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Virtual Ring and Quantum Elements of a Classical Particle
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Abstract—The fractal equations of mechanics (quantum and classical) are clearly demonstrated to be
definitions of an arbitrary potential on a fractal complex number valued surface. The developed approach
helps us to show that a translational motion of any rotating compact object (point-like particle) can
be equivalently represented by a specific rotation of a virtual ring described in terms of a fractal “wave
function”, the model endowing the particle with a set of quantum characteristics including quantization of
the ring’s space translation.
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1. INTRODUCTION

Long but vain efforts of de Broglie [1, 2] to heuris-
tically ascribe a physical meaning (or a geometric im-
age) to his wave function attributed to a particle and
later similar considerations of other eminent physi-
cists have in fact resulted in the shaky Copenhagen
probability conjecture though concerning only the
function’s amplitude. The exponential factor, initially
responsible for the wave properties, dropped out from
the interpreters’ attention. It may be argued that
the absence of such a factor in a series of the so-
called stationary exact solutions of the Schrödinger
equation does not cancel their ability to “perfectly
describe” quantum models, among them the textbook
solutions for a particle in a 1D-box, a quantum oscil-
lator and Schrödinger’s H-atom. The quality of de-
scription seems to be a matter of interpretation, while
the absence of a momentum in a dynamic system
nonetheless evokes reasonable questions.

A possible answer may come from recent stud-
ies revealing the unambiguous interdependence be-
tween mechanical motion of a particle and rotation
of a quaternion triad “frozen” in its mass. This
observation is made in the course of an unexpect-
edly precise and simple mathematical derivation of
the Schrödinger equation and the related equations
of classical and relativistic mechanics, all theories
providing associative division algebras stability [3].
Despite its methodological value, demonstrating the
logical unity of all branches of mechanics, the ap-
proach appears to endow the abstract mathematical
(and physical) quantities with clear geometric images
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related though to a fractal surface in a way “under-
lying” the 3D physical world. In particular, it helps
one to identify the phase of the wave function with
a half angle of the related particle’s proper rotation,
and with the respective particle’s action function of
classical mechanics. This, in particular, establishes a
link between the characteristics of a particle’s motion
and the math-originating phenomenon of its rotation.

Here we suggest a more detailed analysis of a 3D
object’s rotation, taking into account the difference
between its real proper rotation (including an interior
rotation of a pointlike particle) and a specific “prop-
agational rotation” necessarily induced by the math
description of motion at the fractal level, thus lead-
ing to an original geometric treatment of quantum
characteristics and introduction of the notion of a
virtual ring. In Section 2 we give a detailed version
of the derivation of a Schrödinger-type equation with
emphasis on the fractal geometry. In Section 3, the
conjecture of a virtual ring replacing a moving rotat-
ing object is introduced, and the de Broglie function
for any 3D mechanical object is rebuilt. A compact
discussion in Section 4 concludes the study.

2. EQUATION OF MECHANICS AS A
FRACTAL STABILITY CONDITION OF
ASSOCIATIVE DIVISION ALGEBRAS

Distinguished by the Frobenius theorem, three as-
sociative (in multiplication) division algebras of real,
complex and quaternion numbers can be in general
shown [4] to be built on matrix units, the simplest set
of which is given, e.g., by the 2 × 2 constant matrices

I =

⎛
⎝1 0

0 1

⎞
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1 0
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q2 =

⎛
⎝0 −1

1 0

⎞
⎠ , q3 = −i

⎛
⎝1 0

0 −1

⎞
⎠ , (1)

obeying the multiplication law

qkqm = −δkm + εkmjqj , Iqk = qkI = qk (2)

(small Latin indices are 3D, δkm and εkmj are the
Kronecker and Levi-Civita tensors, summing in re-
peated indices is assumed). The vector units qk

geometrically behave as a triad, an orthogonal frame
initiating a 3D Cartesian system of coordinates. It
has been found recently [5] that the scalar (real) unit
I may be associated with a metric g of a locally flat 2D
fractal space (“square root” from 3D space) endowed
with a dyad ψ+, ψ−:

gψ±ψ± ≡ ϕ±ψ± = 1, gψ±ψ∓ ≡ ϕ±ψ∓ = 0;

one readily shows that all units of the type (1) are
built out of a single fractal dyad as different tensor
products:

I = ψ+ϕ+ + ψ−ϕ−,

q1 = −i(ψ+ϕ− + ψ−ϕ+),

q2 = ψ+ϕ− − ψ−ϕ+,

q3 = i(ψ+ϕ+ − ψ−ϕ−). (3)

Multiplication of the dyad by a complex number (the
simplest transformation)

ψ′± ≡ σe±iαψ± ≡ λψ±,

ϕ′± ≡ σe∓iαϕ± ≡ λ∗ϕ±,

σ ∈ R, σ �= 0, rotates the triad by the angle 2α, but
makes all four units differ from unity, e.g., ψ′+ϕ′+ +
ψ′−ϕ′− = σ2I, ψ′+ϕ′− − ψ′−ϕ′+ = σ2q2, thus vio-
lating the basic law (2). To save the algebra, we
consider the transformation parameters, modulus σ
and phase α, to be functions of a free variable θ
and of the coordinate set ξA defined on an abstract
M-dimensional space (A = 1, ...,M), and then we
introduce the normalizing integral over a volume Vξ

of the space

f(θ) =
∫

Vξ

λλ∗dVξ =
∫

Vξ

σ2dVξ = 1. (4)

Using Eq. (4) as a factor in the right-hand-side in
Eqs. (3), e.g.,

f(ψ+ϕ+ + ψ−ϕ−) = I ′ = I,

f(ψ+ϕ− − ψ−ϕ+) = q2′ ,

we restore all the units. If the normalizing integral (4)
is constant, ∂θf = 0, then all algebras in question

remain valid for any value of θ; this leads to the
continuity-type equation

∂θ(λλ∗) + ∇ξ(λλ∗k) = 0, (5)

where k is an arbitrary vector. If it points to the
direction of phase increase (i.e., of the angle of the
triad rotation),k = ∇ξα, then Eq. (5) acquires its
fractal format. Here we give an expanded version
of its derivation, never demonstrated in the literature
before.

For simplicity (though not on account of general-
ity), let the abstract space be 3D, so that Eq. (5) is
rewritten with 3D indices:

∂θ(λλ∗) + ∂n(λλ∗kn) = 0, (6)

where

λ ≡ σ(θ, ξm)eiα(θ,ξn), (7)

so that α = (i/2) ln(λ∗/λ). Since kn ≡ ∂nα, we find

kn =
i

2

(
∂nλ∗

λ∗ − ∂nλ

λ

)
(8)

and insert Eqs. (7) and (8) into Eq. (6) to get

e−iα[∂θ(σeiα) − i

2
∂n∂n(σeiα)]

+ eiα[∂θ(σe−iα) − i

2
∂n∂n(σe−iα)] = 0. (9)

Performing all needed derivations, we arrive at the
equation

∂θσ + iσ∂θα − i

2
∂n∂nσ + ∂nσ∂nα

+
1
2
σ∂n∂nα +

i

2
σ∂nα∂nα

+ ∂θσ − iσ∂θα +
i

2
∂n∂nσ + ∂nσ∂nα

+
1
2
σ∂n∂nα − i

2
σ∂nα∂nα = 0, (10)

comprising two couples of identical parts, a real one
[it doubles in Eq. (10) and is equaled to zero],

∂θσ + ∂nσ∂nα +
1
2
σ∂n∂nα = 0, (11)

and an imaginary one [denoted by Wσ; in Eq. (10) it
vanishes in sum]

i(σ∂θα − 1
2
∂n∂nσ +

1
2
σ∂nα∂nα) ≡ −iWσ. (12)

Altogether there remain one equation (11) and one
definition (12), respectively, rewritten below as

∂θσ + ∂nσ∂nα +
1
2
σ∂n∂nα = 0, (13)

σ∂θα − 1
2
∂n∂nσ +

1
2
σ∂nα∂nα + Wσ = 0, (14)
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with W (θ, ξn) being an arbitrary function. The last
set of equations can be recombined into one complex-
number equation as [Eq. (13) +i Eq. (14)] eiα, the
result having the form[

∂θ −
i

2
∂n∂n + iW

]
(σeiα) = 0. (15)

We recall here that all the above equations are pure
mathematical, hence abstract, no physical units
are involved. But we can introduce a physical
length (space coordinate) xk ≡ εξk and time t ≡ τθ
using certain standards ε = �/(mV ), τ = ε/V =
�/(mV 2), where � is some angular momentum (e.g.,
Planck’s constant), m is a particle’s mass, V is a
characteristic velocity. In variables xk, t Eq. (15)
becomes precisely the Schrödinger equation with the
potential U ≡ (mV 2)W , while Eqs. (13, 14) take the
form of the Bohm equations [6], i.e., a decomposition
of the Schrödinger equations into real and imaginary
parts.

So the algebras’ stability condition (5), (6), for-
mulated in abstract M-dimensional (or 3D) space,
has its fractal (square-root) analog (13), (14) or (15),
describing (as it surprisingly turns out) in physical
units a quantum particle characterized by the wave
function ψ′+ = σeiα

(
0
1

)
and affected by the field of

an arbitrary potential. The wave-function absolute
value is treated here as a fractal relative mass density
σ ≡

√
ρ(x, t)/ρmean, so that the integral (4) has the

meaning of the particle’s mass,∫

V

ρdV = ρmeanε
3 = m.

Then Eq. (13) of the fractal set in physical units (the
first Bohm equation)

∂tσ +
�

m
∂nσ∂nα +

�

2m
σ∂n∂nα = 0 (16)

is a square root from the fundamental mass conserva-
tion law ∂tρ + ∂n(ρun) = 0, while Eq. (14) in physical
units (the second Bohm equation)

�∂tα +
�

2

2m
(∂nα)(∂nα)

+ U − �
2

2m
∂n∂nσ/σ = 0 (17)

is in fact a definition of the potential U . There are
two ways to treat Eq. (17). Either it is a conventional
quantum-mechanical equation for a particle in a field
U(t, xn), or, if σ = const (or if Δσ − (2m/�

2)Uintσ =
0) it is a Hamilton-Jacoby equation of a classical
particle

∂tS +
(∇S)2

2m
+ Uext = 0

with
S = �α, (18)

and U = Uint + Uext the potential parts responsible for
an interior and exterior effect on the particle.

There are three essential points worth emphasiz-
ing at the end of this section. (i) The Schrödinger and
Hamilton-Jacoby equation are in fact fractal equa-
tions of mechanics, formulated in the quantum case
for a full fractal function (a square-root of a spoiled
algebra unity) ψ′, or, in the classical case, for its
phase part only, known in classical mechanics as the
action. (ii) The same particle admits two different
models, the first one is a 2D fractal function ψ′ (or a
scalarλ) having discrete (σ) and wave (α) properties,
the second one is a pointlike 3D particle with frozen-
in triad rotation by the angle equal to the doubled
phase. (iii) A specific feature of the particle in question
is its necessary intrinsic rotation, i.e., possession of
a proper angular momentum. The latter property
evokes the concept of a virtual ring and compels to
form an alternative view at quantum characteristics
of particle motion.

3. A PARTICLE’S VIRTUAL RING MODEL

Consider a pointlike particle (a compact 3D ob-
ject) of mass m inertially moving in physical space
with a velocity V = const. The crucial point of fur-
ther considerations is that the object must be simply
rotating (about one axis) with the angular frequency
Ω = const, the rotation being described by a frozen-
in triad, so that, e.g., q3 = const. We would like to
stress here that the particle can either be really rotat-
ing (e.g., as a bullet or a planet on their trajectories),
or otherwise the interior rotation frequency Ω can
be artificially ascribed to it for purposes of a specific
description (or measurement) of the motion. For the
rotational period T = 2π/Ω the particle covers the
path

l = V T = 2πV/Ω (19)

that can be associated with the particle’s characteris-
tic “wavelength.” These conditions lead to a specific
model of the particle’s motion and endow it with a set
of “quantum” characteristics. Indeed, Eq. (19) can be
rewritten in the form l = 2πr, the velocity-frequency
link V = Ωr is defined by

r ≡ l/(2π) = V/Ω, (20)

taken for the radius of a virtual circumference of
length l; then the respective particle’s “wave number”
is

k ≡ 2π/l = 1/r. (21)

Provided the mass m is uniformly (for simplicity) dis-
tributed along the circumference, we obtain a massive
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virtual ring, rotating with the frequency Ω, each its
point moving with linear velocity V , the ring’s proper
angular momentum being

L = mr2Ω = mrV = const. (22)

Taking L, k, Ω for basic constants, we can express
through them the particle’s main dynamic character-
istics, the values of its momentum

p = mV = L/r = kL (23)

and energy

E = mV 2/2 = LΩ/2 = ωL, (24)

where, according to the results of Section 2, ω = Ω/2
is the phase frequency of the wave λ ∼ eiα, α = ωt
describing, on the 2D fractal surface, the 3D rotation
of the ring.

Thus both 3D physical and 2D fractal character-
istic of particle motion are expressed through the pa-
rameters of the virtual ring, precisely as they were for-
mulated in de Broglie’s postulates, provided L → �.

Moreover, Eqs. (20)–(24) in a way explain the me-
chanical Lagrangian formula as a difference between
the kinetic and potential energies; indeed, for a par-
ticle with constant momentum and energy, the phase
of its fractal functions has the De Broglie format

α = kx − ωt =
1
L

(px − Et) =

=
1
L

(2Ekin − E)t =
1
L

(Ekin − U)t =
S

L
, (25)

so the Lagrangian is Λ ≡ Ekin − U , as postulated in
manuals. As well, Eq. (25) states that, due to the
wave-type form of the phase, the virtual ring is in
general supposed to rotate in two opposite directions
simultaneously, counterclockwise (“positively”) with
the frequency 2px/L = 2Ω, and clockwise (“nega-
tively”) with the frequency −2ω = −Ω, the sum being
Ω; in particular, this means that the physical particle
propagates with a double phase velocity computed for
the fractal function, V = Ωr = 2ω/k = 2Vϕ.

We also note that the energy of the ring’s rota-
tion given by Eq. (24) is equal to the kinetic energy
of particle translation, no particle’s proper rotational
energy taken into account. This fact additionally
emphasizes that the virtual ring model is just a differ-
ent way to mathematically describe the same phys-
ical phenomenon, translational motion of an object
(though with necessary intrinsic rotation prescrib-
ing the model’s frequency). But the description of
space motion in this approach appears to be quite
specific because this rotating ring cannot be consid-
ered somehow moving along the trajectory as a real
physical object, e.g., rolling with the velocity V , since
in this case its energy would be twice as great as that

of the particle. So one has to admit that the ring (only
imagined with a particle) must be regarded as propa-
gating along the trajectory discretely; i.e., during one
rotation period T the ring (occupying the length 2r on
the orbit) only rotates without translation in space,
and straight after completing one full revolution it is
instantly replaced at the wavelength (19) to start the
next rotation. Meanwhile the particle’s momentum
and energy are linked to the ring’s proper angular
momentum by the de Broglie ratios p = kL, E =
ωL with k ≡ 1/r, r being the radius of the virtual
ring. One straightforwardly finds that the function
λ = σeiα with the phase (25) is a solution to the
Schrödinger-type equation

(
iL∂t +

L2

2m
∇2 − U

)
λ = 0

⇒ E − p2

2m
= 0 (26)

for a free and structureless particle U = 0, σ = const.

4. DISCUSSION

Of course the virtual ring concept is just a math
model that represents a classical object allegedly pos-
sessing quantum properties. This model could hardly
emerge without the fractal surface math theory and
the possibility to describe the same object as a 2D
fractal and 3D physical entity. This remarkably dis-
tinguishes the ring model from heuristic though ge-
nius suggestions of the quantum mechanics creators.

But there are a couple of aspects of the theory that
seem to be worth discussing.

First, the virtual ring approach may be looked at
as a method of measurement of the physical systems’
characteristics by specific units L, k, ω. Apart from
momentum and energy given by Eqs. (23), (24), these
units produce derived standards for the length l =
2π/k (“wavelength”) and time T = 4π/ω (period of
the ring rotation). Since this method is based on
counting discreet ring positions on a trajectory, the
measurement of orbital lengths of finite motion (e.g.,
that of circular orbits) immanently implies an integer
number of such positions to provide coincidence of
the last ring position with the initial one. Precisely
this is done in the quantum model of an H-atom pos-
tulated by Bohr, but later shown to be a solution of the
Schrödinger equation [7]; the Planck’s constant was
there taken for an angular momentum unit, while the
characteristics of the first energy level were chosen for
units of frequency and length. The respective classical
problem for a star or a planetary system considered
from the virtual ring model viewpoint seems promis-
ing.
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The second aspect distinguishing the ring model
approach is its clear formulation for the case of in-
ertial motion; this feature together with a discrete
translation of the virtual ring hints at a description of
an arbitrary motion as a series of inertial segments
with discreetly changing dynamical characteristics.
As a challenging example, a virtual ring model for the
classical problem of a linear harmonic oscillator will
be analyzed in the forthcoming paper.
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