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Abstract—We consider a manifestly Lorentz-invariant form L of the biquaternion algebra and its general-
ization to the case of a curved manifold. The conditions of L-differentiability of L-functions are formulated
and considered as the primary equations for fundamental fields modeled with such functions. The exact
form of the effective affine connection induced by L-differentiability equations is obtained for flat and
curved manifolds. In the flat case, the integrability conditions of the connection lead to self-duality of the
corresponding curvature, thus ensuring that the source-free Maxwell and SL(2, C) Yang-Mills equations
hold on the solutions of the L-differentiability equations.
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1. LORENTZ-INVARIANT ALGEBRA
OF A FLAT OR CURVED SPACE-TIME

MANIFOLD

To construct a truly unified theory, one should
rely on an exceptional geometric structure. On the
other hand, the diversity of geometries of different
dimensions, topologies or differential structures does
not allow for a trustful choice of the candidate for
(an extended) space-time geometry. If, however, an
algebraic structure is laid in the foundation of the
theory, the situation becomes much better, since there
exist only a finite number of exceptional Lie groups or
finite-dimensional linear algebras, the latter being ex-
hausted by complex numbers, quaternions and (non-
associative) octonions.

Since the times of Hamilton, it is well known that
the Euclidean structure of 3D physical space can be
regarded as a direct consequence of the existence of
the exceptional quaternion algebra with its group of
automorphism SO(3). A lot of effort has been made
to relate the structure of Minkowski space-time M
to the properties of complex quaternions (biquater-
nions) B, whose symmetry group SO(3, C) is 2:1
isomorphic to the spinor Lorentz group SL(2, C), see,
e.g., the review [1]. However, the 4C dimension of this
algebra corresponds to the structure of a complexified
space-time, in which M does not even constitute a
subalgebra, but only a subspace.

In [2], an interesting 4D algebra G has been pro-
posed with a manifestly Lorentz-covariant multipli-
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cation law:

(a ◦ b)μ = aμ(bρeρ) + bμ(aρeρ)

− eμ(aρbρ) ± ıεμ
.νρλaνbρeλ, (1)

where the ordinary notation using the Minkowski
metric ημν is employed, and μ = 0, 1, 2, 3. For the
distinguished element e = {eμ} of G, the constraint
eμeμ = 1 is imposed; then e plays the role of a unit
element: a ◦ e = e ◦ a = a, ∀a ∈ G. It is also straight-
forward to verify that G is an associative algebra.

Surprisingly, the fact that G is isomorphic to the
algebra of biquaternions B was overlooked in [2].
Indeed, with the choice for the unit element eμ =
{1, 0, 0, 0}, the law (1) reproduces ordinary multipli-
cation in B. Precisely, for the basis vectors σμ, Eq. (1)
yields

σμ ◦ σν = σμeν + σνeμ − (eρσρ)ημν

± ıερ
.μνλσρe

λ, (2)

with σ0 = e, and

σa ◦ σb = δabe ± ıεabcσc, (3)

for the three space-like basis vectors σa, a = 1, 2, 3,
in full accord with the multiplication of the Pauli ma-
trices. The different signs in (1) correspond to the left
or right forms of the (bi)quaternion algebra. Under
Lorentz boosts the unit element e transforms as a 4-
vector while the defining law (1) preserves its form.
Moreover, 3-rotations are canonical automorphisms
of G.

The representation (1) is very useful for general-
izations to curved manifolds [3, 4]. To this end, we
consider the tetrad field hα

μ(x), α, β, ... = 0, 1, 2, 3,
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and the local algebra1
L defined by the basis vec-

tors Σμ(x) := hα
μ(x)σα depending on the point of the

manifold. The multiplication table (2) for L takes then
the obvious form

Σμ ◦ Σν = ΣμEν + ΣνEμ − (EρΣρ)gμν

± ı
√
−gερ

.μνλΣρE
λ, (4)

in which a unit field Eμ(x) := hα
μeα, satisfying

gμνEμEν = 1, and a metric tensor of the manifold

gμν := hα
μhβ

νηαβ (g := |gμν |) naturally arise.

The existence of the local algebra (4) on a (com-
plexified) 4D manifold requires, apart from the met-
ric tensor, an algebro-geometric structure—the unit
time-like 4-vector field (U-field) Eμ(x)2 . Its physical
interpretation may be related to a matter flow, etc.
Below, we shall see that the properties of L-valued
functions differentiable over L can impose strong re-
strictions on the metric and the U-field, and, in a
sense, determine the geometry of the manifold itself.
First and foremost, however, they define a set of
relativistic fields and guarantee the fulfillment of the
corresponding field equations.

2. ANALYSIS AND INDUCED FIELD
DYNAMICS ON THE RELATIVISTIC

ALGEBRA OF SPACE-TIME

In the algebrodynamic program (see, e.g., [5, 7, 8]
and references therein) one considers some algebraic
structure (“space-time algebra”) A which predeter-
mines both the physical geometry and the equations
of fundamental fields. Specifically, one should for-
mulate the differentiability conditions for A-valued
functions, in close analogy to the Cauchy-Riemann
conditions for holomorphic functions of a complex
variable. For quaternion-like, non-commutative yet
associative algebras, appropriate conditions have
been proposed in [5, 7] in the following Pfaffian form:

dF = Φ ◦ dZ ◦ Ψ, (5)

in which F (Z), Φ(Z), Ψ(Z) are the principal A-
function of A-variable Z, and two auxiliary A-
functions (the so-called left and right semi-deriva-
tives), respectively. dF denotes the linear part of
the increment (differential) of F (Z), while (◦) is the
operation of multiplication in A.

1 The concept of a local algebra has been introduced in [5,
ch. 2] and elaborated further in [3, 4]; the analogous concept
of the so-called Q-basis was considered in [6].

2 The situation resembles that in Weyl geometry which, to-
gether with the metric tensor, is defined by the nonmetricity
1-form field (identified by H. Weyl with the electromagnetic
potentials).

Thus, an A-function F (Z) is called differentiable
over A if its increment can be represented in an in-
variant form (5), i.e., only through the operation of
multiplication in A.

For a commutative complex algebra, the above
condition reduces to dF = (Φ ◦ Ψ) ◦ dZ, and, be-
ing written out in components, is equivalent to the
Cauchy-Riemann equations. For real quaternions
Q, (5) proves to be a condition of conformity of
the corresponding mapping Z �→ F (Z) in E4, in full
analogy with the complex case. However, the class
of such mappings is known to be very restricted, de-
fined by 15 parameters only (the Liouville theorem).
Fortunately, upon complexification of Q, that is, tran-
sition to the algebra of biquaternions B, the class of
solutions to (5) substantially widens, on the account
of elements Φ(Z) and/or Ψ(Z) with null norm.

Therefore, the B-algebra (or, equivalently, the iso-
morphic G-algebra) does constitute a basis of an
algebrodynamic theory. B-differentiable functions of
the B-variable should then be considered as the pri-
mary physical fields (together with the correspond-
ing semi-derivatives) while the field equations are
represented by the differentiability conditions (5) or
secondary constraints following from the latter (e.g.,
via successive differentiations, etc.). In this approach,
particles are modeled as singularities of the B-fields.

To avoid problems with the complex extension of
space-time (related to the complex 4C structure of the
vector space of B-algebra), in our previous papers we
restricted the coordinate space to the subspace with
Minkowski metric. In the matrix representation of B

this corresponds to Hermitian matrices,

Z �→ X = X+ = xμσμ, {xμ} ∈ R, (6)

while the components of the fundamental fields
F (X), Φ(X) and Ψ(X) are generally assumed to
be complex-valued. Finally, we regard the B-diffe-
rentiability conditions on the Minkowski coordinate
subspace

dF = Φ(X) ◦ dX ◦ Ψ(X) (7)

as the only constraints to determine the correspond-
ing functions-fields and their singular locus, which is
identified with particle-like formations.

Using the SL(2, C) matrix representation of the
B-algebra, it was proved [5, 7] that any matrix com-
ponent ϕ = FB

A (x) of the B-field satisfies, in view
of (7), the complex eikonal equation

ημν∂μϕ∂νϕ = 0, (8)

instead of the linear Laplace equation for complex
functions. In general, the set of PDE corresponding
to (7) is Lorentz-invariant and nonlinear (the latter

GRAVITATION AND COSMOLOGY Vol. 22 No. 3 2016



232 KASSANDROV, RIZCALLAH

is a direct consequence of the noncommutativity of B-
algebra).

For the most important [9] case where Ψ(x) ≡
F (X) (equivalently, one can take Φ(X) ≡ F (X)),
after spinor splitting of (7), we obtain

dξ = ΦdXξ, (9)

for the 2-spinor ξ = {ξA(x)} and the complex 4-
vector Φ = {ΦAB′(x)} fields (A,A′, ... = 0, 1). Both
ξA(x) and ΦAB′(x) can be found from the overdeter-
mined structure of the set of equations (9).

In particular, the integrability conditions of (9)
read

ddξ = Rξ = 0, R := (dΦ − ΦdXΦ) ∧ dX, (10)

where the matrix-valued 2-form R can be regarded
as the curvature 2-form of the matrix-valued con-
nection 1-form Ω := ΦdX entering into the initial
equations (9). The latter can thus be interpreted
as the conditions for the 2-spinor field ξ(X) to be
covariantly constant w.r.t. the complex affine con-
nection Ω,

dξ − Ωξ = 0. (11)

Let us now return to the integrability condi-
tions (10). Since the spinor ξ(x) is not arbitrary,
the curvature R does not vanish identically. Thus,
the B-differentiability conditions define dynamically,
on the flat Minkowski background, a non-trivial
geometric structure, the complex curved 4D space
with the affine connection Ω. Moreover, it has been
demonstrated in [7, 10] that the spinor components
can be eliminated from (10), and the curvature R
turns out to be self-dual on the solutions of (9).
Specifically, one obtains from (10):

(�R)a := Roa +
ı

2
εabcRbc = 0, (12)

with the following structure of the self-dual part of the
curvature:

�R = �P + D�σ − ı �P × �σ, (13)

where the quantities �P := �E + ı �H and D are defined
through the components of the 4-vector field Φ =
Aμ(x)σμ as follows:

�E := −∂o
�A −∇Ao, �H := ∇× �A,

D := ∂μAμ + 2AμAμ, (14)

and represent, consequently, the components of 4-
potentials and field strengths of an effective complex
electromagnetic field. Now, from the full self-duality
condition (12) and the curvature structure (13), the
self-duality of the electromagnetic field follows imme-
diately,

�P = �E + ı �H = 0, (15)

together with the “inhomogeneous Lorentz condi-
tion” D = 0.

In turn, the complex self-duality condition (15)
guarantees the source-free Maxwell equations, sepa-
rately for the (mutually dual) real and imaginary parts
of the electromagnetic fields (14). Moreover, for two
independent components ψ(x) of the potential matrix
Φ(X) (the other two can always be nullified by a
gauge transformation) the 2-spinor Weyl equation
holds for any solution of (9) (for details, see [11]).
Remarkably, the SL(2, C) Yang-Mills fields can be
also defined through the same matrix field Φ(X),
and, on the solutions of (9), satisfy the correspondent
source-free equations (for proofs and details we refer
the reader to [7, 10]).

From a 4-vector perspective, the principal equa-
tion (9) (complemented from the 2-spinor ξ(X) to
corresponding null 4-vector F = Fμσμ) reads

∂νF = Φ ◦ σν ◦ F, (16)

or, in components,

∂νF
ρσρ = AμF ρσμ ◦ σν ◦ σρ. (17)

Using then (2) to evaluate the product in the r.h.s., we
find

∂νF
ρ = Γρ

νμFμ, (18)

with the connection Γρ
μν being

Γρ
μν = δρ

νAα(2eμeα − ημα) − Aνηβρ(2eμeβ − ημβ)

± ı{ερ
.ανγeμ + ερ

.αμγeν − ερ
.νμγeα + εανμγeρ}eγAα

+ Aρ(2eνeμ − ηνμ). (19)

In this form, Eqs. (18) and (19) define a covariantly
constant 4-vector field and can be readily generalized
to a curved metric-affine space. Specifically, instead
of (5), we now can deal with the L-differentiability
conditions of the form (in the principal case when
Ψ(X) ≡ F (X))

DF = Φ(X) ◦ dX ◦ F (X), (20)

with DF being the covariant differential w.r.t. the
metric gμν (that is, w.r.t. the Levi-Civita connection
γ)3 . Again, (20) can be interpreted as the condition
for a 4-vector F (X) to be covariantly constant w.r.t
the connection

Γ = γ + G, (21)

where G := {Gρ
μν} is the connection of the form (19)

generalized, in a natural way, to the case of the local
L-algebra (4):

Gρ
μν = δρ

νAα(2EμEα − gμα)

3 A more sophisticated and mathematically substantiated ap-
proach to the generalization of the differentiability condi-
tions (5) has been elaborated in [4].

GRAVITATION AND COSMOLOGY Vol. 22 No. 3 2016



RELATIVISTIC ALGEBRA OF SPACE-TIME 233

− Aνgβρ(2EμEβ − gμβ)

± ı
√
−g{ερ

.ανγEμ + ερ
.αμγEν − ερ

.νμγEα

+ εανμγEρ}EγAα + Aρ(2EνEμ − gνμ). (22)

It follows from (22) that the generalized L-
connection is not symmetric in low indexes and thus
possesses torsion of rather a specific form. On the
other hand, calculating the covariant derivative of the
metric tensor w.r.t. the full connection (21), one has:

∇ρgμν = −2gμνÃρ, (23)

with Ãρ := (2EρEλ − gρλ)Aλ. Thus, the connec-
tion (22) under consideration possesses a nonmetric-
ity of the Weyl type, and we are now in a position to
identify the effective space, dynamically induced by
the primary algebraic structure, as a Weyl-Cartan
manifold [7].

It is worth noting that the structure of L-con-
nection (22) and the covariant derivative of the met-
ric (23) essentially involve the effective metric tensor

g̃ρλ := 2EρEλ − gρλ, (24)

which, rather surprisingly, in the “flat” limit of B-
algebra and connection (19) reduces to the metric of
4D Euclidean (!) space and preserved its Euclidean
signature upon generalization to (22).

Moreover, a third metric g∗μν(X) defined alge-
braically via the structure functions Cρ

μν(X) of the
local L-algebra,

Cρ
μν = Eμδρ

ν + Eνδ
ρ
μ − Eρgμν

± ı
√
−gερ

.μνλEλ, (25)

and thus invariant under the automorphisms of L

turns out to coincide with (24) (at least in the case
g = |gμν | = |ημν | = −1):

g∗μν :=
1
4
Cβ

μαCα
νβ ≡ g̃μν . (26)

The complete meaning of this effective metric and
consequences of the above obtained remarkable co-
incidence certainly deserve further investigation.

In the light of all the above-said, it is not unrea-
sonable to assume that the integrability conditions
of L-differentiability equations (20) might impose re-
strictions not only on the vector field Aμ, but also
on the metric gμν as well as the unit vector field Eμ.
However, the task of analyzing these conditions and
the equations they yield for the metric and fields is left
for future work.

3. CONCLUSION

We study a manifestly covariant form of the bi-
quaternion algebra B, which coincides with the rel-
ativistic ring extension proposed in [2]. We consider
the B-differentiability conditions of B-valued func-
tions and suggest to regard them as the fundamental
generating system for the set of fundamental physical
fields. In the most important case, these conditions
admit a geometrical interpretation as those defining
a covariantly constant vector field w.r.t. the affine
connection of a very specific form. Their integrability
conditions lead then to self-duality of the correspond-
ing curvature, which in turn yields Maxwell, Yang-
Mills and Weyl equations for the associated fields. It is
hoped that L-generalization of the B-algebra and B-
differentiability equations to Riemannian or general
metric-affine space-times will enable us, in addition,
to obtain sufficient constraints on the connection,
metric and unit U-field and thus, in a purely algebraic
way, to determine physical geometry.
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