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Abstract—A D-dimensional gravitational model with Gauss–Bonnet and cosmological terms is consid-
ered. When an ansatz with a diagonal cosmological metric is adopted, we find new examples of solutions
for Λ �= 0 and D = 8 with an exponential dependence of the scale factors, which describe expansion of
our 3D factor-space and contraction of 4D internal space. We also study the stability of the solutions with
static Hubble-like parameters hi and prove that two solutions with Λ = 0 in dimensions D = 22, 28, which
were found earlier, are stable. For both solutions we find asymptotic relations for the effective gravitational
constant.
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1. INTRODUCTION

In this paper we consider a D-dimensional gravi-
tational model with Gauss–Bonnet and cosmological
terms. The action reads

S =
∫

M

dDz
√

|g|{α1(R[g] − 2Λ) + α2L2[g]}, (1)

where g = gMNdzM ⊗ dzN is the metric defined on
the manifold M , dim M = D, |g| = |det(gMN )|, Λ is
the cosmological constant, and

L2 = RMNPQRMNPQ − 4RMNRMN + R2

is the standard Gauss–Bonnet term. Here α1 and α2
are nonzero constants.

The appearance of the Gauss–Bonnet term was
motivated by string theory [1–5]. It is important to
stress that not only the GB term can be motivated
by string theory. Recently, it was shown in [6] that
EGB theory (with or without a cosmological term)
unavoidably leads to causality violation, unless the
theory is completed by an infinite tower of higher-
spin particles with fine-tuned couplings (perturbative
string theory being an example). See also [7].
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At present, the so-called Einstein–Gauss–
Bonnet (EGB) gravitational model and its modifica-
tions—see [8] (for D = 4), [9–18] and references
therein—are intensively used in cosmology, e.g.,
for explanation of the accelerated expansion of the
Universe following from supernovae (type Ia) obser-
vational data [22–24]. Certain exact solutions in
multidimesional EGB cosmology were obtained in
[9–21] and some other papers.

Here we deal with the cosmological solutions with
diagonal metrics (of Bianchi-I-like type) governed
by n scale factors depending on one variable, where
n > 3. We restrict ourselves to solutions with an
exponential dependence of the scale factors. We
present new examples of exact solutions in dimen-
sion D = 8 which describe an exponential expansion
of 3-dimensional factor space and contraction of 4-
dimensional internal space. We study the stability
of the solutions with static Hubble-like parameters
hi(t) = vi and find asymptotic relations for variation
of the effective gravitational constant for two stable
solutions.

The paper is organized as follows. In Section 2,
the equations of motion for the D-dimensional EGB
model are considered. For diagonal cosmological-
type metrics the equations of motion are equivalent
to a set of Lagrange equations corresponding to a
certain effective Lagrangian [19, 20] (see also [10]). In
Section 3, some cosmological solutions are obtained
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with an exponential behavior of the scale factors, e.g.,
satisfying the observational restriction on the varia-
tion of the effective gravitational constant G for two
isotropic factor spaces and a positive value of α =
α2/α1. Section 4 is devoted to an analysis of stability
of the solutions with static Hubble-like parameters.
We prove the stability of two solutions from [21] in di-
mensions D = 22, 28 and find an asymptotic relation
for G in a linear approximation in the perturbations.

2. THE COSMOLOGICAL MODEL

We consider the manifold
M = (t−, t+) × R

n (2)

with the metric

g = −dt ⊗ dt +
n∑

i=1

e2βi(t)dyi ⊗ dyi, (3)

where βi(t) are smooth functions on (t−, t+), i =
1, . . . , n.

We introduce “Hubble-like” variables hi =
dβi/dt. The equations of motion for the action (1)
read

α1(Gijh
ihj + 2Λ) − α2Gijklh

ihjhkhl = 0, (4)[
2α1Gijh

j − 4
3
α2Gijklh

jhkhl

] n∑
i=1

hi

+
d

dt

[
2α1Gijh

j − 4
3
α2Gijklh

jhkhl

]
− L = 0, (5)

where i = 1, . . . , n and

L = α1(Gijh
ihj − 2Λ) − 1

3
α2Gijklh

ihjhkhl, (6)

Gij = δij − 1, (7)

Gijkl = GijGikGilGjkGjlGkl. (8)

are the components of the 2-metric of pseudo-
Euclidean signature and the Finslerian 4-metric on
R

n [19, 20], respectively.
Due to (4) we have

L =
2
3
α1(Gijh

ihj − 4Λ). (9)

In this paper we deal with the following solutions
to equations (4) and (5):

hi(t) = vi, (10)

with constant vi, which correspond to the solutions
βi = vit + βi

0, where βi
0 are constants, i = 1, . . . , n.

In this case we obtain the metric (3) with the expo-
nential dependence of scale factors

g = −dt ⊗ dt +
n∑

i=1

Bie
2vitdyi ⊗ dyi, (11)

where Bi > 0 are arbitrary constants.

For a fixed point v = (vi) we have the set of poly-
nomial equations

Gijv
ivj + 2Λ − αGijklv

ivjvkvl = 0, (12)[
2Gijv

j − 4
3
αGijklv

jvkvl

] n∑
i=1

vi

− 2
3
Gijv

ivj +
8
3
Λ = 0, (13)

where i = 1, . . . , n, and α = α2/α1. For n > 3 we get
a set of forth-order polynomial equations.

With Λ = 0 and n > 3, the set of equations (12)
and (13) has an isotropic solution v1 = ... = vn = H

only if α < 0 [19, 20] H = ±1/
√

|α|(n − 2)(n − 3).
This solution was generalized in [18] to the case Λ �=
0.

It was shown in [19, 20] that there are no more
than three different numbers among v1, ..., vn when
Λ = 0. This is valid also for Λ �= 0.

3. EXAMPLES OF COSMOLOGICAL
SOLUTIONS

In this section we consider some solutions to the
set of equations (4), (5) of the following form:

v = (H, . . . ,H, h, . . . , h), (14)

where H a Hubble-like’ parameter corresponding to
the m-dimensional isotropic subspace with m ≥ 3,
and h is a Hubble-like parameter corresponding to
the l-dimensional isotropic subspace, l > 1. We put
H > 0 for describing an accelerated expansion of the
3D subspace (which may describe our Universe), and
also put h < 0 for a possible description of a small
enough variation of the effective gravitational con-
stant (see below).

3.1. Polynomial Equations

According to the ansatz (14), the m-dimensional
subspace is expanding with the Hubble parameter
H > 0, while the l-dimensional subspace is contract-
ing with the Hubble-like parameter h < 0.

We put in (12) and (13) α = ±1 and denote Λ = λ,
keeping in mind the general α-dependent form of the
solutions

H(α) = H|α|−1/2, h(α) = h|α|−1/2,

Λ = λ|α|−1. (15)
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3.2. Solutions with Λ = 0

Let Λ = 0 and α = 1. It was shown in [21] that
for m = 9 there exists an infinite series of cosmolog-
ical solutions with l = 3000, 3001, . . . , any of which
describes an accelerated expansion of the 3D factor
space with sufficiently small variation of the effective
gravitational constant G obeying the observational
restrictions [25]. This variation may be arbitrarily
small for a large enough value of l.

We remind the reader that the effective gravita-
tional constant G is proportional to the inverse vol-
ume scale factor of the internal space, see [26, 28–30]
and references therein.

For m = 11 and l = 16, the following solution with

H =
1√
15

, h = − 1
2
√

15
(16)

was found in [21], which describes a zero variation of
the effective gravitational constant G.

Another solution of such a type with

H =
1
6
, h = −1

3
(17)

and a constant G appears for m = 15 and l = 6 [21].

3.3. Solutions with Λ �= 0

Here we present a few cosmological solutions for
Λ �= 0, α = 1, m = 3 and l = 4:

H =
1
4

√
2, h = −1

4

√
2 (18)

for λ = 3/16,

H =
1
4

√
6, h = − 1

12

√
6 (19)

for λ = 13/48 and

H =
2
29

√
29, h = − 3

58

√
29 (20)

for λ = 21/116.

These solutions describe and accelerated expan-
sion of the 3D factor space and contraction of the 4D
internal factor space for certain positive values of the
reduced cosmological constant λ. There also exist
examples of solutions with a negative cosmological
constant, λ = −21/80:

H± =
1

60320
(248 ± 32

√
30)R∓ > 0, (21)

h± = − 1
580

R∓ < 0, (22)

where R∓ =
√

68150 ∓ 9280
√

30.

4. STABILITY ANALYSIS
AND VARIATION OF G

4.1. Equations for Perturbations

Here we study the stability of static solutions
hi(t) = vi to Eqs. (4) and (5) under linear pertuba-
tions. We put

hi(t) = vi + δhi(t), (23)

i = 1, . . . , n. By substitution of (23) into Eqs. (4) and
(5) we get in the linear approximation the following
relations for the perturbations δhi:

Ci(v)δhi = 0, (24)

Lij(v)δḣj = Bij(v)δhj , (25)

where

Ci(v) = 2Gijv
j − 4αGijksv

jvkvs, (26)

Lij(v) = 2Gij − 4αGijksv
kvs, (27)

Bij(v) = −Lij(v)
∑

k

vk − Li(v) +
4
3
Gkjv

k, (28)

and

Li(v) = 2Gijv
j − 4

3
αGijksv

jvkvs, (29)

i, j, k, s = 1, . . . , n.

We put the following restriction on the matrix L =
(Lij(v)):

detL �= 0. (30)

Thus the matrix L is considered to be invertible. Its
inverse will be denoted L−1 = (Lij) = (Lij(v)). Then
the relation (25) may be rewritten as follows:

δḣi = Ai
j(v)δhj , (31)

where the matrix A = (Ai
j(v)) is defined as A =

L−1B with B = (Bij(v)), or, explicitly,

Ai
j(v) = −δi

j

∑
k

vk −
∑

s

LisLs

+
4
3
Gkjv

k
∑

s

Lis. (32)

In what follows use the following agreement on the
indices: μ, ν = 1, . . . ,m and α, β = m + 1, . . . ,m +
n. We also denote

Sij = Gijksv
kvs, Ai = Sijv

j , vi = Gijv
j . (33)

Note that Sij = Sji and Sii = 0.
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4.2. Solution with m = 11, l = 16 and Λ = 0

Consider the solution (16) with m = 11, l = 16
and Λ = 0 (α = 1). The calculations give

Sμν =
4
5
(δμν − 1), Sμα = Sαμ = −1

2
,

Sαβ =
1
10

(1 − δαβ). (34)

The symmetric matrix L = (Lij) has a block-diago-
nal form:

Lμν =
6
5
(1 − δμν), Lμα = Lαμ = 0,

Lαβ =
12
5

(δαβ − 1). (35)

The matrix L is invertible, and its inverse L−1 = (Lij)
reads

Lμν =
5
6
(

1
10

− δμν), Lμα = Lαμ = 0,

Lαβ =
5
12

(δαβ − 1
15

). (36)

Here we use the matrix identity (δab − 1)−1 = (δab −
1/(N − 1)), a, b = 1, . . . , N .

We also obtain vμ = −2H , vα = −7H/2,

Aμ = −4H, Aα = −25H/4,
Cμ = 12H, Cα = 18H, (37)

and Li = 4H/3, where H = 1/
√

15. For the matrix
(Ai

j) we get

Aμ
ν = −H(3δμ

ν +
1
3
), Aμ

β = −H

2
,

Aα
ν =

H

9
, Aα

β = H(−3δα
β +

1
6
). (38)

Due to (37) and (38), the relations (24) and (31) read

2
∑

μ

δhμ + 3
∑
α

δhα = 0, (39)

δḣi = −3Hδhi. (40)

We get the following solution for perturbations:

δhi = ai exp(−3Ht), (41)

2
11∑

μ=1

aμ + 3
27∑

α=12

aα = 0, (42)

where H = 1/
√

15, i = 1, . . . , 27. Thus the solu-
tion (16) is stable as t → +∞.

4.3. Solution with m = 15, l = 6 and Λ = 0
Now we consider the solution (17) with m = 15,

l = 6 and Λ = 0 (α = 1). We get

Sμν = δμν − 1, Sμα = Sαμ = −1/2,

Sαβ =
1
2
(1 − δαβ). (43)

The matrix L = (Lij) is block-diagonal,

Lμν = 2(1 − δμν), Lμα = Lαμ = 0,
Lαβ = 4(δαβ − 1). (44)

The matrix L is invertible, and its inverse reads

Lμν =
1
2

( 1
14

− δμν
)
, Lμα = Lαμ = 0,

Lαβ =
1
4
(δαβ − 1

5
). (45)

We also obtain vμ = −1/3, vα = −5/6,

Aμ = −4/3, Aα = −25/12,
Cμ = 14/3, Cα = 20/3, Li = 10/9. (46)

For the matrix (Ai
j) we have

Aμ
ν = −1

2
δμ
ν − 1

18
, Aμ

β = − 5
63

,

Aα
ν =

7
90

, Aα
β = −1

2
δα
β +

1
9
. (47)

Due to (46) and (47), the relations (24) and (31) read

7
∑

μ

δhμ + 10
∑
α

δhα = 0, (48)

δḣi = −1
2
δhi. (49)

We get the following solution for perturbations :

δhi = ai exp(−1
2
t), (50)

15∑
μ=1

aμ + 10
21∑

α=16

aα = 0, (51)

i = 1, . . . , 21. Thus the solution (17) is stable as
t → +∞.

4.4. Variation of the Effective Gravitational Constant

For both solutions under consideration we get in
the linear approximation in δhi

β̇i = vi + δhi = vi + ai exp(−Kt), (52)

where K = 3H > 0 and
∑n

i=1 Cia
i = 0. This implies

the following asymptotic relation as t → +∞:

βi(t) = vit + βi
0 − K−1ai exp(−Kt), (53)

i = 1, . . . , n.
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For the effective gravitational constant G(t) =
const · exp(−

∑n
i=4 βi(t)) we get the following

asymptotic relation:

G(t) = G0 exp
(

+K−1e−Kt
n∑

i=4

ai

)
, (54)

for the two solutions under consideration (with∑n
i=4 vi = 0), where K = 3H and G0 is the asymp-

totic value of G(t) for t → +∞.
Hence we obtain the asymptotic relation for the

variation of G

Ġ

G
= −e−Kt

n∑
i=4

ai. (55)

In the general case α > 0 we have K = 3H(α), where

H(α) =
α−1/2

6
,

α−1/2

√
15

(56)

for D = 22, 28, respectively.
Let us consider the most stringent observa-

tional restriction on Ġ obtained from the set of
ephemerides [25]

Ġ/G = (0.16 ± 0.6) × 10−13 year−1, (57)

allowed at a 95% confidence (2-σ) level. It follows
from (55) that in both cases under consideration the
restriction (57) is satisfied for either a large enough
value of t for fixed ai or a small enough value of∑n

i=4 ai for fixed t.

Here we present for completeness the value of the
Hubble parameter [31]

H0 = (67.80 ± 1.54) km/s Mpc−1

= (6.929 ± 0.157) × 10−11 year−1, (58)

with a 95% confidence level. The relation H(α) = H0

gives the value of α in any of the two cases.

5. CONCLUSIONS

We have considered the D-dimensional Einstein–
Gauss–Bonnet (EGB) model with Λ term. By using
the ansatz of a diagonal cosmological type metric,
we have found new solutions with an exponential
dependence of the scale factors with respect to the
synchronous time variable t in dimensions D = 1 +
3 + 4. Any of these solutions describes an exponen-
tial expansion of our 3D factor space with a Hubble
parameter H > 0 and exponential contraction of the
4D internal space.

We have also studied two cosmological solutoins
from [21] in the EGB model with Λ = 0 for D =

22, 28. These solutions describe an exponential ex-
pansion of our 3D factor space with the Hubble pa-
rameter H > 0 and zero temporal variation of the ef-
fective gravitational constant G. We have proved that
these solutions are stable as t → +∞. We have found
solutions for perturbations in both cases: δhi(t) =
ai exp(−3H(α)t), with certain linear constraints on
the amplitudes ai, where

H(α) =
α−1/2

6
,

α−1/2

√
15

(α > 0)

for D = 22, 28, respectively. In the linear approxi-
mation for perturbations, we have found a relation
for variation of G: Ġ/G is exponentially damped and
tends to zero as t → +∞. Thus we have shown
that, in the framework of the EGB model, there ex-
ists a variety of solutions describing an accelerated
expansion of the 3D factor space with a sufficiently
small (or even zero) value of variation of the effective
gravitational constant G.

An open question here is to compare our scheme
of the stability analysis of the exponential solutions
with that of [32]. This may be a subject of a separate
publication.
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