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Gravitational Lensing of Twisted Electromagnetic Waves

Yu. A. Portnov*

The Moscow State Automobile & Road Technical University,
Leningradskii pr. 64, Moscow, 125319 Russia

Received June 21, 2014

Abstract—The recent research in the field of classical and quantum optics has allowed for establishing
that an electromagnetic wave possesses not only energy and momentum but also angular momentum. The
wave front of an electromagnetic wave having an angular momentum is twisted with respect to the direction
of motion. In the present paper, using the model of seven-dimensional space-time developed by the author,
the motion of twisted electromagnetic waves in gravitational fields is considered. It is shown that the
existence of an angular momentum of an electromagnetic wave leads to smaller values of the gravitational
redshift than at zero angular momentum. The motion of electromagnetic waves near a massive object
is also considered. It is shown that the gravitational deflection angle of an electromagnetic wave with a
nonzero angular momentum is larger than in the case of zero angular momentum. The author believes that
this approach will allow for explaining the gravitational lensing using only baryonic matter and also provide
a new look at some problems of modern cosmology.
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1. INTRODUCTION

The gravitational lensing effect manifests itself in
deformations of the images of background objects
or in the emergence of multiple images of the same
object [1, 2]. This effect, predicted by general relativity
(GR) and confirmed by experiment in 1919, after-
wards became a basis of modern methods of estimat-
ing the matter density of the sources of gravitational
lensing [3]. As a rule, the gravitational lenses that
substantially distort the image of a background object
are very large mass concentrations, such as galaxies
or clusters of galaxies [4]. Less massive objects, e.g.,
stars also bend the light beams but by small angles.
Solving the inverse problem, that is, calculating the
gravitational field necessary for obtaining such im-
ages, one can estimate the mass of the gravitational
lens [5, 6]. As shown by calculations, in some clusters
the resulting values of mass needed for explaining the
gravitational lensing effect turn out to be much larger
than the mass of visible matter [7–9]. Such a visible
mass deficit is usually explained by the existence of
invisible dark matter [10, 11] interacting with ambient
matter only gravitationally.

But this explanation looks questionable. Thus,
for instance, an investigation of motion of more than
400 stars located up to 13,000 light years from the
Sun [12] did not reveal any indication of dark matter
existence. Historically, the light beam bending in the
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gravitational field was already calculated in Newton’s
theory of gravity. However, the predicted deflection
angle in the framework of Newton’s theory has turned
out to be smaller than the experimentally measured
value by a factor of two. At the beginning of the
20th century, the scientists did not introduce any
additional, invisible entities in order to explain the
discrepancy between theory and experiment. Instead,
the theory of GR was created, and in its framework
a solution was found which completely explained the
experimental data [13].

In the present paper we pose the problem of ex-
plaining the gravitational lensing (according to the
observational data) without using the notion of dark
matter, taking into account a twisted nature of light
beams.

The paper by Allen et al. [14], published as early
as in 1992, suggested schemes for creation and de-
tection of twisted light and also expressed the idea
that a light wave possesses an angular momentum.
A twisted light wave differs from a usual one in that
in a flat light wave all wave fronts follow each other,
whereas in a twisted light wave the front is like a helix
with the direction of wave propagation.

In 1995 [15] narrow twisted light beams were
obtained experimentally. Technologically, this was
realized with the aid of a special prism of variable
thickness. This difference in thickness allows a cer-
tain part of the wave that passes through a thicker
layer of the prism to lag behind with respect to the
part of the wave that has passed through a thinner
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layer. Thus, at the output, different parts of the wave
have different phases. Another method of obtaining
twisted light waves [16] has been realized with the aid
of diffraction gratings with dislocations.

The existence of an angular momentum of a light
wave found a confirmation in the following exper-
iment [17]: at the focus of a twisted laser beam,
a microparticle was suspended, which, having ab-
sorbed the light, began to rotate. The direction of its
rotation depended on the light twisting direction. At
present, the development of light twisting technology
has made it possible to obtain twisted waves [18]
with photon energies up to 99 eV. Applications of
twisted light are also broadly developing, for exam-
ple, in quantum information theory, in micromachine
control, in astrophysics and microscopy [19].

In 2010 Y. Thide and colleagues published a pa-
per [20] describing a methodology able to determine
the rotation characteristics of black holes by analyz-
ing the orbital angular momentum of light passing
close to the accretion disk.

The existence of energy, momentum and angular
momentum of a light wave leads to the idea that
twisted electromagnetic waves have six instead of
three degrees of freedom, like any rigid body in me-
chanics. Therefore, in the present paper, for a descrip-
tion of the motion of twisted electromagnetic waves
we will use the model of 7-dimensional space-time
instead of a 4-dimensional one.

As shown in [21–23], to explain the dynamics
of not only translational but also rotational mo-
tion of bodies in gravitational fields, one can use
a 7-dimensional space-time, in which, in addition
to time and three spatial coordinates, there are
three coordinates describing the body’s orientation
in space: x4 = ϕ, x5 = ψ, x6 = θ—the Euler angles.
The geodesic equations in 7-dimensional space-time
make it possible to obtain not only the equations of
translational motion but also those describing the
rotational motion of a gyroscope [23].

2. THE MAIN PART

In empty flat 7-dimensional space-time [21–23],
the metric has the form

g00 = −gaa = 1,

g45 = g54 = −Jω cos(θ)
m

,

g44 = g55 = g66 = −Jω

m
, (1)

where Jω is the moment of inertia of a test body
with respect to the axes of rotation, precession and
nutation, m is the test body mass, a = 1, 2, 3. The
paradoxicality of writing the metric tensor [24] which,

contrary to the 4-dimensional metric tensors of GR,
depends on the parameters of a test body (the moment
of inertia to mass ratio) allows one to suppose that
the space is not absolute, and the gravitational field
depends on a test body placed in it. However, to
date the only available method of detecting gravity
is to measure the curvature of geodesic lines which
are paths of the test bodies. Therefore we can only
speak of the presence or absence of the gravitational
field from the position of a moving test body. Such
a concept leads to a reconsideration of the notion of
relativity: not only motion becomes relative but even
the space-time itself depends on the test body we are
dealing with.

In [22, 23, 25], the Gravity Probe B experiment
has been considered, and it has been shown that in 7-
dimensional space-time the equality between the an-
gular velocity of geodesic precession and the angular
velocity of the Lense-Thirring effect is achieved only
if the gravitational equations are written in the form

Rμν = k

(
Tμν − 1

2
gμνT

)
+ Λμν , (2)

Rμν − 1
5
gμνR = kTμν +

(
Λμν − 1

5
gμνΛ

)
, (3)

where Λμν is the additional tensor of zero-point en-
ergy. The introduction of Λμν is necessary because
not all components Rμν for the metric (1) turn to zero
in the absence of matter (Tμν = 0). In what follows,
the Latin indices run over the values from 1 to 6 while
the Greek ones from 0 to 6.

To describe twisted electromagnetic waves, let us
extend Maxwell’s 4-dimensional theory of the elec-
tromagnetic field to 7-dimensional space-time. The
interaction of particles with each other is described
with the aid of a force field whose properties, un-
like those in classical theory, will be characterized
by the 7-vector Aμ. It will be afterwards called the
7-potential, whose components are functions of the
coordinates, time, and the orientation angles [21].
The three spatial components of the 7-potential Aλ

form a 3-dimensional vector called the vector poten-
tial of the field, the temporal component will be called
the scalar potential A0 = Φ, and the three orienta-
tional components of the 7-potential will form the
rotational potential of the field. The index lowering
of the 7-potential Aλ will be carried out using the
metric (1):

Aμ = gμλAλ.
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The Lagrange function of a charged body in an
electromagnetic field in 7-dimensional space-time
has the form

L = −mc2

√
1 − V 2

c2
− R2

i

ω2

c2
− qΦ

+
q

c
(AiV

i) +
q

c
(Ajω

j). (4)

It is necessary to note that due to homogeneity and
isotropy of space it can be assumed that the rotational
part of the electromagnetic field potential can only
depend on the angular coordinates while the spatial
part depends on the linear coordinates.

The equations of motion of a charge in a given
electromagnetic field are the Lagrange equations

d

dt

∂L

∂ui
− ∂L

∂xi
= 0, (5)

where L is given by Eq. (4). The derivative with
respect to velocity is the generalized momentum of
the body,

pi = ∂L/∂ui.

Thus the equations of motion can be written as

d

dt

(
pk +

q

c
Ak

)
=

q

c
∂k (−cΦ + (Anun)) , (6)

Calculating the full time derivative of the 7-potential,
after some transformation we obtain:

dpk

dt
= −q

c

∂Ak

∂t
− q∂kΦ

+
q

c

(
unεknlεsdhglsgdmgkf∂mAf

)
, (7)

where εknl are Levi-Civita-like symbols [26] in which
the indices run over the values from 1 to 6. Since
in the space under consideration one cannot multiply
the spatial and angular coordinates, the structure of
the Levi-Civita symbols looks as follows:

εikl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 (1, 2, 3); (2, 3, 1); (3, 1, 2);

(4, 5, 6); (5, 6, 4); (6, 4, 5)

+1 (3, 2, 1); (1, 3, 2); (2, 1, 3);

(6, 5, 4); (4, 6, 5); (5, 4, 6)

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

The left-hand side of Eqs. (7) contains a time
derivative of the body’s momentum. Consequently,
the right-hand side contains the force acting on the
body. By analogy with the theory of electromag-
netism, let us divide this force into two parts, the
velocity-dependent one and the velocity-independent
one.

The force of the first kind is the electric field
strength:

Ek = −1
c

∂Ak

∂t
− ∂kΦ. (9)

The force of the second kind is the magnetic field
strength:

Hr = εrdhgdmghf∂mAf . (10)

Unifying the parametric equations (9) and (10), we
can obtain the Maxwell equations modified to 7 di-
mensions:

εrdhgdmghf∂mEf = −1
c

∂

∂t
Hr. (11)

Multiplying (10) scalarly by the 7-dimensional nabla
operator ∇ = ∂kdxk, we can obtain the second mod-
ified Maxwell equation:

gkh∂kHh = 0. (12)

A product of the body’s charge density ε by the
velocity 7-vector uλ [21] will be called the current
density 7-vector:

jλ = ρuλ. (13)

Its three spatial components form the 3-dimensional
current density while its rotational components form
the charge rotation density.

Let us introduce the 7-dimensional electromag-
netic field tensor:

Fμν = ∂μAν − ∂νAμ. (14)

Finding the equations of motion from the least action
principle, we obtain the equation

∂μF νμ = −4π
c

jν , (15)

which is the second pair of Maxwell’s equations writ-
ten in a 7-dimensional form. Substituting different
values of i and components of the tensor (14), we
arrive at the equations

gkm∂kEm = 4πρ, (16)

εklmglhgmf ∂hHf =
1
c

∂Ek

∂t
+

4π
c

jk, (17)

Eqs. (12) and (11) together with (16) and (17)
determine the electromagnetic field in 7-dimensional
space. In what follows we call them the 7-dimensional
Maxwell equations.

Consider the 7-dimensional Maxwell equations in
a space-time without charges, ρ = 0, and without
currents, jk = 0, then

gkh∂kHh = 0, (18)

εrdhgdmghf∂mEf = −1
c

∂

∂t
Hr, (19)
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gkm∂kEm = 0, (20)

εklmglhgmf∂hHf =
1
c

∂Ek

∂t
. (21)

Let us take the 7-dimensional curl of Eq. (19):

εerugrbgus∂bεsdhgdmghf∂mEf

= −1
c

∂

∂t
εerugrbgus∂bHs;

using Eq. (21), one can write the wave equation

εerugrbgus∂bεsdhgdmghf∂mEf = − 1
c2

∂2Ee

∂t2
. (22)

We can transform this wave equation by raising the
indices in the Levi-Civita symbols, which results in

εeruεmfugrb∂b∂mEf = − 1
c2

∂2Ee

∂t2
.

The product εeruεmfu forms a true sixth-rank ten-
sor [27], which can be expressed as a combination
of products of components of the unit tensor δi

k as
follows:

εeruεmfu = δf
e δm

r − δm
e δf

r .

Using this transformation, we can bring the wave
equation to the form

(δf
e δm

r − δm
e δf

r )grb∂b∂mEf = − 1
c2

∂2Ee

∂t2
,

and simplifying it, we obtain

gmb∂m∂bEe − ∂eg
mb∂bEm = − 1

c2

∂2Ee

∂t2
.

The second term in the left-hand side of this equa-
tion is equal to zero due to the third Maxwell equa-
tion (20): gmb∂bEm = 0, and then the final form of the
wave equation is

gmb∂m∂bEe +
1
c2

∂2Ee

∂t2
= 0. (23)

We will suppose that a component of the electric
induction vector is a function of time and the spatial
and rotational coordinates:

E = E2(t, x1, x4).

In space-time with the Schwarzschild metric,
Eq. (23) takes the form

−
[(

1 − 2kM

c2x1

)
∂2

1 +
1

R2
i

∂2
4

]
E

+
1
c2

∂2E

∂t2
= 0, (24)

where Ri is the inertia radius of the electromagnetic
wave, M is the mass of a body that creates the
gravitational field, and k is Newton’s gravitational

constant. A solution of Eq. (24) in the case of a wave
moving along the x1 = x axis and rotation around
this axis with a phase change by the angle ϕ has the
form

E(t, x, ϕ) = A

× exp
[
−i

(
ωt − 2π

λ
x − 2π

μ
ϕ + σ

)]
, (25)

where ω is the cyclic frequency of the oscillations;
λ = cT is the wavelength; T is the oscillation period;
μ = ΩT is the wave rotation angle, i.e., the angle by
which the phase of the wave turns for a single period
of time; Ω is the angular velocity of phase rotation in
the wave; σ is the initial phase.

Substituting (25) into (24), we obtain a relation
connecting the wavelength, the oscillation frequency
and the rotation frequency:

1
λ2

(
1 +

2kM

c2x1

)
+

1
μ2R2

i

− ν2

c2
= 0.

Expressing the wave frequency from this relation, we
obtain the dependence of the frequency on the wave-
length and the rotation angle in the gravitational field:

ν =
c

λ

√
1 − 2kM

c2x1
+

λ2

R2
i μ

2
. (26)

As is evident from (26), the wave frequency be-
comes smaller if the wave moves in the gravitational
field.

Now consider a dimensionless quantity, the gravi-
tational redshift:

zG =
ν0 − ν

ν
,

where ν is the measured wave frequency and ν0 is the
laboratory wave frequency. Substituting the depen-
dence (26) into zG, we obtain the redshift value

z′G =
1√

1 − 2kM

c2x1
+

λ2

R2
i μ

2

− 1. (27)

In the Newtonian limit, in which

2kM

c2x1
− λ2

R2
i μ

2
� 1,

the redshift can be calculated from the relation

z′G ≈ kM

c2x1
− λ2

2R2
i μ

2
. (28)

As is seen from Eq. (28), if the electromagnetic wave
is not twisted, μ → ∞, assuming that x1 = R∗, we
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obtain for the approximate value of the redshift the
standard expression

zG ≈ kM

c2R∗ ,

where R∗ is the distance between the center of mass
of the attracting body and the point at which the
photon is emitted. If the electromagnetic wave is
rotating, the redshift is always smaller than in the
absence of rotation, z′G < zG.

As shown in [21], the Lagrange function of a free
body in the metric (1) has the form

L = −mc2

√
1 − V 2

c2
− R2

i

ω2

c2
.

We traditionally call the momentum and angular
momentum of a rigid body the vectors whose com-
ponents are the derivatives of the Lagrange function
with respect to the corresponding velocity compo-
nents. The momentum of a rigid body is

pk =
mV k√

1 − V 2/c2 − R2
i ω

2/c2
,

while its angular momentum is

pn
ω =

Jωωn√
1 − V 2/c2 − R2

i ω
2/c2

,

where Jω = m · R2
i is the body’s moment of inertia.

The energy of the body is calculated by the formula

E =
mc2√

1 − V 2/c2 − R2
i ω

2/c2
.

The full relativistic energy, momentum and angular
momentum can be unified in the 7-dimensional mo-
mentum:

P7 =
(
E/c, pk, pn

ω/R2
i

)
.

Let us find a relationship between the energy, mo-
mentum and angular momentum, and to do so, let us
find the square of the 7-momentum of a rigid body.
Since the 7-velocity squared is the velocity of light
squared, the relationship of energy, momentum and
angular momentum is

E2 = m2c4 + p2c2 + p2
ωc2/R2

i .

For the description of a photon, the relationship of
energy, momentum and angular momentum has the
form

E2 = p2c2 + p2
ωc2/R2

i .

Substituting the photon energy in the form E = hν
and using Eq. (26), we obtain

p2 +
p2

ω

R2
i

=
h2

λ2

[(
1 − 2kM

c2x1

)
+

λ2

R2
i μ

2

]
.

Simplifying the terms in the right-hand side, we ob-
tain

p2 +
p2

ω

R2
i

=
h2

λ2

(
1 − 2kM

c2x1

)
+

h2

R2
i μ

2
.

The first term in the right-hand side is the photon
momentum squared:

p =
h

λ

√
1 − 2kM

c2x1
, (29)

which, as is evident from this relation, depends on the
mass creating the gravitational field. The second term
is the photon angular momentum squared:

pω =
h

μ
, (30)

which does not depend on the gravitational field.
The motion of a photon depends on the space-time

curvature, therefore it deflects when passing near a
massive object. The deflection angle of an equation
wave passing near a nonrotating source of gravity, as
follows from the equations of GR [13], is calculated by
the formula

α =
4kM

c2r0
, (31)

where r0 is the impact parameter of the photon trajec-
tory, corresponding to the closest point of approach to
the gravitating body.

On the other hand, the gravitational field of a
nonrotating body affects the direction of the photon’s
angular momentum as it moves along a geodesic.
This influence can be described by the equation

d�pω

dt0
≈ −3

2
(�c × �∇φ) × �pω − (�c · �∇φ) · �pω, (32)

where �c is the velocity vector of the light beam which
is tangent to the geodesic line. Consider the simplest
case where the geodesic line �c is perpendicular to the
gradient of the gravitational potential �∇φ. In this case
Eq. (32) is simplified to give

d�pω

dt0
≈

(
−3

2
(�c × �∇φ)

)
× �pω. (33)

This enables us to say that the angular momentum
of the photon �pω, remaining invariable by absolute
value, changes its direction towards the center of
the gravitational field source with an angular velocity
equal to

�Ω = −3
2
(�c × �∇φ). (34)
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Using the angular velocity (34), one can obtain that
the light deflection angle from straight motion caused
by the angular momentum is

�β = −3
2
(�c × �∇φ) · dt0. (35)

Since the direction of the angular momentum of a
photon always coincides with the direction of its mo-
tion, it happens that a photon possessing a mo-
ment of inertia experiences a double deflection: the
one caused by the space-time curvature due to the
gravitational field (31) and the one caused by the
deflection of the photon’s angular momentum vector
in the gravitational field (35). We obtain that the full
deflection angle of light is equal to

ζ = α + β. (36)

As follows from Eq. (35), the effect will be larger if
the time of motion near the gravitational field source
is larger. At small size of the source of gravity,
e.g., at light propagation near the Sun, this effect is
insignificant, ζ ≈ α, due to a small time while light is
moving near the source of gravity, dt0 ≈ 0. At motion
near stellar clusters, light is subject to gravity for a
longer time, and, as a result, the deflection effect for a
rotating light beam is much larger, ζ > α.

3. CONCLUSION

Consider the difference between the electromag-
netic wave deflection angle calculated by Eq. (36) and
the classical deflection angle according to (31). We
obtain the ratio

�α

α
≈ 3

8
c · dt0

r0
.

Assuming that c · dt0 = l0 is the linear size of the
gravitating body near which the electromagnetic
wave is moving, we obtain

�α

α
≈ 3

8
l0
r0

. (37)

From Eq. (37) it follows that if the linear size of
the body is much larger than the impact parameter,
l0/r0 � 1, then the gravitational lensing will contain
a significant addition to the usual electromagnetic
wave deflection angle.

Thus if we assume that the beams passing through
gravitational lenses possess a nonzero angular mo-
mentum, then they experience the additional deflec-
tion (37). This explanation can solve the missing
mass problem in gravitational lensing using only
baryonic matter as the source of gravity. And it should
be noted that the value of the angular momentum pω

of the electromagnetic wave, see (35), is insignificant,
it can be arbitrarily small.

One of the reasons by which an electromagnetic
wave can acquire an angular momentum is the in-
homogeneous interstellar gas: while passing through
it, different parts of an electromagnetic wave acquire
different phases.
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