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Can Gravity Distinguish between Dirac and Majorana Neutrinos?
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Abstract—The interaction of neutrinos with gravitational fields in the weak field regime at one loop to
the leading order has been studied by Menon and Thalappilil. They deduced some theoretical differences
between the Majorana and Dirac neutrinos. Then they proved that, in spite of these theoretical differences,
as far as experiments are concerned, they would be virtually indistinguishable. We study the interaction of
neutrinos with weak gravitational fields to the second order (at two loops). We show that there appear new
neutrino gravitational form factors which were absent in the first-order calculations, so from a theoretical
point of view there are more differences between the two kinds of neutrinos than in the first order, but we
show that likewise they are indistinguishable experimentally.
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1. INTRODUCTION

The whole of the last century of physics is rec-
ognized by two main theories: Quantum Mechanics
and Relativity. The physical phenomena in which
gravitational and quantum effects appear simultane-
ously are very interesting from both theoretical and
experimental points of view [1—13]. There has been
an extensive research in theoretical physics which
brought out an unexpected interplay between general
relativity and quantum field theory. On the other
hand, many attempts have been made to see whether
there are some novel experimental or observational
ways of studying quantized fields coupled to curved
space-time. Interaction of quantum particles with
gravitational fields is one the interesting subjects at
the interface of quantum mechanics and general rela-
tivity. The neutrino is one of the most mysterious and
interesting particles in the universe. Neutrino physics
is one of the most important fields of research in high
energy physics, astrophysics and cosmology, see [14,
15] for recent reviews. Interaction of neutrinos with
gravitational fields and the distinguishability between
Dirac and Majorana neutrinos are very exciting issues
in neutrino physics.

The graviton-neutrino vertex to the first order
(1 loop) has been studied in [16] using general
symmetry principles. The authors tried to understand
how the Majorana and Dirac neutrinos could be
different as far as the gravitational interaction is
concerned. They found that, in spite of theoretical
differences, the Majorana and Dirac neutrinos can-
not be experimentally distinguished by gravitational
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interaction. It is worth mentioning that neutrino
form factors have also been studied in [17, 18].
this work we study the graviton-neutrino vertex and
gravitational neutrino transition form factors to the
second order, i.e., in 2 loops. We show that, from a
theoretical perspective, the second-order calculations
reveal more differences between Dirac and Majorana
neutrinos than the first order, but we also show that
they are indistinguishable as far as experiments are
concerned.

[t has been shown in [19] that the spin-gravity
interaction can distinguish between Dirac and Majo-
rana neutrino wave packets propagating in a Lense-
Thirring background, but it was pointed out in [20]
that the treatment of the Majorana neutrino in [19] is
not valid, so the claim stated in [19] does not follow,
see also [21]. In [22—29] one can find some papers
on the possibilities of distinguishing Dirac from Ma-
jorana neutrinos b ut not in the gravitational field.

2. TWO-LOOP CALCULATIONS

For Dirac neutrinos, there are eighteen 2-loop
graviton-neutrino vertices which are shown in
Figs. 1-18.

The Feynman amplitudes of these diagrams are
presented below. The energy-momentum four-vector
of the graviton propagator for diagrams 4 and 11 is £/,
and for the rest of the diagrams it is p”. The Feynman
rules for the gravitational interactions with Standard
Model (SM) fields that are relevant to our study are
presented in Appendix A. We start from the Feynman
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Figure 2: The amplitude of this diagram can be de-
rived from that of diagram (1) by some minor changes. Figure 4: For the Feynman amplitude of this dia-
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Figures 6, 7, 8: The amplitudes of these diagram
can be derived from those of diagrams 5, 3, and 4,
respectively, by some minor changes.

Figure 9: The Feynman amplitude of this dia-
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Figure 10: The amplitude of this diagram can
be derived from that of diagram 9 by some minor
changes.
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Figure 13: The amplitude of this diagram can Figure 15: The amplitude of this diagram can
be derived from that of diagram 12 by some minor be derived from that of diagram 14 by some minor

changes. changes.
Figure 14: The Feynman amplitude of this dia- Figure 16: The Feynman amplitude of this dia-
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be derived from that of diagram 16 by some minor
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Figure 18: And finally the Feynman amplitude of
diagram 18 is given by
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We have calculated the invariant Feynman am-
plitude for all diagrams, but due to a large number
of calculations we do not present their details for all
diagrams, but instead we present some calculations
of two typical diagrams and write down only the
final results for the rest of them. Our purpose is
to find what form factors are produced by individual
diagrams. Let us consider the Feynman amplitude
of diagram 1. Multiplication of the numerator of
the second and third parentheses regardless of the
constant coefficients gives:

(4’7“]?“) _ 2’}’”]7”1) + 4,va/p, _ vipl/u
— 81" my + 4P — 2p"""), (1)

and for the case of the fourth and fifth parentheses we
have

2# yupy — 28" VD + 2,y + 288 70D,
— 20" Y1), + 2mo o), — PPt BV
— MYy — Bl t B D), — Mo,
— 4N ¥+ 48 e B 4 208 N0
— 20" N + 288 Ny
— dnemy ¢+ Am?). (2)

Multiplying the numerators of the parentheses 7—
10 in the same amplitude, regardless of the constant
coefficients, we have :

(Taspsy” PL)(+mi) () (70 Pr)
= <77AB77p5 - ;nAme - ;nAp"?Bﬁ> o
x Pr(f+my)(n”) (o Pr)
= (nAB'yp - ;’YATIB,O - ;nAp’YB> (Pr)
x (K +m)(n”7) (7o Pr)

1 1
YANg — 273772) (F)vsPr.  (3)

= <77AB'Y T 9

But:
YAk = YAk Vo = k¥ (2040 — Yava) = 2ka— Kya.
So Eq. (3) takes the following form:

1
—2naBKPrL, — 2(21@4— Kva)vBPrL

1
- 2(2/@— ¥vB)vaPr
= —2napkPr — (kays + kpva)PL



294

+ ; K(vavs +vBva) PL
= —2nap KPL — (kavs + kpya)PL+ K(nas)PL
= —na kP — (vakp + ypka)PL. (4)
[f we multiply parentheses 6—10, we get:
—#napkPrL — monapkPrL— ¥ (vakp +vka)PL
—my(yakB + vBka)PrL. (5)

We now calculate some typical integrals appearing in
the calculations of diagram 1. By multiplying the first
term of (1) by the first term of (2) and then multiplying
the result by (5) and integrating over p” and k, we
have:

(4y"p") x (28 vup),) = —16§DP", (6)

dit [ dip”
[ oy ] (o
o (=164p"?) x (— ¥ ¥PLnap)
(P")((p'—p")? = m2)(k2=m7)((k—p)? — m32)
= 16pp"* BoB1PLnas, (7)

dk4 d4p//
/ (2m)* / (2m)*
(=16§'p"?) x (—=myfPrnap)
(") ((p"=p')? = m2)(K2=m})((k—p)? — m2)
= 16m,p™* ¥ YPLnapBoB. (8)

The coefficients By and By are defined in the Ap-
pendix B. These integrals generate no form factors.

The integral
dk‘4 d4p//
/(27‘()4/(27‘()4

(—16¢'p"?) x (—¢ (vaks +vBka)PL)
(") ((p"—p")? — m2)(k2—m3)((k—p)? — m2)
= 16p™ x BoBi(vapp +vpa)Pr,  (9)

and the corresponding integral of diagram 5 generate
the form factors E3 and Ds3. The definitions of the
form factors are presented in Appendix C.

The following integral:

dk4 d4 "
sy
(=164'p"%) x (=my(yakp +vka)Pr)
@) ((p"=p')* — m3)(k2—m})((k—p)* — m3,)
= 16p"”m,p x BoBi(vapp + v8pa)Pr  (10)

also produces no form factors.

Now we study the Feynman amplitude of dia-
gram 5 which we may call a corresponding diagram

ALAVI, ABBASNEZHAD

to diagram 1. Comparing the invariant amplitudes of
diagrams 1 and 5, we observe that the parentheses
1—6 are the same in two amplitudes. Multiplying
the numerators of parentheses 6—10, regardless of the
constant coefficient, we have
— B ¥Prnap — mukPrnaB
— ¥ (vakp +vBka)PL
—mv(’yAkB—i-’YBkA)PL. (11)

Now let us calculate some typical integrals appearing
in the diagram 5. Multiplying the first term of (1) by
the first term of (2) and then multiplying the result
by (11) and integrating over p” and k, we have:

(4y"p"Y) x (2 Pyupl,) = —164p",

dk4 d4p//
/ (2m)* / (2m)*
(=16¢'p"*) x (—# ¥PLnaB)

(12)

@) (@) md) (R =md) (k) — m3,)
= 16y'p'* BoB1 PL1as. (13)
This integral produces no form factors;
dk4 d4p//
/ (2m)4 / (2m)4
o (—16¢'p) x (=mukPrnap)

(") ((p"—p")? — m2) (k2 —m?)((k—p')? — m2)
= 16m/ p" PpnapByB. (14)

This integral gives us the E; and D, form factors:

dk* [ dp”
[ oy ] (o
N (—16p'p) x (= (yaks + vBka)PL)
"™)((p'=p")? = m2)(k2=m)((k—p')? — m3,)
= 16p"* x BoB1(vap’s + v50'4)PL. (15)

This integral and the corresponding integral of dia-
gram 1 generate the form factors E3 and Ds. Finally,

the integral
dk4 d4p//
/(271')4/(271')4

» (=16 #'p'?) x (—my(vakp + vBka)PL)
") ((p"—p")? — m2) (k2 —m?)((k—p')? — m2)
= 16p”m, ¥ x BoBi(yaps +v8pa)Pr,  (16)

produces no form factors.
We have also calculated the Feynman amplitudes
of all other diagrams, and the results are as follows:
All diagrams generate the form factors E3 and Ds,
in addition, diagrams 2, 5, 9, 10, 14, and 15 generate
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the form factors E; and D;. Interaction of neutrinos
with weak gravitational fields to the first order (1 loop)
involves four diagrams, which produce the form fac-
tors E3 and Ds. From a theoretical point of view,
these form factors can be used to distinguish between
Dirac and Majorana neutrinos, but, as shown in [16],
they satisfy the following relations:
E3'(¢*) = E5(¢°) + D3 (¢*),  D3'(¢*) =0. (17)
Interaction of neutrinos with gravitational fields to
the second order (2 loops) involves 18 diagrams. We
have shown that they produce form factors F1, D,
Es3, and Ds. The form factors F; and D; are new,
i.e., they were absent in the first-order calculations,
so from a theoretical point of view there are more dif-
ferences between Dirac and Majorana neutrinos than
in the first order. But corresponding to each Feynman
diagram of Dirac neutrinos, there is an additional
“charge conjugate” diagram for Majorana neutrinos,
with P, — Pg and [~ — I*. For the electromag-
netic interaction, the coupling “e” (electron charge)
changes its sign under charge conjugation, but in this
case (gravitational interaction), we have [16]:

Guw = Mo + khyy +0(R?), k= V327G,
77;w = (17 _17 _17 _1)7

where hy,, is the spin-2 graviton, the couling k does
not change its sign under charge conjugation, so it
is the same for Majorana and Dirac neutrinos. On
the other hand, noting that P, = (1 — 75) and Pg =
5 (1+15), one can easily check that the axial vector
parts 5 and —~5 cancel each other, so in the Majo-
rana case the vertex factor does not have any terms
proportional to s, and therefore we do not have D
form factors (for more information about form factors
see Appendix C). On the other hand, the first terms
in P;, and Pgr do not cancel each other, so we have
an F form factor for the Majorana neutrinos which is
twice the same form factor for Dirac neutrinos. To
be more clear, suppose in the Feynman amplitude
we have a term proportional to Py, like APy, where
A is a cofficient (resulting from integration, see the
calculations after diagram 18). As stated before, for
Majorana neutrinos there is also a term APpg in the
amplitude, but for Dirac case there is no term propor-
tional to Pgr, so mathematically the above argument
can be summarized as follows :

(18)

For Majorana neutrinos :
1 1
AP; + APr = 2A(1—’75) + 2A(1+’75)

= |:2X;+OX’Y5:|A
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For Dirac neutrinos : P = 0, so

1 1
AP + AP = |:2 + 2"}/5:| A.
D; and E;, i = 1,3 are the coefficients of the axial
and non-axial parts of the amplitude, respectively (see
Appendix C), so we have :

EM =24, EP =4 EM=2FEP,

DM =0, i=1,3

and
EP =DP = A.
So we arrive at the following relation:

EM—-EP 4+ DP i=1,3. (19)

This is an important result that shows that, despite
theoretical differences, we are not able to distinguish
experimentally Majorana neutrinos from Dirac neu-
trinos interacting with gravity. Let us explain it
more clearly by a simple example. Suppose we get
the value 4 in an experiment for the matrix element
;(p") (AT ap)ui(p). But we know 4 = 2 + 2, so ex-
perimentally one cannot distinguish whether we have
obtained 4 (the left-hand side) or 2 4+ 2 (the right-
hand side). 4 and (2 + 2) correspond to Majorana and
Dirac neutrinos, respectively. Therefore, in spite of
theoretical differences in the graviton vertex of the two
cases, one would not be able to distinguish Majorana
and Dirac neutrinos experimentally.

3. DISCUSSION

The equivalence principle (EP) is one of the cor-
nerstones of general relativity. Considerable efforts
have been made and are still being made to test the
EP for antimatter.

There are some direct experiments and observa-
tions which indicate that the EP holds also for an-
timatter, and the interactions between matter and
antimatter are the same as those between matter and
itself, so matter and antimatter behave identically in
the gravitational fields. The famous worldwide exper-
iments to test the equivalence principle for antimatter
(independent of its composition or structure) with
very high precision are as follows:

(1) ALPHA—Antihydrogen Laser Physics Appa-
ratus [30].

(2) AEGIS—Antihydrogen Experiment : Gravity,
Interferometry, Spectroscopy [31].

(3) GBAR—Gravitational Behavior of Antihydro-
gen at Rest [32].

All these three facilities rely on the Antiproton
Decelerator (AD) at CERN, but AEGIS and GBAR
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use beams of antihydrogen rather than trapped anti-
hydrogen.

(4) AGE—Antimatter Gravity Experiment at Fer-
milab [33].

They made measurements directly testing both the
EP and that matter and antimatter behave identically
in the gravitational field of the Earth. Using the
gravitationally coupled Dirac equation, it is shown
in [34] that particles and antiparticles experience the
same coupling to the gravitational field, including all
relativistic quantum corrections of motion. Their in-
vestigations demonstrate the consistency of quantum
mechanics with general relativity and suggest that
any conceivable differences of the gravitational cou-
pling of particles and antiparticles should be assigned
to a “fifth force,” not to any conceivable “modifica-
tions of the gravitational mass” of antiparticles versus
particles.

On the other hand, in particular, there is an obser-
vational confirmation for neutrinos and antineutrinos.
Based on data from the supernova SN 1987A, it is
confirmed that the Einstein equivalence principle is
valid for electronic neutrinos and their antiparticles
[35].

So the experimental and observational data show
that gravity cannot distinguish between matter and
antimatter. We know that for Majorana neutrinos, the
neutrinos and antineutrinos are the same but in the
Dirac case they are different. If gravity cannot dis-
tinguish matter from antimatter, it cannot distinguish
Majorana and Dirac neutrinos.

4. CONCLUSIONS

We have studied the graviton-neutrino vertex and
gravitational neutrinos transition form factors to the
second order, i.e., in 2 loops. We have shown that
from a theoretical point of view the second-order cal-
culations reveal more differences between Dirac and
Majorana neutrinos than the first order. but we have
also shown that they are indistinguishable as long
as experiments are considered. As is well known,
the most sensitive way to distinguish Majorana from
Dirac neutrinos is the neutrinoless double beta decay,
which is too far from the realm of gravity.

Appendix A

Consider some Feynman rules for gravitational
interactions with SM fields that are relevant to the
processes considered in this paper.

The Feynman rule for the graviton propagator is
given by

1
NG

PRg) = o + 1" — ),

ALAVI, ABBASNEZHAD

For the four-point gravition coupling, the Feynman
rule is

. kg 1 1

22\/2 [nuvnaﬁ - znuﬁnva - 277ua77vﬁ]75PL-

For gravition-fermion coupling
ik

ik
~ S @+ 2]+ el = 2my].

The Feynman rule is
2

oz
ik [77;”) Nap

9 — NpavB — Mvalus)

k / / /
—i, [0 (0" - Pap — PaPi3) + PyPampo)
+ PP e — PuPoyas — (0 P)Njuatv)al-
Appendix B
The definition of By is
1 4 !
Bo = /p”2((p —p-m2)t P /
1 1
4
X /da:/ (p”2 d /' / dxls(a
0 0

where

o = 382]9/2 _

h) = [,
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. I'(n—D/2) e
— i(_1\n.D/2 D/2—n—e
i(—1)"r I'(n) a .
Now we define B” as
Bf = / i d*k
(k2 —m3)((k—p)2—m2)

But

1
1 —/dm 1
ab (a(l —x) + bx)?’
0

a=k>—m?, b= (k-p)?-—m?
1
- pre /da:/k”[(k2 —m2)(1- )
0 k
T (k= p)? = m2)a] 2
Introducing the new variables A and £ as

A =2 —2(p® —mi +m3) + m3,

kK =k — xp,

BP? can be rewritten as follows:
1

Bf = / dz / (K + zp)P(K? — A)2d'K'.
0
So,

Therefore we have
BY = pp X B17

where
1 1
xr
B :/d:r/ (k/z_A)zd%’:/dx x5 (A).
0 0

Appendix C

Here we present the definitions of the form fac-
tors. We denote by I, (p, ¢) the gravitational vertex
function of the neutrino which is symmetric in its
indices. The gravitational gauge invariance implies
that it satisfies the condition

¢"u(p" )T pyu(p) = 0.
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To write down the general form of the matrix element,
we introduce its tensor and pseudotensor compo-
nents as follows:

u(p' )T pou(p) = a(p) [, + Dy’ Ju(p).-

Lorentz invariance implies that the vertex function
can in general have the following components:

Guvs PuPv, qQuiv, {pQ};wa {p’}/}uva {Q’Y}uva

where ¢ =p—p" and {pg}w = (Puv}) = Pugv +
qupv- Therefore the tensor and pseudotensor (parity
conserving and parity violating) components of the
neutrino gravitational vertex in have general the
following forms:

(C.1)

u(p'); T u(p)i = w(p); (B (6°) (@ guw — dudv)
+ E2(¢?) (pupo) + E3(4*)(¢* {7} o

— Ngymo{pa}w)]u(p)i + O(Aym?2),  (C.2)

u(p); Ty up)i = alp’);[D1(¢*)7° (¢ Gpo — Guao)
+Da2(q%)y* (pupv) + D3(a*)7° (v} o
- Eijmv{pQ}uv)]u(p)i + O(A”m%),

where

(C.3)

Ajjmy = Myj — My,

g My = Myj + My,
ij
2

2 _ 2
Aigmy = my; — my,;.

According to Eq. (C.2), the coefficients of (¢%gw —
QMQU)v (pupv) and (q2{'7p};w - Aijmv{pQ}uv) are
E1(¢%), Ea(q?), and F3(q?), respectively.

[t is also seen from Eq. (C.3) that the coefficients
of Y’ (¢guo — Quv), (Pupo)y’ and ¥ (¢*{vp}uw —

Sijto{pa}w) are Di(¢%), Da(q?), and Ds(q?), re-
spectively.
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