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Abstract—We study the properties of an effective potential for the scale factor of extra dimensions in a
Kaluza-Klein-type model with a spherical extra factor space, including a function of the scalar curvature
and other quadratic curvature invariants, taking into account the Casimir energy of massless scalar fields.
We demonstrate the existence of a minimum of the potential, able to induce a physically reasonable value of
the effective cosmological constant in our space-time. Under the adopted assumptions, it is shown that the
huge Casimir energy density can be compensated by the fine-tuned contribution of the curvature-nonlinear
terms in the original action.
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1. INTRODUCTION

The idea of extra dimensions is firmly established
in modern theoretical physics in many contexts, such
as Kaluza–Klein theories [1, 2], supergravity, strings
and M-theory [3, 4], brane-world theories [5–7], etc.
This idea provides a powerful methodological frame-
work for many crucial problems: geometric unifica-
tion of physical interactions [2, 8, 9], the hierarchy
problem [5, 7], possible variations of fundamental
constants [10, 11] as well as searches for realistic
cosmological scenarios including inflationary, string
or brane backgrounds.

Extra dimensions present an elegant theoretical
concept (as repeatedly emphasized since Kaluza’s
pioneer work [1]) but have a number of issues of their
own to be clarified in any realistic higher-dimensional
theory. One of them is the unobservable nature of
extra dimensions at the accessible spatial or energy
scales. A common explanation is that an extra space
is compact and sufficiently small. (Another possibility
which we do not consider here is considered in the-
ories with large extra dimensions involving mecha-
nisms of matter localization on a brane.) Realistic
models of this type require a physically appropri-
ate description of the compact extra dimensions and
their stability (more precisely, the stability of ground
state manifolds like M

4 ×V
d, where M

4 is Minkowski
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space-time and V
d is a compact “internal” space).

This problem for theories governed by a multidimen-
sional action of the Einstein-Hilbert type was studied
in detail in the 80s [12, 13]. One of the simple
approaches to stabilize the extra dimensions is to
consider effective scalar fields with suitable potentials,
obtained from the extra-dimensional metric tensor
components. A more accurate analysis takes into ac-
count that, beyond a classical level, there exist quan-
tum vacuum corrections to the effective potential due
to the compact topology of extra dimensions which
create a nontrivial contribution to the energy density.
Such a contribution is known as the cosmological
Casimir effect [13–15].

The geometric scalar fields are in general coupled
to gauge fields (as excitations over the ground state
according to the Kaluza–Klein standard recipe). This
also leads to possible space-time variations of the
effective gravitational and gauge coupling constants
(e.g., the fine-structure constant in the electromag-
netic case) [16].

On the other hand, various inflationary scenarios
and low-energy limits of superstring models applied
to cosmology lead to gravitational models including
nonlinear functions of the Ricci scalar (F (R) theo-
ries) and high-order curvature invariants (such as the
Einstein-Gauss-Bonnet gravity, see, e.g., [17]). The
stability conditions for a specific class of such theories
at a classical level were studied in [19], see also [20].
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In this paper, we study the properties of an effective
potential of a scalar field in the framework of a Kaluza-
Klein-type model including both F (R) and quadratic
curvature invariants. We also take into account the
Casimir energy of massless fields. For simplicity we
restrict ourselves to ground states of the model in
the geometry M

4 × S
n, where S

n is an n-dimensional
sphere of sufficiently small radius while M

4 is any
4D pseudo-Riemannian geometry whose curvature
is extremely small as compared to that of S

n. After
dimensional reduction and a transition to the Einstein
conformal frame, we demonstrate the existence of a
set of parameters which provide a minimum of the
effective potential at a physically reasonable length
scale. However, this kind of models does not make
easier the well-known Cosmological Constant Prob-
lem since, as in many other models, fine tuning of the
initial parameters is necessary to achieve a realistic
value of the effective cosmological constant (Λeff).

Since we are dealing with stationary states of the
extra dimensions, all fundamental physical constants
remain true constants in these models, unlike models
with evolving extra dimensions many of which have
been considered previously [11, 17, 18].

2. BASIC EQUATIONS.
THE EFFECTIVE POTENTIAL

We consider a (D = 4 + n)-dimensional manifold
with the metric

ds2 = gμνdxμdxν − e2β(xμ)dΩ2
n (1)

where xμ are the observable four space-time coordi-
nates, and dΩ2

n is the metric on a sphere S
n of fixed

radius. In this space-time, we consider a curvature-
nonlinear theory of gravity with the action

S =
1
2
mD−2

D

∫ √
gD dDx (Lg + Lm),

Lg = F (R) + c1R
ABRAB + c2R

ABCDRABCD, (2)

where capital Latin indices cover all D coordinates,
gD = |det(gMN )|, F (R) is a certain smooth function
of the D-dimensional scalar curvature R, c1 and c2
are constants, Lm is a matter Lagrangian, and mD =
1/r0 is the D-dimensional Planck mass, which is, in
general, different from the 4D Planck mass m4.

We use the system of units with the speed of light c
and the Planck constant � equal to unity. As Lm, we
will consider the Casimir energy density correspond-
ing to the geometry (1). The constant r0 = 1/mD

is the D-dimensional Planck length, actually playing
the role of a fundamental length in the present theory.
Our goal is to find stable stationary states of the extra
dimensions, that is, possible solutions to the field
equations with r(xμ) ≡ r0eβ = const corresponding

to a minimum of a certain effective potential. To
this end, following the methodology of [20, 21], we
simplify the problem as follows:

(a) Integrate over the sphere S
n thus reducing

all quantities to 4D variables and β(xμ); we have, in
particular,

R = R4 + φ + f1,

f1 = 2n�β + n(n + 1)(∂β)2, (3)

where R4 is the 4D scalar curvature corresponding
to gμν , � = ∇μ∇μ is the 4D d’Alembert operator,
(∂β)2 = gμν∂μβ∂νβ, and we have introduced the ef-
fective scalar field equal to the Ricci scalar of Sn,

φ(xμ) = m2
D n(n − 1) e−2β(xμ). (4)

(b) Suppose that all quantities are slowly varying
as compared with the D-dimensional Planck scale,
i.e., consider each derivative ∂μ as an expression
with a small parameter ε and neglect all quantities
of orders higher than O(ε2) (see [20, 21]). This
approximation is well justified in almost all thinkable
situations.

(c) The 4D formulation of the theory has the form
of a scalar-tensor theory in a Jordan conformal frame.
We perform a transition to the Einstein frame, more
suitable for studying the dynamics of the scalar field
φ since in this frame it is minimally coupled to the 4D
curvature.

In the expression (3), only φ has the order O(1)
whereas both terms f1 and R4 are O(ε2). It is natural
to use a Taylor decomposition of the function F (R) =
F (φ + R4 + f1):

F (R) = F (φ + R4 + f1)

� F (φ) + F ′(φ) · (R4 + f1) + ..., (5)

where the prime denotes d/dφ. Thus the 4D (Jordan-
frame) action obtained from (2) takes the form

S =
1
2
Vm2

D

∫ √
g4d

4x
[

enβF ′(φ)R4

+ [Kin]J − 2(VJ + VCas)
]
, (6)

where F ′(φ) ≡ dF/dφ, V = 2π(n+1)/2
/
Γ(1

2(n + 1))
is the volume of a unit sphere S

n, and

[Kin]J = (∂β)2enβ
[
n(n−1)(4φF ′′ − F ′)

+ 4(c1 + c2)φ
]
,

VJ(φ) = −1
2

enβ[F (φ) + cJe−4β],

VCas = Cnr−2
0 F ′e(n−4)β . (7)
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The dimensionless constants Cn are factors char-
acterizing the Casimir energy density [12],1 and the
constant cJ is defined as

cJ = n(n − 1)r−4
0 [(n − 1)c1 + 2c2] (8)

(recall that c1,2 are the coefficients in the original
action (2)). The expression for VCas is written in
such a way that the corresponding energy density
contributes to the T 0

0 component of the total stress-
energy tensor of matter in the theory with the ac-
tion (6).

A transition to the Einstein frame is carried out
using the conformal mapping

gμν �→ g̃μν = |f(φ)|gμν , f(φ) = enβF ′(φ). (9)

In what follows we suppose F ′(φ) > 0. The resulting
action in the Einstein frame has the form [11, 20]

S =
1
2
V[n]m2

D

×
∫ √

g̃
[
R̃4 + [Kin]E − 2VE(tot)(φ)

]
, (10)

[Kin]E = KE(∂β)2 = (∂β)2
[
6φ2

(F ′′

F ′

)2
− 2nφ

F ′′

F ′

+
1
2
n(n+2) +

4(c1 + c2)φ
F ′

]
, (11)

VE(tot)(φ) =
e−nβ

2F ′2

[
− F (φ) − cJe−4β

+ Cnr−2
0 V−1e−(n+4)β

]
, (12)

where the tilde marks quantities obtained from or
with g̃μν ; the indices are raised and lowered with
g̃μν ; everywhere F = F (φ) and F ′ = dF/dφ, etc.; the
quantities eβ and φ are related by (4).

The expression (12) is the total effective scalar field
potential, including the Casimir contribution, and its
minimum, if any, corresponds to a stable equilibrium
equilibrium of the extra dimensions even if the metric
gμν and matter in our 4D space-time are changing
with time.2

Let us enumerate the properties of such a min-
imum required if we wish it to be consistent with
observations in the present-day Universe.

1This expression for the Casimir energy density is only valid
for odd n, while for even n the results are not so confident
because of an additional logarithmic divergence [14]. We
therefore consider only odd n.

2One more necessary condition for a stable equilibrium at
a minimum of the potential is that the scalar field φ, or
equivalently β, is of canonical, non-phantom nature. It is
the case if and only if KE > 0 in the expression (11). If, on
the contrary, KE < 0, then a stable equilibrium corresponds
to a maximum of the potential.

1. We describe our space-time classically, there-
fore the size r = r0eβ of the extra dimensions should
exceed the fundamental length scale r0 = 1/mD, i.e.,
eβ � 1.

2. The extra dimensions should not be directly
observable, which means that r = r0eβ � 10−17 cm,
associated with the TeV energy scale.

3. The effective cosmological constant Λeff, corre-
sponding to the value of VE(tot) at its minimum, should
conform to observations, which means that

Λeff > 0 but Λeff/m
2
4 ∼ 10−120, (13)

where m4 ∼ 10−5 g is the familiar 4D Planck mass.
The third requirement actually comprises the well-

known Cosmological Constant Problem, and one of
the questions to be answered in multidimensional
models is whether or not it can be solved or at least
partly reduced.

3. A POSSIBLE STATIONARY STATE

Let us specify the function F (R) in the general
quadratic form

F (R) = −2ΛD + F1R + F2R
2,

ΛD, F1, F2 = const. (14)

Denoting x = e−β , we can rewrite the potential (12)
as

VE(tot)(φ) ≡ W (x)
r2
0

=
1

r2
0[F1 + 2n(n−1)r−2

0 F2]2

×
[
λxn − k1x

n+2 − k2x
n+4 + k2x

2n+4
]
, (15)

where W (x) is dimensionless as well as the constants

λ = r2
0ΛD, 2k1 = n(n−1),

2k2 = n2(n−1)2r−2
0 F2 + r2

0cJ ,

k3 = Cn/V. (16)

For specific calculations let us put F1 = 1 (so that
at small R the theory looks as D-dimensional general
relativity) and n = 3, so that

W (x) =
λx3 − 3x5 − k2x

7 + k3x
10

(1 + 12r−2
0 F2x2)2

. (17)

Moreover, since k2 includes a contribution from c1
and c2, we can further simplify W (x) by putting F2 =
0 (so that f(R) is linear, and nonlinearity of the theory
in the curvature components only owes to the Ricci
and Riemann tensors squared in (2)), still leaving k2

arbitrary.
The evident minimum of W (x) at x = 0 (provided

λ > 0) does not correspond to a stationary state: near
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Fig. 1. (a) Plots of W (x) for n = 3, F2 = 0, k2 = −200, k3 = 10−4, and λ = 0.01105, 0.01125, 0.0115 (bottom-up); (b) Plot
of W (xmin) as a function of λ for the same values of n, F2, k2, k3.

it, the size r ∼ x−1 → ∞, but the particular param-
eters of the model may be chosen so that it grows
very slowly and is still small enough at present; such
cosmological models have been considered in [11, 18]
and turned out to be quite viable. Now we are trying to
find other viable minima corresponding to r = const,
at which we could expect an influence of the Casimir
energy.

The above “classicality” requirement 1 means that
such a minimum should occur at x = xmin � 1, for
instance, xmin ≈ 0.1. From the third requirement it
follows that W (xmin) should be very close to zero; we
postpone more precise estimates till the next section.

It turns out that such sets of parameters do exist.
Let us first estimate k3. According to [14], C3 =
7.5687046 × 10−5 for the vacuum density of a single
massless scalar field. Furthermore, V(3) = 2π2, and
one should take into account that there is a cer-
tain number of degrees of freedom in 7D space-time,
which may increase the Casimir energy density by a
factor of �100. Therefore it seems reasonable to take
k3 = 10−4 for our qualitative estimates. Recalling
that the expected values of xmin are about 0.1 or
smaller, we can conclude that the Casimir term with
k3 in (17) very weakly affects our search for a mini-
mum. Next, neglecting this term, it is easily shown
that there can be only a maximum of W (x) at x > 0
if k2 > 0, hence we take k2 < 0 in our search. Exam-
ples of such minima for k2 = −200 are shown in the
figure, where the right panel shows the dependence
of W (xmin) on the parameter λ. One can also verify
that the necessary condition of a stable equilibrium,
that KE > 0 in the expression (11), holds for F2 = 0,
k2 = −200 and x � 0.1. It is clear that one can easily
obtain an arbitrarily small positive value of W (xmin)
by properly choosing the value of λ.

4. SOME ESTIMATES

To obtain estimates characterizing the possible
relevance of our models, it is necessary to decide
which conformal frame corresponds to observations,
and this in turn depends on how fermions should be
described in a (so far unknown) fundamental unifi-
cation theory of all interactions. We therefore con-
sider two opportunities, the Jordan frame with the
action (6), directly obtained from the D-dimensional
theory, and the Einstein frame with the action (10).

4.1. The Einstein Frame

According to (10), the 4D Planck mass is m4 =√
V(n)mD, and r0 =

√
V(n)/m4. Therefore, since√

V(n) is only slightly larger than unity, the size of
extra dimensions r(xmin) = r0/xmin for xmin ∼ 0.1 is
of the order 10−31 cm, only an order of magnitude
larger than the Planck length 1/mD ≈ 8 × 10−33 cm.

The effective cosmological constant is

Λeff = W (xmin)/r2
0 = W (xmin)m2

4/V(n), (18)

therefore, to satisfy the requirement (13), the di-
mensionless quantity W (xmin) may exceed the tiny
number 10−120 only by about an order: for example,
V(3) = 2π2 ≈ 20. This goal is achieved by a fine
tuning of the parameters, for example, at λ ≈ 0.01125
in the figure above.

The Casimir contribution to W (x) is certainly in
general very large as compared to 10−120: for exam-
ple, at the parameter values used in the figure, this
contribution is k3x

10
min ≈ 1.4 × 10−15. This compara-

tively large value is compensated by fine-tuned values
of other parameters of the theory.
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4.2. The Jordan Frame

Now the 4D Planck mass is related to m4 by

m2
D = 1/r2

0 = m2
4[F

′V(n)]−1xn, x = xmin. (19)

Since x � 1 and we may suppose F ′ ∼ 1, r0 is in
general a few orders of magnitude larger than the
Planck length, which at large enough n may be in
tension with the invisibility of extra dimensions.

The effective cosmological constant in the Jordan
frame is obtained if we present the integrand in (6) as

√
g4d

4xenβF ′(φ)[R4 − 2Λeff + kinetic term],

which leads to

Λeff = F ′x−nW (x)/r2
0 . (20)

However, expressing r0 in terms of m4 using Eq. (19),
we arrive again at the second expression for Λeff
in (18), Λeff = W (xmin)m2

4/V(n). Thus we need the
same fine tuning of the model parameters as in the
Einstein frame and have the same estimate of the
Casimir contribution to W (x), despite another value
of the fundamental length 1/mD.

5. CONCLUDING REMARKS

In the framework of curvature-nonlinear multidi-
mensional gravity with spherical extra dimensions,
we have proved the existence of viable minima of the
effective potential, corresponding to a stable station-
ary size of the extra dimensions and able to induce
small positive values of the effective cosmological
constant in our 4D space-time. The existence of
these minima is provided by a Casimir contribution
to the potential combined with terms quadratic in the
components of the curvature tensor; such states are
absent in pure multidimensional general relativity.

Our estimates show that in these models the
Casimir energy density is much larger than a realistic
cosmological energy density, and viable models can
only be obtained due to fine-tuned compensation of
the Casimir energy by nonlinear curvature terms.
It should be mentioned that the expression for the
Casimir effect that we used have been obtained for a
massless nongravitational field. One might use more
precise expressions for the graviton contribution tak-
ing into account the specific gravitational model [13]
as well as massive fields, but very probably this will
not strongly change the magnitude of the effect.

Among possible interesting extensions of this
study one can consider small perturbations of the
stationary states considered here, which can lead to
variations of fundamental constants depending on the
size of extra dimensions, such as the gravitational
constant G and the electromagnetic coupling con-
stant α. The electromagnetic field in this case can

be introduced in the Kaluza manner as a gauge field
corresponding to the U(1) subgroup of the group of
isometries of the extra space.

Our estimates concerned the modern epoch with
the corresponding value of Λeff; however, it could be
of interest to consider a possible application of such
models to the inflationary epoch in the early Universe
with maybe quantum tunneling between a minimum
of the potential at φ > 0 with finite r and its closely
located minimum at φ = 0 corresponding to infinitely
growing r [22]. And, last but not least, it is highly
desirable to consider other geometries of the extra
dimensions, e.g., in the form of products of spherical,
toroidal and/or hyperbolic factor spaces.
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