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Abstract—We examine an inflationary scenario in Bianchi Type V space-time for a barotropic fluid
distribution with variable bulk viscosity and decaying vacuum energy density. We observe that the
matter density ρ, the coefficient of bulk viscosity ζ and the expansion θ all diverge at τ = 0. The spatial
volume increases with time, representing an inflationary scenario. The deceleration parameter q < 0 for
barotropic, dust and radiation dominated models representing an accelerated universe, while for a stiff fluid
distribution q > 0 corresponding to a decelerated universe. The vacuum energy density Λ decreases with
time. The entropy per unit volume is proportional to the absolute temperature. The energy conditions
(weak, dominant and strong) are discussed for the model. The reality condition ρ + p ≥ 0 is violated for
the inflationary model due to the presence of a scalar field (φ). We also discuss the importance of Bianchi
Type V model where the anisotropy dies away during the inflationary era. We also calculate the inflationary
parameters and compare the results with the Planck data and discuss their compatibility with anisotropy
and BAO estimates. The cosmological constant Λ is a function of time without break general covariance.
We also discuss the bounds of the model, how the model isotropizes, where the fluid goes after inflation and
how viscosity may realize a graceful exit from inflation to a radiation dominated era.
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1. INTRODUCTION

Spatially homogeneous anisotropic cosmological
models (Bianchi I-IX) play a significant role in the
description of the universe at its early stage of evo-
lution. The process of isotropization is also stud-
ied. The existence of an anisotropic universe that
approaches an isotropic phase was investigated by
Land and Magueijo [1]. Bianchi type V models are
interesting in this study because these models are an
anisotropic generalization of open FRW (Friedmann-
Robertson-Walker) models and allow for arbitrarily
small anisotropy levels at any instant of cosmic time.
As inflation helps in isotropization of the universe,
Bianchi Type V models are the most suitable for in-
flation. Bianchi type V models are studied in detail by
a number of authors [2–9] in different contexts.

In modern cosmology, inflation is an essential in-
gredient. During the inflationary epoch, the scale
factor of the universe grows exponentially allowing a
small casually coherent region to become big enough
to be identified with the present observable universe.
Therefore, the inflationary scenario is a satisfactory
solution to some of the conceptional issues in cos-
mology, but it is not understood in the standard Big
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Bang theory. The inflationary scenario explains sev-
eral mysteries of modern cosmology like homogene-
ity, isotropy, flatness of observed universe and the pri-
mordial monopole problem. Guth [10] introduced the
concept of inflation while investigating the problem of
why we do not see magnetic monopole today. By [10],
the standard model of hot Big Bang cosmology re-
quires initial conditions which are problematic in two
ways (i) the early universe is assumed to be highly
homogeneous, in spite of the fact that separated re-
gions were causally disconnected (horizon problem);
(ii) the initial value of the Hubble constant must be
fine-tuned to extraordinary accuracy to produce a flat
universe (near-critical mass density) seen today (the
flatness problem). These problems disappear if at
early phase the universe is supercooled to tempera-
tures of 28 or more orders of magnitude below the
critical temperatures for some phase transition. A
huge expansion factor would then result from a period
of exponential growth, and the entropy of the universe
would be multiplied by a huge factor when the latent
heat is released. Such a scenario is completely natural
in the context of grand unified models of elementary
particle interactions.

Guth [10] has also suggested that a rapid expan-
sion is due to false vacuum energy, and after inflation

394



INFLATIONARY SCENARIO IN BIANCHI TYPE 395

the universe is filled with bubbles. This inflationary
scenario is also confirmed by CMB observations [11].
Also, as pointed out by Myrzakulov and Sebasti-
aini [12], after inflation the fluid turns out to acquire
the equation-of-state parameter γ = 1/3, so that we
recover the radiation/ultrarelativistic matter universe
of the standard model without invoking the reheating,
as the energy density of fluid itself is converted into
radiation. The inflationary period is divided into the
slow-roll and reheating phases. At the slow-roll
epoch of inflation, the potential of the inflaton should
remain large as compared to kinetic energy [13]. At
the end of inflation, the inflaton starts oscillating
about the minimum of its potential, while the poten-
tial and kinetic energies are comparable [14–16].

Inflation plays an important role in isotropization
of the universe. Inflation does not start at the end of
isotropization, on the contrary, isotropization starts
at the end of inflation, as pointed out by Hervik
et al. [17]. The inflationary scenario for homoge-
neous and isotropic (FRW) models has been stud-
ied by many authors [18–21]. Rothman and El-
lis [22] pointed out that we can have a solution for an
isotropic problem if we work with anisotropic space-
times that isotropoizes in a special case. Keeping
in mind these investigations, we have studied [23,
24] some inflationary models with a flat potential in
different contexts in LRS Bianchi Type I and Bianchi
Type I space-times.

In the recent years, introduction of viscosity in the
cosmic fluid content has been found very useful in
explaining many significant physical aspects of the
dynamics of homogeneous cosmological models. The
dissipative mechanism not only modifies the nature of
the singularity but also successfully accounts for the
large entropy per baryon in the present universe. The
observed physical phenomena, such as large entropy
per baryon and the remarkable degree of isotropy
of cosmic microwave background radiation (CMBR)
reveal the significance of dissipative effects in cosmol-
ogy. Heller and Klimek [25] investigated a viscous
fluid cosmological model without initial singularity,
and it has been shown that introduction of bulk vis-
cosity effectively removes the initial singularity. Chi-
mento et al. [26] studied cosmological solutions with
a nonlinear viscosity. Gron [27] studied a viscous
inflationary universe in Bianchi Type I space-time.
Zimdahl [28] showed that a sufficiently large viscous
pressure leads to inflationary-type solution in a flat,
homogeneous and isotropic universe. Isotropization
of the cosmic fluid induced by viscosity is an im-
portant physical effect, as discussed by Brevik and
Pettersen [29, 30] in the context of simple Kasner
space. The effect of viscosity on cosmological models
has been studied by many authors [31–36] in different
contexts.

The most theoretically appealing possibility for
dark energy is the energy density stored in the
vacuum state of all existing fields in the universe.
However, a cosmological constant (Λ) does not
explain the huge difference between Λ inferred from
observations and the vacuum energy density resulting
from quantum field theories. The observational
relevance of the cosmological constant is described
by Zel’dovich [37], Krauss and Turner [38]. Two
independent groups led by Riess et al. [39] and
Perlmutter et al. [40] used Type Ia supernovae to
show that the universe is not only expanding but
this expansion is also accelerating. This discovery
provided the first direct evidence that Λ is nonzero
being Λ ∼ 1.7 × 10−121 in Planck units. Thus the
present accelerating behavior of universe is due to the
dominance Λ. Obviously, this extremely small value
of Λ indicates that the vacuum energy density, or Λ,
is not a strict constant but decays as the universe
expands, i.e., Λ is time-dependent.

Isotropization does not belong to the Dark Energy
era because, as pointed out by Narlikar et al. [41],
with the popularity of inflationary models, the cos-
mological constant found a new life with its claimed
origin in the force generated by transitions of the
vacuum. It is tempting to suppose that the present
(Λ) owes its origin to the inflationary phase. However,
Weinberg [42] has commented on the extremely low
observational value of Λ as compared to primordial
inflationary scenarios: if the inflation took place at
the grand unified epoch, the value of Λ is too low
by a factor of ∼10−108. If the inflation took place
at the quantum gravity epoch, the above factor is
still ∼10−120. Now, it is easier to suppose that after
inflation was over, the cosmological constant dropped
to zero. Many authors [43–49] investigated cosmo-
logical models with a time-dependent vacuum energy
density which obeys general covariance.

The manuscript is organized as follows. In Sec-
tion 2 we present the cosmological equations for a
bulk-viscous barotropic fluid distribution with vac-
uum energy density for an inflationary scenario in
Bianchi Type V space-time. In Section 3, we deter-
mine the space-time for a flat potential under the con-
dition ρ = 3H2, p = γρ, ζ ∝ ρ1/2, Λ ∼ 1/R2, where
ρ is matter density, H the Hubble parameter, ζ the
coefficient of bulk viscosity, R the scale factor, and p
the isotropic pressure. In Section 4, we determine the
characteristics of an inflationary scenario with a flat
potential in Bianchi Type V space-time. We compare
our results with recent astronomical observations.
We also discuss the importance of Bianchi Type V
model, the deceleration parameter for inflation, the
era of isotropization and Dark Energy with bounds
of the model, the time dependence of Λ which does
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not break general covariance, and how the anisotropy
disappears and again appears after a long time, i.e.,
where the fluid goes after inflation, and how viscosity
may realize a graceful exit from inflation to a radiation
dominated era.

2. THE METRIC AND FIELD EQUATIONS

We consider Bianchi Type V space-time in the
orthogonal form as

ds2 = −dt2 + A2dx2 + e2x(B2dy2 + C2dz2), (1)

where A, B, C are functions of t-alone. The cosmic
fluid is assumed to be viscous, given by the energy-
momentum tensor with a scalar field (φ) as

T j
i = (ρ + p)viv

j + pgj
i − ζθ(gj

i + vj
i ) + ∂iφ ∂jφ

−
{

1
2
∂kφ ∂kφ + V (φ)

}
gj
i . (2)

The Lagrangian in which gravity is minimally coupled
to the scalar field (φ) is defined by Stein-Schabes [50]
as

L =
∫
M

√
−gRi

i −
1
2
gij∂iφ∂jφ − V (φ)d4x. (3)

The energy conservation law coincides with the equa-
tion of motion for φ, and we have

1√−g
∂i(

√
−g∂iφ) = −dV

dφ
,

which leads to

φ44 + φ4

(
A4

A
+

B4

B
+

C4

C

)
=

dV

dφ
, (4)

where ρ is the matter density, p the isotropic pressure,
ζ the coefficient of bulk viscosity, vi the flow vector
of the fluid satisfying viv

i = −1, φ the scalar field
subject to the potential V (φ), Ri

i the Ricci scalar,
and M the space-time manifold. The homogeneous
scalar field φ which is identified with the inflaton is a
function of cosmic time only, and φ4 = dφ/dt, etc.

We see that the energy-momentum tensor (EMT)
in the form (2) has contributions from a perfect fluid
for which we assume the existence of an equation
of state of the form p = γρ (0 ≤ γ ≤ 1) and from a
homogeneous massless scalar field (φ) with the po-
tential V (φ). We have also introduced viscosity to
have a graceful exit from inflation and seek a possi-
bility to recover the reheating phase as production of
matter particles or conversion of the fluid energy to
the standard radiation-dominated phase.

We assume the coordinates to be comoving, so
that v1 = v2 = v3 = 0, v4 = 1. Einstein’s field equa-
tions (in gravitational units 8πG = c = 1) with time-
varying vacuum energy density (Λ) are

Rj
i −

1
2
Rk

k gj
i + Λ(t) = −T j

i . (5)

Einstein’s equations (5) for the space-time (1)
with (2) leads to

B44

B
+

C44

C
+

B4C4

BC
− 1

A2
+ Λ

= −
[
p − ζθ +

1
2
φ2

4 − V (φ)
]

, (6)

A44

A
+

C44

C
+

A4C4

AC
− 1

A2
+ Λ

= −
[
p − ζθ +

1
2
φ2

4 − V (φ)
]

, (7)

A44

A
+

B44

B
+

A4B4

AB
− 1

A2
+ Λ

= −
[
p − ζθ +

1
2
φ2

4 − V (φ)
]

, (8)

A4B4

AB
+

B4C4

BC
+

A4C4

AC
− 3

A2
+ Λ

= −
[
−ρ − 1

2
φ2

4 − V (φ)
]

, (9)

2A4

A
− B4

B
− C4

C
= 0. (10)

Equation (10) leads to

A2 = BC, (11)

where the constant of integration is assumed to be
unity for simplicity, and the indices 4, 44 indicate
partial derivatives w.r.t. t.

Due to the time dependence of Λ (vacuum energy
density), Eq. (5) does not leads to breaking of general
covariance because ρ (matter density) + Λ = Total
density = ρ(T ), p − ζθ = Effective pressure = p̄, and
p̄−Λ (Λ exerts negative pressure) = Total pressure =
p̄(T ). Thus general covariance leads to

ρ4 + (ρT + p̄T )
(

A4

A
+

B4

B
+

C4

C

)
= 0, ⇒

ρ4 + Λ4 + (ρ + Λ + p̄ − Λ)
(

A4

A
+

B4

B
+

C4

C

)
= 0.

Thus we have

ρ4 + Λ4 + (ρ + p̄)
(

A4

A
+

B4

B
+

C4

C

)
= 0.

We find that addition of a time dependence of Λ, does
not break general covariance.

GRAVITATION AND COSMOLOGY Vol. 22 No. 4 2016



INFLATIONARY SCENARIO IN BIANCHI TYPE 397

3. SOLUTION OF FIELD EQUATIONS

Equations (6), (7), and (8) lead to

A44

A
− B44

B
+

C4

C

(
A4

A
− B4

B

)
= 0, (12)

B44

B
− C44

C
+

A4

A

(
B4

B
− C4

C

)
= 0. (13)

From (6) and (9) we have

B44

B
+

C44

C
+

2B4C4

BC
+

A4B4

AB
+

A4C4

AC

− 4
A2

+ 2Λ = −p + ρ + ζθ + 2V. (14)

To find the solution in terms of cosmic time t, we
assume:

(i) the universe is filled with a barotropic fluid
distribution, i.e.,

p = γρ, 0 ≤ γ ≤ 1; (15)

(ii) ζ ∝ ρn and ρ = 3H2, (16)

as considered by Barrow [19],

(iii) Λ = 2/R2, (17)

as considered by Chen and Wu [44], where R is the
scale factor. Using (15), (16), and (17) in (14), we
have

(BC)44
BC

+
1
2

(BC)24
(BC)2

= (1 − γ)ρ + ζθ + 2K,

V (φ) = K, (18)

which leads to
μ44

μ
+

1
2

μ2
4

μ2
= (1 − γ)

θ2

3
+

θ2

3
+ 2K, (19)

where BC = μ, ζ =
√

ρ/3, ρ = 3H2, H = θ/3, θ =
(3/2)(μ4/μ).

For comparison with the corresponding anisot-
ropic models, we consider flat FRW models where
the coefficient of bulk viscosity is proportional to ex-
pansion, i.e., the Hubble factor, ζ = aH , a is con-
stant [27]. Also, for a flat RW universe, the density
of the cosmic fluid is given by ρ = 3H2. Thus ζ ∝ H

is equivalent to ζ ∝ ρ1/2, and we have

μ44

μ
+

1
2

μ2
4

μ2
=

3(2 − γ)
4

μ2
4

μ2
+ 2K, (20)

which leads to

2μ44 +
(

3γ − 4
2μ

)
μ2

4 = 4Kμ. (21)

To solve Eq. (21), we assume that

μ4 = f(μ).

Thus

μ44 = ff ′, f ′ =
df

dμ
.

Now, Eq. (21) leads to

df2

dμ
+

(
3γ − 4

2μ

)
f2 = 4Kμ. (22)

Thus we have

μ3γ/4−1√
μ(3γ/4)2 + β2

dμ =

√
8K
3γ

dt, (23)

where

β2 =
3α1γ

8K
, (24)

α1 being a constant of integration. Equation (23)
leads to

μ3γ/4 = β sinh(at + b), (25)

where

0 < γ ≤ 1 and a =

√
3Kγ

2
, (26)

i.e., the solution is valid for (i) a barotropic fluid dis-
tribution. (ii) a stiff fluid distribution (γ = 1), (iii) a
radiation-dominated model (γ = 1/3), and the solu-
tion is not valid for γ = 0. To find the value of ν for the
above fluid distributions, i.e., for γ = 1, γ = 1/3, and
γ = 1/2, Eq. (13) leads to

ν4

ν
=

L

μ3/2
, (27)

where BC = μ, B/C = ν, and L is constant of inte-
gration. From Eqs. (25) and (27) we have

log ν =
∫

L

β4/(3γ) sinh4/(3γ)(at + b)
dt. (28)

Therefore the metric (1) leads to

ds2 = −dτ2

a2
+ sinh4/(3γ) τdX2

+ e2X sinh4/(3γ) τ(νdY 2 + ν−1dZ2), (29)

where at + b = τ , β2/(3γ)x = X, β2/(3γ)y = Y ,
β2/(3γ)z = Z, and ν is determined by Eq. (28).

Special Model (Dust Distribution, γ = 0)

Equation (21) for γ = 0 leads to

2μ44 − 2
μ2

4

μ
= 4Kμ. (30)

From (30) we have

dμ

dt
=

√
4K log(α2μ), (31)
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which leads to
dμ

μ
√

log(α2μ)
=

√
4Kdt.

Thus we have

μ =
1
α2

e(
√

Kt+K1)2 , (32)

where K, α2, and K1 are integration constants.
Equation (13) leads to

dν

ν
=

L

μ3/2
dt = L(α2)3/2 dt

e
3
2
(
√

Kt+K1)2
. (33)

Thus we have

log ν =
∫

L(α2)3/2 e−
3
2
(
√

Kt+K1)2dt. (34)

Therefore the metric (1) leads to

ds2 = −Kdt2 + e(
√

Kt+K1)2dX2

+ e2X+(
√

Kt+K1)2(νdY 2 + ν−1dZ2), (35)

where ν is determined by Eq. (34).

4. PHYSICAL AND GEOMETRIC ASPECTS

For the model (29) the expansion (θ), the Hubble
parameter (H), the matter density (ρ), the isotropic
pressure (p), the spatial volume (V 3), the deceleration
parameter (q), and the vacuum energy density (Λ) are
given by

θ =
2a
γ

coth(τ), (36)

H =
θ

3
=

2a
3

coth(τ), (37)

ρ = 3H2 =
4a2

3
coth2(τ), (38)

p = γρ =
4a2γ

3
coth2(τ), (39)

σ =
L

2μ3/2
=

L

2β2/γ sinh2/γ τ
, (40)

V 3 = β2/γ sinh2/γ τ, (41)

q = − V44/V

V 2
4 /V 2

= −(4 − 6γ) coth2 τ + 6γ
4 coth2 τ

. (42)

Therefore,

q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 < 0 for γ = 0;,

−coth2 τ + 3
4 coth2 τ

< 0 for γ = 1/2;

−coth2 τ + 1
2 coth2 τ

< 0 for γ = 1/3;

coth2 τ − 3
2 coth2 τ

> 0 for γ = 1;

(43)

Λ =
2

β4/(3γ) sinh4/(3γ) τ
. (44)

The quantities θ, H , σ, ρ, p, V 3, q, and Λ for the
model (35) are given by:

θ =
3μ4

2μ
= 3

√
K(

√
Kt + K1), (45)

H =
θ

3
=

√
K(

√
Kt + K1), (46)

σ =
α2L

3/2

2
e−

3
2
(
√

Kt+K1)2 , (47)

ρ = 3H2 = 3K(
√

Kt + K1)2, (48)

V 3 = ABC = μ3/2 = α
−3/2
2 e

3
2
(
√

Kt+K1)2 , (49)

q = − V44/V

V 2
4 /V 2

= −1 − 1
(
√

Kt + K1)2
< 0, (50)

Λ =
2

R2
= α2e

−(
√

Kt+K1)2 . (51)

5. ENTROPY

To study the entropy, we apply the combined form
of the first and second laws of thermodynamics for the
system of comoving volume V as

Tds = d(ρV ) + pdV. (52)

Equation (52) can be written as

Tds = d((ρ + p)V ) − V dp. (53)

Following [51, 52], S = S(T, V ), and we have

∂2S

∂T∂V
=

∂2S

∂V ∂T
, (54)

which leads to a relation between the pressure p and
the temperature T

dp = (ρ + p)
dT

T
. (55)

Using the barotropic condition p = γρ in (55), we
have

ργ/(γ+1) = T, (56)

which leads to

ρ = T (1+γ)/γ . (57)

Equations (55) and (53) lead to

ds =
1
T

d[(ρ + p)V ] − (ρ + p)V
T 2

dT, (58)

whence

dS = d

[
(1 + γ)ρV

T
+ k

]
. (59)
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Thus the entropy S is given by

S =
(1 + γ)ρV

T
. (60)

The entropy density s is

s =
S

V
=

(1 + γ)ρ
T

= (1 + γ)T 1/γ , (61)

using (57). We observe that the entropy per unit
volume is proportional to absolute temperature.

6. ENERGY CONDITIONS

Following Kolassis et al. [53], Chatterjee and
Banerjee [54], we briefly discuss weak, dominant and
strong energy conditions in the context of inflationary
universe with bulk viscosity for our model. We have

T44 = ρ +
φ2

4

2
+ V (φ);

T11 = p − ζθ +
φ2

4

2
− V (φ) = T22 = T33. (62)

In the locally Minkowskian frame, the roots of matrix
equations

|Tij − rgij |
= diag

(
T00 − r, T11 + r, T22 + r, T33 + r

)
(63)

give the eigenvalues r for our EMT

r0 = ρ + V +
φ2

4

2
;

r1 = −p + ζθ + V − φ2
4

2
= r2 = r3. (64)

The energy conditions for our model are:
The weak energy condition

r0 ≥ 0 leads to ρ + φ2
4/2 + V ≥ 0,

r0 − ri ≥ 0 leads to ρ + p + φ2
4 ≥ ζθ. (65)

The dominant energy condition

r0 ≥ 0 leads to ρ + φ2
4/2 + V ≥ 0,

−r0 ≤ −ri ≤ r0 leads to ρ ≥ p − 2r − ζθ. (66)

The strong energy condition

r0 −
∑

ri ≥ 0 ⇒ ρ + 3p + 2φ2
4 ≥ ζθ + 2V. (67)

If we group (65) and (67), we have

ρ + 3p + 2φ2
4 ≥ ζθ + 2V.

We find that the reality condition ρ + p ≥ 0 is violated
due to the scalar field (φ), which is in agreement with
the inflationary model.

7. CALCULATION OF INFLATIONARY
PARAMETERS

We calculate the inflationary parameters, i.e., the
slow roll parameters, the scalar spectral index, the
tensor-to-scalar ratio and the non-Gaussianity pa-
rameter f

equil
NL for the model (35) to examine whether

these parameters are in excellent agreement with the
Planck results for a canonical or non-canonical scalar
field. We first examine our model (35) obtained for a
canonical scalar field with V (φ) = const.

To the first approximation, for the model (35), the
scale factor R is given by

R = β2/(3γ) sinh2/(3γ) T ∼ β2/(3γ)τ2/(3γ). (68)

The Hubble parameter H is

H = R4/R � 2/(3γτ) ∼ α/τ, (69)

where

α = 2/(3γ). (70)

The slow-roll parameters ε and δ are defined as [55]

ε = −H4/H
2 = α−1, (71)

δ = ε − ε4

2Hε
= ε = α−1. (72)

The slow-roll PLI (power-law inflation) corresponds
to ε 	 1 which occurs when α 
 1.

In this paper, we discuss a new PLI model in which
inflation is driven by a canonical scalar field φ with the
Lagrangian

L(φ,X) = X − V (φ), (73)

where

X = φ2
4/2. (74)

For a generic L(φ,X), it is convenient to introduce a
third slow-roll parameter S as given by [56]

S =
(Cs)4
HCs

, (75)

where Cs is the speed of sound of the scalar field as
given by [57]:

Cs
2 =

∂L/∂X

∂L/∂X + 2X∂2L/∂X2
= 1. (76)

Thus S = 0 slow-roll inflation requires not only ε 	 1
and |δ| 	 1 but also |S| 	 1. For a canonical scalar
field, the value of S is identically zero, and this is
also the case for kinetically driven and non-canonical
models [58].

The power spectrum of scalar curvature perturba-
tion Rk is defined as

Ps(k) =
k3

2π2
|Rk|2, (77)
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while the tensor power spectrum is given by

PT (k) =
k3

π2
|hk|2, (78)

where h is the amplitude of tensor perturbation. The
scalar spectral index ns and the spectral index of
tensor perturbations nT are defined as

ns − 1 =
d�nPs

d�nk
, (79)

nT =
d�nPT

d�nk
. (80)

The tensor-to-scalar ratio is defined as

γ = PT /Ps. (81)

For the canonical PLI model (35), in the slow-roll
limit, we have

nT = ns − 1 ∼ −2/α, (82)

γ � 16/α. (83)

The power-law solution R ∝ Tα requires that

38 ≤ α ≤ 101, (84)

which suggests for γ = 16/α to lie in the range

0.16 < γ < 0.43. (85)

This is well above the limit set in the Planck data
which indicate γ < 0.12 at 95% CL when BAO data
are also included [59]. Thus we find that the PLI
based on a canonical scalar field is in tension with the
Planck data. The model (29) exists during the span
of time 0 < T ≤ ∞, while the model (35) exists for
0 < t ≤ ∞.

The Non-Gaussianity Parameter f
equil
NL

We first carry out a simple estimate of non-
Gaussianity for a non-canonical model with the
Lagrangian

L(X,φ) = X

(
X

M4

)α−1

− V (φ), (86)

where α is dimensionless, while M has the dimension
of mass. For a canonical model α = 1, the non-
Gaussianity parameter f

equil
NL is given by [60]

f
equil
NL =

5
81

( 1
C2

s

−1−2λ
N

)
− 35

108

( 1
Cs

2 − 1
)
, (87)

where

λ = X2 ∂2L

∂X2
+

2
3
X3 ∂3L

∂X3
,

N = X
∂L

∂X
+ 2X2 ∂2L

∂X2
. (88)

We find that

λ/N = (α − 1)/3. (89)

Using (88) and Cs = 1/
√

2α − 1 in (87), we obtain

f
equil
NL � −0.57(α − 1) � −0.28(C−2

s − 1), (90)

as given by Unnikrishnan and Sahni [55]. For a
canonical model Cs = 1 and α = 1, which leads to
f

equil
NL � 0. For α = 6, Eq. (90) gives f

equil
NL � −28,

which is in excellent agreement with the Planck result
f

equil
NL = −42 ± 75, as given in [59].

We consider a viscous fluid whose equation of state
(EOS) assumes the general form [61])

p = γ(ρ)ρ − 3Hζ(R,H,H4,H44, . . .), (91)

where ζ(R,H, . . .) is the bulk viscosity and depends
on scale factor R, the Hubble parameter H and its
derivative. We take γ(ρ) = γ = const to get a grace-
ful exit from inflation. By introducing this fluid in the
background of GR, the field equations for flat FRW
metric

ds2 = dt2 − R2(t){dr2 + r2dθ2 + r2 sin2 θdφ2}
(92)

gives

ρ = 3H2, p = −(2H4 + 3H2), (93)

and the energy conservation law for the fluid takes the
form

ρ4 + 3Hρ(1 + γ) = (3H)2(R,H,H4,H44, . . .).

Inflation is realized when the viscosity is negligible,
and we take it in following form [12]):

ζ(H) = e−H/H0f(H), (94)

where H0 is the constant Hubble parameter at the
end of inflation, and f(H) is a suitable function to be
determined. We have two cases:

ζ

(
1 	 H

H0

)
� 0, ζ

(
H

H0
	 1

)
� f(H).

We analyze the model in two asymptotic limits.

When 1 	 H/H0, the solution of the Friedmann
equation (93) is given by

H(t) =
2

3(1 + γ)t
, ρ = ρ0R

−3(1+γ); −1 < γ,

where ρ0 is constant. We exclude the case γ < −1 for
which, in order to maintain the positivity of the Hub-
ble parameter, we introduce the integration constant
so that

H(t) = − 2
3(1 + γ)(t0 − t)

; γ < −1, (95)
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where 0 < t0 is a fixed time, and t < t0. However,
in such a case 0 < H4 and the Hubble parameter
increases, making it impossible to exit from inflation
and viscosity.

The solution (94) shows an initial singularity at
t = t0, which can be identified with the Big Bang. The
acceleration is realized in the quintessence region

−1 < γ < −1/3; 0 <
R44

R
= H2 + H4

=
4 − 6(1 + γ)
9(1 + γ2) + 2

. (96)

To reproduce inflation, the solution must be close to
the de Sitter one (i.e., γ close to −1). Secondly,
in the limit H/H0 	 1, the viscous term grows up
and by combining the first Friedmann equation with
a continuity equation. We have

ρ4 = 3Hρ

{
1 + γ − f(H)

3H

}
. (97)

If we choose f(H) as

f(H) = 3H(γ − γrad),

then at the end of inflation we may recover the ra-
diation/ultrarelativistic matter universe of the stan-
dard model without invoking the reheating since the
energy density of fluid itself is converted to radiation
matter.

8. CALCULATION OF THE ANISOTROPY
PARAMETER

For the model (29), we have

H =
R4

R
=

2a
3γ

coth T, (98)

where R is scale the factor and H the Hubble pa-
rameter. If Â is the anisotropy parameter then, Â is
defined as

Â =
1
3

[(
H1

H
− 1

)2

+
(

H2

H
− 1

)2

+
(

H3

H
− 1

)2
]
, (99)

where H1 = A4/A, H2 = B4/B, H3 = C4/C are di-
rectional Hubble parameters in the directions of x, y,
z, respectively. Equation (99) leads to

Â =
3L2γ2

8β4/γ sinh4/γ τ coth2 τ
. (100)

The anisotropy parameter Â is initially large but
decreases with time, and at large values of τ , Â = 0,
i.e., the anisotropy disappears—the model isotropizes

at late times, which matches with the results of
astronomical observations. Similar is the case for the
model (35). Thus it is possible for the model which
undergoes sufficient inflation to become isotropic.
Furthermore, the time it takes to become anisotropic
after inflation is very long, i.e., the time scale is at least
of the order �e2N

√
λ, where N is the number of e-folds

of the universe expansion during the inflationary
phase, and Λ is the cosmological constant [62]. N is
defined by Remmen and Carroll [63] as N =

∫ tf
ti

Hdt,
where ti and tf are the proper times at the beginning
and end of inflation.

Estimation of the Amount of Anisotropy

If μ is the anisotropy parameter, then it lies within
the range 0 < μ < 0.6 to attain physical values of
γ < 0.2 and ns = 0.96, respectively. These make the
model compatible with Bicep2 and WMAP7 data.
For the isotropic case, all results lead to those ob-
tained by Myrzakulov and Sebastiani [12].

The Role of Anisotropy in Cosmological
Perturbations

Anisotropy leads to cosmological perturbations,
as pointed out by Thorne [64] and Collins et al. [65].
It is also well known that the CMB temperature
anisotropies are at the 10−5 level relative to the mean
temperature. This remarkable level of isotropy sug-
gests that the density fluctuation and cosmological
perturbations were in a linear regime at the epoch
in which the CMB radiation decoupled from the rest
of the system. If we impose the BBN bound Tdec >
MeV and the constant m < H , then we find H ≥
107 GeV. Another bound comes from the fact that
the curvaton decay rate will be at least of the order
m3/(Mp2), corresponding to gravitational-strength
interactions, as pointed out by Liddle and Lyth [66].

9. CONCLUSION

We observe that the matter density ρ, the ex-
pansion θ, the coefficient of bulk viscosity ζ , and
the Hubble parameter H all diverge at τ = 0 for the
model (29). This model exists in the period 0 < τ ≤
∞.

It is a realistic inflationary universe because for the
model (29) and limτ→∞(σ/θ) � 0 for large values of
τ . Thus the anisotropy is small and vanishes at late
times, which matches with the results of astronomical
observations [39]. Also, Thorne [64] has pointed out
that the velocity–redshift relation for extragalactic
sourcess suggest that the Hubble expansion of the
Universe is isotropic today to within 30 per cent, and
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suggests limτ→∞(σ/H) ≤ 0.30, where σ is the shear.
For a spatially homogenous metric, Collins et al. [65]
also pointed out that σ/θ is small. The anisotropy
of Bianchi metrics necessarily dies away during the
inflationary era [67].

The deceleration parameter (q) is so important for
inflation because, as pointed by Berman and Tre-
visan [68], the equation of state of the present uni-
verse is very near p = −ρ, which suggests that an
inflationary scenario with an exponential scale factor
could not only be of importance in the early universe
but could also for the present accelerating universe
because the deceleration parameter is negative, as
required by modern developments in the observational
data: Riess et al. [39] found evidence for an accelerat-
ing universe with an observed deceleration parameter
near (−1) by means of Supernovae observation.

The spatial volume increases with time, repre-
senting an inflationary scenario. Since σ/θ �= 0,
an anisotropy is maintained, however, the model
isotropizes at late times. The vacuum energy density
(Λ) decreases with time for a barotropic fluid distribu-
tion, a stiff fluid distribution and a radiation dominated
model. The deceleration parameter q < 0 for a
barotropic fluid, a dust distribution, a radiation dom-
inated model, representing an accelerated universe,
but for a stiff fluid distribution q > 0, which represents
a decelerating universe. The scalar field decreases
with time as the universe expands. The bulk viscosity
prevents the matter density to vanish, it remains finite
as T → ∞. For a dust-filled universe, the model (35)
not only represents an expanding universe, also an
accelerating universe which matches with observa-
tions [69] since the deceleration parameter is q < 0.
The model represents exponential expansion, it is ini-
tially anisotropic but becomes isotropic at late times.
The vacuum energy density (Λ) decreases with time
and it vanishes asymptotically. The results are valid as
per astronomical observations. The entropy per unit
volume is proportional to absolute temperature, and
the energy conditions (weak, dominant and strong)
have been discussed. The reality condition ρ + p ≥ 0
is violated due to the scalar field φ, in agreement
with an inflationary model. We have also discussed
the importance of Bianchi Type V model for inflation,
where the anisotropy dies away during the inflationary
era. It happens not in the Dark energy era, it is at
the end of inflation that isotropization starts. We
have also calculated the inflationary parameters and
made a comparison with the Planck data, and how
the exit is compatible with anisotropy, and BAO
estimation was also discussed. The questions of why
the cosmological constant is a function of time and
why the time dependence of Λ does not break general
covariance are discussed. We have also calculated the
anisotropy parameter, and discussed how the model

isotropizes, where fluid goes after inflation and how
viscosity may realize a graceful exit from inflation to a
radiation dominated era.
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