

4

(
1 − 2m

r

)
r2 ln

(
1 − 2m

r

)

−
(
3r2 − 6mr − 2m2

)
(r − m)mCΦ2

2r (r − 2m)
, (27)

f2(r) =
C2

q

2

(
1

mr3
− 5

r4

)

− 3CΦ2

4

(
1 − 2m

r

)
r2 ln

(
1 − 2m

r

)

−
(
3r2 − 6mr − 2m2

)
(r − m)mCΦ2

2r (r − 2m)
, (28)

U2(r) = −
C2

q

2

(
1

mr3
+

2
r4

)

+
3CΦ2

4

(
1 − 2m2

r2

)
r2 ln

(
1 − 2m

r

)

+

(
3r2 + 3mr − 2m2

)
mCΦ2

2r
. (29)

Note that due to the asymptotic flatness condition
U2(r → ∞) → 0, the integration constant of (29) is
related to CΦ2 as

CΦ2 = −CU2

3m2
. (30)

Finally, we can rewrite the metric tensor components
of the line element (3) as

g00 = ω2eμ sin2 θ − eν ≈ β

(
Cq

r3

)2

r2 sin2 θ

−
(

1 − 2m
r

)
[1 + β〈Φ0(r) + Φ2(r)P2(cos θ)〉]

=
(

1 − 2m
r

){
1 + β

〈
C2

q + 2CU0 mr2 − 2Cf0r
3

2 r3 (r − 2m)

+
[
C2

q

2

(
1

mr3
+

1
r4

)
− 3CΦ2

4

(
1 − 2m

r

)
r2

× ln
(

1 − 2m
r

)

−
(
3r2 − 6mr − 2m2

)
(r − m)mCΦ2

2r(r − 2m)

]

× P2(cos θ) −
(

1 − 2m
r

)−1 C2
q

r4
sin2 θ

〉}
, (31)

g11 = eλ ≈
(

1 − 2m
r

)−1

[1 − β〈f0(r)

+ f2(r)P2(cos θ)〉] =
(

1 − 2m
r

)−1

×
{

1 − β

〈
C2

q + 2CU0 mr2 − 2Cf0r
3

2 r3 (r − 2m)

−
[
C2

q

2

(
1

mr3
− 5

r4

)
− 3CΦ2

4

(
1 − 2m

r

)
r2
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× ln
(

1 − 2m
r

)

−
(
3r2 − 6mr − 2m2

)
(r − m)mCΦ2

2r(r − 2m)

]

× P2(cos θ)
〉}

, (32)

g22 = eμ ≈ r2 [1 + β〈U0(r) + U2(r)P2(cos θ)〉]

= r2

{
1 + β

〈
CU0

r
+

[
−

C2
q

2

(
1

mr3
+

2
r4

)

+
3CΦ2

4

(
1 − 2m2

r2

)
r2 ln

(
1 − 2m

r

)

+
(3r2 + 3mr − 2m2)mCΦ2

2r

]
P2(cos θ)

〉}
, (33)

g33 = g22 sin2 θ, (34)

g30 = g03 = ωeμ sin2 θ ≈ Cq
√

β

r
sin2 θ. (35)

All the constants are to be determined by matching
the corresponding interior solution on the surface of
the star.

4. RELATION
BETWEEN THE HARTLE–THORNE

AND SEDRAKYAN–CHUBARYAN METRICS

In general, to establish the equivalence between
two spacetimes in an invariant way it is necessary
to perform a detailed analysis of the corresponding
curvature tensors and their covariant derivatives [23].
The problem can be significantly simplified if it is
possible to find an explicit diffeomorphism that relates
the two spacetimes. In the case where the spacetimes
are approximate solutions of the field equations, the
problem simplifies even further because the coordi-
nate transformation must be valid only approximately.
This is the case we are analyzing in the present work.

To compare the Sedrakyan–Chubaryan solution
with the Hartle–Thorne solution, we will find a co-
ordinate transformation, so that both solutions are
written in the same coordinates. A close examination
of the Sedrakyan–Chubaryan solution shows that it
is indeed possible if one chooses the radial coordinate
transformation of the type

r → r

(
1 − β

2
U0(r)

)
, (36)

and keeps the remaining coordinates unchanged.
Notice that the practical effect of this transformation
is to absorb the function U0(r). This means that,
without loss of generality, we can set U0(r) = 0 (or,
equivalently, CU0 = 0) in the Sedrakyan–Chubaryan
solution, and thus it becomes equivalent to the

Hartle–Thorne solution up to a redefinition of the
constants entering the metric. Indeed, we now have
only three integration constants, namely, Cf0 , Cq and
CΦ2 , which are directly related to the total mass,
angular momentum and quadrupole moment of the
Hartle–Thorne solution. In fact, by comparing the gtt

and gtφ components of the metric tensor, we obtain

M = m +
β

2
Cf0 , (37)

J = −
√

β

2
Cq, (38)

Q =
β

2

(
C2

q

2m
− 4m5CΦ2

5

)
. (39)

Notice that M in the Hartle–Thorne solution is ac-
tually composed of two terms, M = m + δm, where
m is the “static mass” and δm is the contribution due
to the rotation of the source. This means that in fact
the last equations relate four constants of the Hartle–
Thorne solution to four constants of the Sedrakyan–
Chubaryan solution, implying that the inverse trans-
formation is well defined. This proves the mathemat-
ical and physical equivalence of the two space-times
up to the first order in the quadrupole moment Q and
the second order in the angular momentum J .

There is an additional way to prove the equivalence
of two space-times, namely, in terms of their multi-
pole moments. In fact, it has been proved that two
space-times with the same set of multipole moments
are isomorphic to each other (see, for instance, [25]
for a review on this issue). In the case of approximate
solutions, one can assure that two space-times are
isomorphic if they have the same set of multipole
moments up to the validity order of the approximation.
For the approximate space-times under consideration
in this work, this means that the Hartle–Thorne so-
lution and the Sedrakyan–Chubaryan are equivalent
if their mass, angular momentum and quadrupole
moment are the same. In [26] and [27] it has been
shown that in the approximate case, the moments can
be derived from the explicit expression of the gtt metric
component. For the Hartle–Thorne metric we obtain

gHT
tt = −1 +

2M
R

+
2
3

J2

R4
+

[
2(Q − 2J2/M)

R3

+
2(QM − 4J2/3)

R4

]
P2(cos θ), (40)

whereas the corresponding expression for the Sedra-
kyan–Chubaryan metric reduces to

gSC
tt = −1 +

2m + βCf0

R
− βmCU0

R2
+

1
6

βC2
q

R4

− β

(
1
2C2

q /m + 4
5m5CΦ2

R3
+

1
6C2

q + 4
5m6CΦ2

R4

)
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× P2(cos θ). (41)

A comparison of Eqs. (40) and (41) shows that if we
define the constants as

M = m +
β

2
Cf0 , (42)

CU0 = 0, (43)

J = −
√

β

2
Cq, (44)

Q =
β

2

(
C2

q

2m
− 4m5CΦ2

5

)
, (45)

then the moments are exactly the same. This proves
the equivalence of the two metrics up to the fourth
order in 1/R.

5. CONCLUSIONS

In this paper, we have reviewed the original papers
by Hartle (1967) and Hartle and Thorne (1968) and
discussed their main properties, extensions and mod-
ifications. We revisited the results of Sedrakyan and
Chubaryan (1968) for the metric that describes the
exterior field of an axially symmetric mass distribu-
tion. Using a perturbation procedure, we have derived
the Sedrakyan–Chubaryan solution explicitly, which
includes several integration constants. Instead of
using the interior Sedrakyan–Chubaryan solution in
order to find the integration constants, we compare
the exterior metric with the exterior Hartle–Thorne
space-time solution in the same coordinates. As a
result, we obtain a set of simple algebraic expres-
sions relating the main parameters of the Hartle–
Thorne metric with the integration constants of the
Sedrakyan–Chubaryan solution. Alternatively, we
calculated the relevant multipole moments of both
solutions and showed that they are the same. In
this way, we have also proved the mathematical and
physical equivalence of the two space-times.

We conclude that the Sedrakyan–Chubaryan so-
lution can be considered as an alternative approach
to describing the gravitational field of a slightly de-
formed stationary axially symmetric mass distribu-
tion in the slow rotation approximation. Moreover,
the Sedrakyan–Chubaryan solution with its internal
counterpart can be applied to various astrophysical
problems together with the Hartle–Thorne solution
on equal rights.

On the other hand, in a previous work [24] it was
shown that the Hartle–Thorne formalism for the ap-
proximate description of rotating mass distributions
is equivalent to the Fock-Abdildin approach. The
latter, however, allows us to interpret the parameters
of the interior solution in terms of physical quanti-
ties like the rotational kinetic energy or the mutual

gravitational attraction between the particles of the
source. Therefore, the results obtained in this work
imply that it should be possible to find a direct rela-
tionship between the interior Sedrakyan–Chubaryan
solution and the corresponding counterpart in the
Fock-Abdildin approach.

It is interesting that different approaches that were
developed independently in different places and under
diverse circumstances turn out to be equivalent from
a mathematical point of view. It would be interesting
to perform a more detailed analysis of all physical
characteristics of each approach in order to propose a
unique formalism that would incorporate the advan-
tages of all known approaches.

All analytical computations in this work have been
performed with the help of the computer Mathemati-
cal Package Maple 18.
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