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Abstract—We trace the logical line of formulating a theory of mechanics founded on the basic relations
of mathematics of hypercomplex numbers and associated geometric images. Namely, it is shown that
the physical equations of quantum, classical and relativistic mechanics can be regarded as mathematical
consequences of a single condition of stability of exceptional algebras of real, complex and quaternion
numbers under transformations of primitive constituents of their units and elements. In the course
of the study, the notion of a basic fractal surface underlying the physical three-dimensional space is
introduced, and an original geometric treatment (admitting visualization) of some formerly considered
abstract functions (mechanical action, space-time interval) are suggested.
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1. INTRODUCTION

In the previous paper [1], a logical line describ-
ing the growth of different branches of contemporary
mechanics from mathematical roots was verbally ex-
posed. In the present paper this logic is traced using
purely math language finely demonstrating surpris-
ing results. The method used here implies a fine
analysis of primitive elements constituting the basic
structures of exceptional associative algebras (and
other polynumber algebras). The simplest transfor-
mations of the elements induce involvement of a se-
ries of conditions (equations) providing the algebras’
stability; these pure math equations are found to be
equivalent to the laws of different branches of me-
chanics, and become them exactly when rewritten in
physical units (instead of abstract magnitudes). This
unique logical line leads consequently to the equa-
tions of quantum, classical and relativistic mechanics
traditionally thought of as belonging to somewhat
separate theories. Two types of main objects of the
theory, a particle, indispensably emerge, a fractal one,
made up from primitive elements, and a geometric
one observed in physical space. By the way, some
traditionally abstract functions (mechanical action,
space-time interval) acquire an original geometric
sense.

The paper is organized as follows. Section 2
contains a short review of the involved algebras, their
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units being represented by matrices. Section 3 out-
lines the principal stages and main points of the “gen-
eral theory of mechanics.” In particular, transforma-
tions of a fractal surface spoiling the algebras’ basis
are analyzed, and a condition of the algebras stability
is introduced, then splitting into a series of fractal and
geometric equations of mechanics (written in purely
math and physical units). The respective particle
model gives birth to a version of special relativity (with
a helix-type Minkowski diagram) and to a general
relativity-type geodesic equation. A brief discussion
in Section 4 concludes the study.

2. ALGEBRAS INVOLVED

We start with biquaternions, hypercomplex num-
bers of the form [2]

b ≡ x + iy + (u1 + iw1)q1 + (u2 + iw2)q2

+ (u3 + iw3)q3 ≡ x + iy + (uk + iwk)qk; (1)

here x, y, uk, wk are real numbers, the scalar part x +
iy has the real unit factor 1 (traditionally not shown),
qk are three vector units, all four units satisfying the
multiplication law

qk1 = 1qk, qkqn = −δkn + εknmqm, (2)

δkn, εknm are the 3D Kronecker and Levi-Civita sym-
bols, summation in repeated (3D small Latin) indices
is assumed. The numbers of the type (1) constitute
the largest algebra in question here; according to the
law (2), the algebra of biquaternions is noncommuta-
tive, but it is associative in multiplication. It is well
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known that the norm of a biquaternion is in general
not defined as a positive real number, so this algebra
has division defects, in particular, zero dividers.

If in Eq. (1) x �= 0, uk �= 0 while all imaginary
components vanish, y = wk = 0, then one arrives to a
quaternion, a hypercomplex number of the form q ≡
x + ukqk, the units (1,qk) obeying the law (2); so the
quaternions can be regarded as a (4-unit) section of
the set of bi-quaternions. The norm and the modulus
of a quaternion are well defined:

||q||2 ≡ qq̄ = (x + ukqk)(x − ukqk) = x2 + ukuk,

|q| ≡ (qq̄)1/2 =
√

x2 + ukuk,

hence the inverse (left and right) number and division
do exist. The Frobenius theorem proves that the alge-
bra of quaternions is the last in dimension associative,
though non-commutative, division algebra (a non-
commutative ring).

If in Eq. (1), e.g., only x �= 0, w/2 ≡ w1 = u2 �= 0,
while all other components vanish, then one obtains
a “more narrow” (2-unit) section of bi-quaternions,
the set of “exotic” dual numbers [3] of the form d ≡
x + w(iq1 + q2)/2 ≡ x + wε, its vector unit having
a zero norm, ε2 = 0. The algebra of dual numbers is
associative and commutative (according to Eq. (2),
1ε = ε1), but it includes zero dividers since the norm
of a dual number depends only on the scalar part:
||d||2 ≡ dd̄ = (x + wε)(x − wε) = x2, and a pure
“imaginary” number has zero norm. It is evident that
a dual number can be obtained from Eq. (1) in various
ways, e.g., if only x �= 0, w/2 ≡ w2 = u3 �= 0, all
other components vanishing or x �= 0, w/2 ≡ w3 =
u1 �= 0, etc.

If in Eq. (1), e.g., only x �= 0, w ≡ w1 �= 0, while
the rest of the components vanish, then one meets
another 2-unit section of biquaternions, the set of
double numbers (split complex numbers) [4] of the
form h ≡ x + wiq1 ≡ x + wp, its units commuting,
the square of the vector unit being equal to the real
unit, p2 = 1. The norm of h is not well defined,
||h||2 ≡ (x + wp)(x − wp) = x2 − w2, so the com-
mutative and associative algebra of dual numbers also
has zero dividers. It is evident that a double number
can be obtained from Eq. (1) in various ways.

If in Eq. (1), e.g., only x �= 0, u ≡ u2 �= 0, while
all other components vanish, then there emerges the
last specific 2-unit section of biquaternions, that of
complex numbers z ≡ x + uq2 ≡ x + ui. It is evi-
dent that there are various ways to select a complex
number from Eq. (1), in particular, z ≡ x + iy (with
the traditional scalar imaginary unit), all these repre-
sentations being algebraically equivalent.

The simplest section of the biquaternion set is the
1-unit set of real numbers x, all other components in
Eq. (1) being zero.

The algebras of real, complex and quaternion
numbers are referred to as exceptional ones since
only their elements (and 8-unit octonion numbers)
satisfy the “square identities,” the norm definition of
a two-elements product; e.g., for two quaternions
q1, q2 it is ||q1q2||2 = ||q1||2||q2||2. But the algebra
of octonions is not associative, the property alien to
known physical magnitudes; so octonions will not be
considered here.

If the (bi-)quaternion algebra units are “canoni-
cally” represented by the 2 × 2 matrices

1 =

⎛

⎝1 0

0 1

⎞

⎠ , q1̃ = −i

⎛

⎝0 1

1 0

⎞

⎠ ,

q2̃ = −i

⎛

⎝0 −i

i 0

⎞

⎠ , q3̃ = −i

⎛

⎝1 0

0 −1

⎞

⎠ , (3)

then the multiplication law (2) is satisfied identically;
the other units then can be chosen, e.g., as

ε = (iq1̃ + q2̃)/2 =

⎛

⎝0 0

1 0

⎞

⎠ ,

p ≡ iq1̃ =

⎛

⎝0 1

1 0

⎞

⎠ , i = q2̃ =

⎛

⎝0 −1

1 0

⎞

⎠ .

But many other representations exist since the basic
law (2) evidently holds for the transformed units

qk = Sqk̃S
−1, (4)

the transformation matrices forming the spinor
group1 S ∈ SL(2, C) [5]. We stress that after any
such transformation the scalar unit remains a unit
matrix, while the vector units may become a multi-
component function of many parameters. Note also
that representations of the units (1, qk) by matrices
of rank 2N (N is a natural number) can be readily
introduced.

3. GENERAL THEORY OF MECHANICS

3.1. Structures of Algebraic Units

(i) All basic units of associative algebras (of
real, complex, quaternion, double, dual and bi-
quaternion numbers) can be regarded as matrices
composed of a single dyad (a couple of 2D unit
orthogonal vectors) on a fractal2 surface.

1 The law (2) is as well invariant under SO(3, C) transforma-
tions of the units, this group of rotations is twice covered by
the reflection group SL(2, C).

2 “Fractal” means here that a line dimension on the surface is
1/2 of that of 3D geometric (physical) space.
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Let two 2D vectors ψ+, ψ− (two-component col-
umn matrices) compose a local orthonormal basis
(dyad) on a surface with a symmetric metric g, i.e., at
a surface point gψ+ψ+ = 1, gψ−ψ− = 1, gψ+ψ− =
gψ−ψ+ = 0; or with introduction of the covectors
ϕ+ ≡ gψ+, ϕ− ≡ gψ− (two-component row matri-
ces), the dyad definition is

ϕ±ψ± = 1, ϕ±ψ∓ = 0. (5)

Due to (5), the following linear combinations of
direct products (tensor squares) of the set ψ±, ϕ±

satisfy the law (2) for the units (1, qk) [6]:

ψ+ϕ+ + ψ−ϕ− = 1, −i(ψ+ϕ− + ψ−ϕ+) = q1,

ψ+ϕ− − ψ−ϕ+ = q2,

i(ψ+ϕ+ − ψ−ϕ−) = q3; (6)

the other vector units can be chosen as (other combi-
nations are possible)

ψ−ϕ+ = ε, ψ+ϕ− + ψ−ϕ+ = p,

ψ+ϕ− − ψ−ϕ+ = i.

(ii) The metric of the dyad’s local vicinity (2D-
cell) behaves as the real unit of all involved alge-
bras, while the three vector units qk behave as a
Cartesian frame in 3D space.

A domain of the fractal surface in the vicinity of
the dyad’s origin together with part of the tangent
plane having the metric δMN = δMN = δN

M (the unit
2 × 2-matrix) will be called a “2D cell.” So we can
identify the scalar unit 1 with the metric of a 2D cell,
the metric of the fractal surface structured by the dyad
covectors g = ϕ+ϕ+ + ϕ−ϕ−. The quaternion vector
units qk from the times of Hamilton [7] are known
to be geometrically identified with a frame initiating
a Cartesian coordinate system in 3D space, often
associated with the physical space.

(iii) The dimension of a line on a 2D cell (e.g.
a dyad vector length) is a square root from the
dimension of a line in 3D space (e.g. a vector unit
length); from the 3D space viewpoint the dyad
vectors are spinors.

Equations (6) demonstrate that the dyad vectors
(covectors) may be regarded as specific square roots
of the units (1, qk), but a single dyad is sufficient to
build all units. Also note that the vectors (covectors)
of this dyad are right and left eigenfunctions of the
unit q3 with eigenvalues ±i:

q3ψ
± = ±iψ±, ϕ±q3 = ±iϕ±, (7)

(that is why the parity indicators ± arise). Eigenfunc-
tions of the simplest operator q3̃ from Eqs. (3a) are

ψ̃+ =

⎛

⎝0

1

⎞

⎠ , ψ̃− =

⎛

⎝1

0

⎞

⎠ ,

ϕ̃+ =
(
0 1

)
, ϕ̃− =

(
1 0

)
. (8)

We emphasize that the transformations of the dyad
constituents by matrices S ∈ SL(2, C)

ψ± = Sψ̃±, ϕ± = ϕ̃±S−1 (9)

should be considered the prior one since they induce
the transformations (4) of 3D units leaving the mul-
tiplication law (2) intact; so the dyad vectors (covec-
tors) ψ±, ϕ± are spinors.

(iv) If 3D space and objects in it are tradition-
ally attributed to “geometry,” then the fractal
surface and objects on it (2D-cell, dyad vectors)
may be related to “pregeometry.”

We dare remind the reader that the notion of pre-
geometry was introduced by Wheeler in an attempt to
find a plausible image of a space where functions and
operators of quantum mechanics act [8].

3.2. Transformations of a 2D Cell

(v) The 2D cell’s area can be “pumped over”
from the real sector to the imaginary one with a
certain phase, this “flickering” does not change
the metric, but the respective 3D frame rotates by
an angle equal to the doubled phase. The 2D flick-
ering (and the respective 3D rotation) produces
no damage to the involved algebras.

The simplest transformation of the type (9) for the
dyad (8) is a “rotation” about the vector q3̃ at an
angle α, the rotation matrix is S = cos α + q3 sin α;
the results of the transformation are

ψ± = (cos α ± i sin α)ψ̃± = e±iαψ̃±,

ϕ± = e∓iαϕ̃±. (10)

Equations (10) state that the lengths of real and
imaginary constituents of the dyad vectors ψ± har-
monically change with α, so that an area of the fractal
space formed by the vectors is “pumped over” (flick-
ers) from real sector to imaginary sector of the 2D cell
(the same with the covectors ϕ±). Using Eqs. (6), we
compute the results of the respective transformations
of the algebraic units:

1 = 1̃, q1 = q1̃ cos 2α + q2̃ sin 2α,

q2 = q1̃ cos 2α − q2̃ sin 2α, q3 = q3̃, (11)

i.e., the scalar unit does not change while the 3D
frame is rotated about the vector q3 = q3̃ by 2α (twice
the spinor vectors’ “rotation”); the units (11) well fit
all the involved algebras, this may be verified by direct
computation.

(vi) The flickering 2D cell can be stretched
(“loaded with a fractal density”); this transfor-
mation causes a 2D metric defect and changes
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the lengths of the rotated 3D frame vectors thus
damaging the algebras.

Let the flickering dyad (10) be subject to an extra
transformation, conformal stretching

ψ′± = σe±iαψ̃± ≡ λψ̃±,

ϕ′± = σe∓iαϕ̃± ≡ λ∗ϕ̃±, (12)

σ ∈ R. The mapping (12) injects the 2D cell’s metric
defect

1′ = ψ′+ϕ′+ + ψ′−ϕ′− = σ2, (13)

all vector units acquiring the same square factor, e.g.,
q3′ = σ2q3; this evidently damages the multiplication
law (2), so all involved algebras are violated. In 3D
space σ2 may be thought of as a density, so the factor
σ will be called “fractal density” loading a formerly
“empty” 2D cell.

3.3. Abstract (Exterior) Space
and the Algebras’ Stability Condition

(vii) A normalizing integral (functional) of a
dyad vector square length over a volume of an
abstract M-dimensional space (in particular, an
abstract 3D space) smooths down the 2D metric
defect and returns the unit lengths of 3D frame
vectors thus restoring the algebras.

The metric defect (13) is smoothed down if the
factor

λ = σeiα (14)

is a compact function λ(ξΛ, θ) (of the coordinates ξΛ,
Λ = 1, 2, ...,M of M-dimensional abstract space and
a free parameter θ, all magnitudes measured in no
units) in a volume VΛ and

f ≡
∫

VΛ

ϕ′±ψ′±dVΛ =
∫

VΛ

λλ∗dVΛ

=
∫

VΛ

σ2dVΛ = 1. (15)

Then the objects built from the dyad (12) as in Eq. (6),
but “seen” from the space, do not differ from those of
Eq. (11) and can serve as good algebra units, e.g.,

1′ = f(ψ′+ϕ′+ + ψ′−ϕ′−) = 1̃,

q3′ = if(ψ′+ϕ′+ − ψ′−ϕ′−) = q3̃,

q1′ = −if(ψ′+ϕ′− + ψ′−ϕ′+)
= (cos 2α)q1̃ + (sin 2α)q2̃ = q1. (16)

(viii) The algebras are saved “forever” in the
sense of the free parameter θ if the normalizing
functional is constant with respect to the param-
eter change; this condition of the algebras’ sta-
bility entails a continuity-type equation for the
squared fractal density.

The normalization (15) “lasts forever” in the sense
of θ (thus providing the algebras’ stability) if the func-
tion λλ∗ satisfies the continuity-type equation

∂θ(λλ∗) + ∂Λ(λλ∗kΛ) = 0, (17)

where ∂θ ≡ ∂/∂θ, ∂Λ ≡ ∂/∂ξΛ, summing in the index
Λ is implied, kΛ is a vector of 2D cell “propagation” in
abstract space.

3.4. Basic Fractal Equations, Consequences
of the Stability Condition

(ix) Schrödinger-type equation. If the propa-
gation vector of the 2D cell (in the abstract space)
is just a gradient of the flickering phase, then the
continuity-type equation splits into a couple of
mutually conjugate equations, each mathemati-
cally equivalent to the Schrödinger equation of
quantum mechanics.

Let the propagation of a 2D cell be determined
by phase increase. The phase is expressed from
Eq. (14) as α = (i/2) ln(λ∗/λ), then the propagation
vector kΛ = ∂Λα = (i/2)(∂Λλ∗/λ∗ − ∂Λλ/λ), when
inserted in Eq. (17), brings it to the form

λ∗
(

∂θ −
i

2
∂Λ∂Λ

)
λ + λ

(
∂θ +

i

2
∂Λ∂Λ

)
λ∗ = 0,

If each of two imaginary parts (zero in sum) of this
equation is defined as W (ξ, θ) (an arbitrary real func-
tion) then the equation is split into mutually conju-
gate vanish parts; that for λ

[
∂θ −

i

2
(∂Λ∂Λ − 2W )

]
λ = 0 (18)

is an exact math analogue of the Schrödinger equa-
tion of quantum mechanics.

(x) Pauli-type equation. If the propagation
vector of a 2D cell, apart from the phase gra-
dient, includes an exterior vector field, then the
continuity-type equation splits into mutually
conjugate math equivalents of the Pauli equation
of quantum mechanics.

Consider a more general case of the 2D cell prop-
agation vector kn = ∂nα + An, where Ak(xn, t) is
some exterior vector field (for simplicity the abstract
space is chosen here to be three-dimensional with
coordinates xn). The presence of a vector field in-
duces returning to full spinor functions in the nor-
malizing integral

∫
Vn

ϕ′ψ′dVn = 1 (here ϕ′, ψ′ and
other spinors are chosen, e.g., of positive parity), and
the representation of the 3D space metric in the Clif-
ford algebra format δkn ≡ (1/2)pkpn + pnpk), where
pk ≡ iqk . The respective continuity-type equation is
written as

∂θ(ϕ̃λ∗λψ̃) +
1
2
(pmpn + pnpm)
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× ∂m[ϕ̃λ∗λψ̃(∂nα + An)] = 0,

and it decays into mutually Hermitian conjugate
parts; the equation for the function ψ′ has the form

[
i∂θ −

1
2
(−i∂k + Ak)(−i∂k + Ak)

− 1
2
pkBk − W

]
ψ′ = 0, (19)

where Bk ≡ εkmn∂mAn. Equation (19) is a math
analogue of the Pauli equation of quantum mechanics
describing the electron motion in an exterior mag-
netic field. The details of derivation of Eq. (19) are
found in [9].

(xi) Klein-Gordon-type equation. If the exte-
rior space is a Minkowski-type space-time with θ
the timelike coordinate, and the propagation vec-
tor of a 2D cell is a 4D gradient of the phase, then
the continuity-type equation splits into mutually
conjugate math equivalents of the Klein-Gordon-
type equation.

Let the exterior space be formally represented as
a “space-time” having the indefinite metric δμν =
diag(1,−1,−1, ...,−1) and the coordinates ξμ

(μ, ν, ... = 0, 1, 2, ...,M ) with ξ0 ≡ θ; let also the
complex factor λ = σeiα be “re-gauged” (shown as
a product of two complex numbers) λ(ξμ) = γλ̄,
where γγ∗ ≡ k̄0, and λ̄ ≡ σ̄eiΦ. Then, defining
the (M + 1)-dimensional propagation vector k̄μ =
{k̄0, k̄Λ}, where k̄Λ ≡ k̄0kΛ, kΛ being the propagation
vector from Eq. (17), we can identically rewrite this
continuity-type equation in the form

∂μ(λ̄λ̄∗k̄μ) = 0. (20)

Next, we demand that the propagation vector be
a gradient of the phase k̄μ = δμν∂νΦ = (i/2)δμν∂ν ×
ln(λ̄∗/λ̄), then Eq. (20), quadratic in λ̄, splits into
a conjugate couple of Klein-Gordon-type equations,
linear in the factor, which for λ̄ is

(δμν∂μ∂ν − W̄ )λ̄ = 0, (21)

where W̄ (ξν) is an arbitrary function. Under simple
conditions Eq. (21) is reduced to the Schrödinger-
type equation (18). Indeed, put the function λ̄ in the
form

λ̄ = γ−1λ ≡ ςeiηλ, (22)

with ς = 1 + o1, η = θ + o2, where o1, o2 are small
functions as well as all their derivatives. Insert the
function (22) into Eq. (21); straightforward compu-
tations yield the sought-for result

[
i∂0 −

1
2
∂Λ∂Λ +

1
2
(−W̄ − 1)

]
λ = 0,

i.e. Eq. (18) with W̄ + 1 ≡ −2W .

3.5. Transition to Physical Space
and Introduction of Scales

(xii) All the above math equations contain
quantities measured in no physical units; a tran-
sition from abstract to physical space compels
to introduce space-time standards. Short-scale
standards are chosen.

Instead of M-dimensional abstract space (where
ξΛ and θ are dimensionless), the math equations can
be regarded over 3D physical space and time nec-
essarily scaled: ξΛ → xk/ε, θ → t/τ , where ε and τ
are spatial length and time-interval standards. The
characteristic spatial length is chosen to be equal to
the Compton wavelength,

ε ≡ �/(mc), (23a)

where � is the Planck constant, c is the velocity of
light in vacuum, and m is the electron rest mass (in
these constants the spatial scale is assessed as ε ∼=
10−11 cm). The respective time standard is the time
interval needed for light to travel (in vacuum) along
the characteristic length,

τ ≡ ε/c = �/(mc2) (23b)

(the time scale is assessed as τ ∼= 10−21 s).

(xiii) In these units the 2D cell describes a pre-
geometric protoparticle, its fractal density func-
tion acquiring the sense of a relative fractal mass
density (the density function per mean density),
so that the normalizing functional (15) is con-
verted into a definition of mass of a 3D particle
(based on a 2D protoparticle).

The function σ remains dimensionless (measured
in no units), so it may have a meaning of a “rela-
tive fractal mass density” σ ≡

√
ρ(x, t)/ρmean, where

ρmean is the mean mass density of the particle (elec-
tron) in a 3D volume it is supposed to occupy. Now
a model of a “protoparticle” emerges. As a frac-
tal object, it is conceived as a σ-weighted 2D cell
{σeiαψ̃±}; with a phase change, its area (hence,
weight) is flickering between real and imaginary sec-
tors. In fact, it is a “visual image” of the particle’s
state (wave) function of quantum mechanics. The
normalizing integral (15) is converted to a definition
of the particle mass:

1
ε3

∫

V
σ2(x, t) dV = 1,

⇒
∫

V
ρ(x, t) dV = ε3ρmean = m. (24)
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3.6. In Physical Space, Math Equations
Become Physical Laws

(xiv) In the physical units chosen, Eq. (18) and
Eq. (19) become the exact Schrödinger and Pauli
equations, respectively, Eq. (21) becomes the ex-
tended Klein-Gordon equation.

One can easily verify that in the coordinates and
time scaled as in Eqs. (23), Eq. (18) takes the form of
the Schrödinger equation

(
i�∂t +

�
2

2m
∂k∂k − U

)
λ(x, t) = 0, (25)

where U ≡ mc2W is a scalar potential; Eq. (19) takes
the form of the Pauli equation

[
i�∂t −

1
2m

(−i�∂k +
q

c
Ãk)(−i�∂k +

q

c
Ãk)

− q�

2mc
pkB̃k − U

]
Ψ(x, t) = 0, (26)

where q is the electric charge, Ãk ≡ mc2

q Ak and B̃k ≡
mc2

q Bk are the potential and the intensity of the mag-

netic field, respectively, and U ≡ mc2W is a scalar
potential. Eq. (21) in the chosen physical units be-
comes the extended Klein-Gordon equation

[
�

2
( 1

c2
∂t∂t − ∂n∂n

)

− m2c2(1 + W ′)
]
λ(x, t) = 0, (27)

the free function being presented in the form 1 +
W ′ ≡ W̄ ; Eq. (27) obviously admits fractalization,
e.g., the Dirac square root format.

3.7. The Hamilton-Jacobi Equation

(xv) The Schrödinger-type math equation has
a complex-number structure; it can be separated
into real and imaginary parts; the real part is
a math equivalent of a conservation law for the
fractal density function.

Returning to the Schrödinger-type equation (18)
and using λ = σeiα, we decompose it into real and
imaginary parts, thus obtaining the set of Bohm-type
equations [10]

∂θσ + ∂Λσ∂Λα +
1
2
σ∂Λ∂Λα = 0, (28)

∂θα +
1
2
(∂Λα)(∂Λα) + W − 1

2
∂Λ∂Λσ/σ = 0. (29)

The real component (28) multiplied by σ is con-
verted into the density conservation-type equation

∂θσ
2 + ∂Λ(σ2∂Λα) = 0. (30)

(xvi) The imaginary part is a math equivalent
of the Hamilton-Jacobi equation of classical me-
chanics, the 2D cell’s flickering phase (or angle of
a 3D frame rotation) playing the role of the action
function.

The imaginary component (29) of the Bohm-type
system has the form

∂θα +
1
2
(∂Λα)(∂Λα) + W − 1

2
∂Λ∂Λσ/σ = 0. (31)

If all terms in Eq. (31) are rapidly changing func-
tions (“inside” the 2D cell), then the set of equa-
tions (30), (31) is just an equivalent of Eq. (18). But
it may happen that only the last term in Eq. (31)
(depending on σ) is a rapidly changing (short-scale)
one while the terms depending on α are functions
slowly changing “outside” the 2D cell (long-scale
ones). In this case we have to consider the free
function W = Win + Wex as split into “interior” and
“exterior” parts; so Eq. (30) splits into the respective
equations

∂Λ∂Λσ − 2Winσ = 0, (32)

∂θα +
1
2
(∂Λα)(∂Λα) + Wex = 0. (33)

The static equation (32) determines the fractal
density distribution under the influence of some in-
terior reason Win. But Eq. (33) is the familiar math
analogue of the Hamilton-Jacobi equation of classi-
cal mechanics, the phase α of a 2D cell flickering (or
half angle of the frame qk rotation about q3) playing
the role of the action function, the term Wex behaving
as an exterior potential.

(xvii) In physical units (on the laboratory
scale) the phase of a 2D cell’s flickering is a
mechanical action function measured in units of
the Planck constant. Then the dynamic math
equations following from the Bohm-type equa-
tions become the mass conservation equation and
Hamilton-Jacobi equation. The static equation
determines the fractal mass density distribution.

Let the phase be a slowly changing (laboratory
scale) function in the physical units chosen above.
Then replacing ∂Λ → (�/mc)∂n, ∂θ → (�/mc2)∂t

and taking into account that σ2 ∼ ρ, Eq. (30) is
rewritten as

∂tρ + ∂n(ρun) = 0, (34)

where uk ≡ ∂kS/m is the 3D velocity, and S is the
classical mechanical action function, the phase mea-
sured in the Planck constant units:

S(x, t) ≡ �α(x, t). (35)
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Equation (31) in the physical units becomes pre-
cisely the Hamilton-Jacobi equation

∂tS +
1

2m
(∂mS)(∂mS) + Uex = 0, (36)

where Uex ≡ mc2Wex. We emphasize that Eq. (36),
deduced in fact as a square root from the 3D conti-
nuity-type equation, should be referred to as a spinor
(fractal) equation of classical mechanics.

Finally, Eq. (32) in physical units has the form

∂m∂mσ − Rinσ = 0, (37)

where Rin ≡ 2Win/ε
2 is some interior “potential”

measured (as, e.g., curvature) in cm−2; we leave it
for future explorations.

3.8. Geometric (Physical) Equations

(xviii) The minimum value of the flickering
phase on the free parameter segment entails a
math equivalent of the Euler-Lagrange equation
(Newton’s dynamic law) of classical mechanics.

Returning to the math equations (33), let us re-
place in it the partial derivative with the full one,
∂θα = dθα − dθξΛ · ∂Λα, to obtain the phase value
integral on the segment [θ1, θ2]

α =
∫ θ2

θ1

(
dθξΛ∂Λα − 1

2
∂Λα∂Λα − Wex

)
dθ. (38)

The “minimum phase” requirement selects the ex-
treme lines ξΛ(θ) with “observables” dθξΛ (M-
dimensional velocity) and ∂Λα (momentum) obeying
the equation

∂θ

[
∂Kα +

∂(∂Λα)
∂(dθξK)

(dθξΛ − ∂Λα)
]

+ ∂KWex = 0. (39)

We recognize in the integrand in Eq. (38) a math
analogue of the Lagrangian function of classical me-
chanics, Eq. (39) is a math analogue of the dy-
namic equation of Newtonian dynamics. In phys-
ical units, the derivatives are dθξΛ → τdt(xn/ε) =
un/c, ∂Λα → ε∂n(S/�) = un/c; their insertion into
Eqs. (38), (39) converts them into the classical action
functional

S =
∫ t2

t1

(
1
2
munun − Uex

)
dt, (40)

where Uex ≡ mc2Wex, and the Newtonian dynamic
equation

∂t(mun) + ∂nUex = 0. (41)

Strangely enough, the basic physical law (41) dis-
covered in experiment appears to be just a very special
case of a simple purely mathematical model.

3.9. The Helix Model and a Relativistic Particle
(xix) The model of a particle in 3D space is

a point-like mass (distributed in a very small
volume of the characteristic length size) with a
frozen-in 3D frame able to rotate. If it is perma-
nently rotating, then at a point of the particle’s
ultimate radius (half of the scale unit) the rota-
tion velocity equals that of light; if this particle
moves, then this point depicts in space a cylindri-
cal helix line. The velocity of a moving particle’s
border point remains maximum, i.e., that of light.

Geometrically, the particle is conceived as a mass
m distributed in a small 3D volume of the size ε
with a triad qk “frozen” at its center and rotating
(with the mass) about one of its vectors by an angle
equal to the doubled 2D cell’s flickering phase; the
angle’s gradient shows the direction of the particle
motion. A free particle moving in 3D space along the
coordinate z with the velocity dz/dt ≡ u = const, (t
is the observer’s time) satisfies two conditions:

(1) the particle’s triad rotates permanently about
q3 with the frequency d(2α)/dt ≡ 2ω = const, the
angle between q3 and the velocity vector is β = const;

(2) a point at the particle’s ultimate radius ε/2
depicts a helix-type line, the point’s linear velocity is
always maximum, i.e., that of light.

(xx) The difference between the squares of the
free particle’s helix small length and the path has
the form of the space-time interval of special rel-
ativity; computed in physical units, this interval
gives the action function of a relativistic particle.

The helix line, given by the coordinate functions

x = (ε/2) cos 2α cos β,

y = (ε/2) sin 2α,

z = ut − (ε/2) cos 2α sinβ, (42)

has the line element dl2 = ε2dα2 + 2ε sin 2α ×
sin βdαudt + u2dt2. Condition (2) means dl = cdt,
then from the line element we obtain

c2 = ε2ω2 + 2uεω sin(2ωt) sin β + u2. (43)

For a moving free particle (u = const) Eq. (43) holds
if β = 0, π, i.e., the regular helix lies on the circular
cylinder dl2 = c2dt2 = ε2dα2 + u2dt2; let us find the
2D cell’s phase on the segment [t1, t2]:

α = ±c

ε

∫ t2

t1

√

1 − u2

c2
dt, (44)

the signs indicating the right or left helicity. Let us
insert ε = �/(mc) and choose the minus sign, then,
taking into account Eq. (35), Eq. (44) yields the
action of a free relativistic particle

S = α� = −mc2

∫ t2

t1

√

1 − u2

c2
dt. (45)
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So the line element of special relativity ε2dα2 ≡
ds2 = c2dt2 − dz2 acquires a specific geometric
meaning. The “space-time interval” ds = εdα has
the meaning of an arc length of the particle’s “ulti-
mate circumference,” the immobile particle’s border
in the rotation plane. For a free particle in its own
frame this arc length is a definite unchanging number
(an invariant of special relativity).

(xxi) Reduction to the non-relativistic case au-
tomatically establishes relations between classi-
cal and quantum quantities, thus determining the
free particle 2D model (protoparticle) as a De
Broglie wave, the particle’s rest energy linked to
the permanent flickering of the 2D cell.

We rewrite Eq. (45) in a differential form and re-
duce it to the non-relativistic case:

�dα ∼= −Edt + pndxn

≡ −(mc2 + mu2/2)dt + mundxn
∼= dS, (46)

the free particle is considered to be a quantum one,
�dα = �∂tαdt + �∂nαdxn. Then from Eq. (46) we
have �ωdt + �kndxn

∼= −Edt + pndxn, thus auto-
matically obtaining the de Broglie energy-frequency
and momentum-wave vector ratios

E = (mc2 + mu2/2) = |ω|�, pn = kn�; (47)

the state function of the particle (e.g., with positive
parity)

ψ′+ = σeiαψ̃+ = σei(pnxn−Et)/�ψ̃+

= σei(knxn−ωt)ψ̃+ (48)

has precise the form of a de Broglie wave. From
Eqs. (47) one notes, in particular, that even for a
particle immobile in space (u = 0) the 2D cell must
be permanently “pumped over” (ω �= 0), the flicker-
ing frequency |α̇| ≡ ω0 determining the particle’s rest
energy Erest ≡ mc2 = ω0�.

(xxii) In the classical case the helix model ex-
pectedly yields the Hamilton-Jacobi equation.

Let the free particle be classical with dS = ∂tS +
un∂nS. Then from Eq. (46) we have −mc2 +
mu2/2 = ∂tS + un∂nS, or the Hamilton-Jacobi
equation ∂tS + ∂nS∂nS/(2m) + Erest = 0, here ap-
pearing as a consequence of the helix model (no
exterior potentials for a free particle).

3.10. An Irregular Helix Model
and “More General” Relativity

(xxiii) Making the 3D particle’s helix line irreg-
ularly curved and compressed (as if the moving
particle is subject to a variable external force)
leads to appearance of variable metric compo-
nents and general relativity-type “space-time”

line element, the space components though be-
ing negligibly small on a laboratory scale. A
metric function measuring the helix compression
emerges in the respective Hamilton-Jacobi equa-
tion as an external potential.

A point of a particle’s triad vector (e.g., of q1)
in a force field must move along a distorted helix
line, its length element being determined as follows.
Let qn(t, x) be the particle’s Frenet-type triad with
q3 tangent to the particle trajectory xk(t), its local
curvature being R(x). Define a quaternion radius
vector l ≡ εq1 + rq3, where ε is the helix diameter
(constant), r is a length along the trajectory; the
differential of l is

dl ≡ rω331drq1 + (εω312 + rω332)drq2

+ (1 − εω331)drq3,

since dqn = ωjnkdxjqk where ωnkj are connection
components, among them ω312 = dα/dr is “torsion”
(rotation of q1 about q3), ω331 ≡ R is the trajectory’s
first curvature, and ω332 (neglected for simplicity) is
the second curvature [5]. So the “curved” helix line
element has the form

dl2 = dld̄l = ε2dα2 + [(1 − εR)2 + r2R2]dr2

≡ ε2dα2 + e2G(x)dr2.

If the helix is additionally “compressed” with
the measure e−2W (x), then the line element be-
comes dl2 = e−2W (x)[ε2dα2 + e2G(x)dr2], and the
helix “space-time interval” acquires the features of
general relativity:

ε2dα2 = ds2 = e2W (x)c2dt2 − e2G(x)dr2. (49)

For small spatial curvatures e2G ≈ 1, and for a
nonrelativistic classical particle Eq. (49) gives the
action differential (dS = �dα) as

dS = −mc2dt
√

e2W − (u/c)2

≈ −[mc2(1 + W ) − mu2/2] dt,

or equivalently, the Hamilton-Jacobi equation ∂tS +
∂nS∂nS/(2m) + U = 0 with the potential U ≡
mc2W + Erest.

(xxiv) The 3D space Euler-Lagrange equation
of a “squeezed helix particle” exactly coincides
with the 4D space-time geodesic equation, thus
demonstrating a convergence of general relativity
and the helix model theory.

Variation of the “space-time” interval
δ
∫ b
a

√
gμνuμuνds = 0, uμ ≡ dxμ/ds of the com-

pressed helix ds2 = g00(dx0)2 − δkndxkdxn =
e2W (x)c2dt2 − dr2 yields the equation of an extremal
(geodesic) line ds(gμλuλ) = gαβuαuβ/2 → m∂tuk =
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−∂kU(e2W δkn − 2ukun/c2), the same as the Euler-
Lagrange equation following from the Lagrangian
L(x, ẋ) = −mc2

√
e2W (x) − ẋkẋk/c2. So the “ir-

regular relativistic helix” model, a consequence of
the 2D cell conjecture, partly explains the heuristic
geometrization of interactions.

4. CONCLUSION

Here we summarize the logic and structure of the
suggested theory. There are two parallel but dras-
tically different realms in the theory, one is an “un-
observable” area comprising primitive math relations
and pregeometric images on the fractal surface, the
other is an “observable” area containing equalities
composed of the primitive ones, and usual geometric
objects in physical space. We start with deformations
of a small pregeometric domain, at the same time
trying not to wreck the properties of geometric objects
thus saving a set of algebras; the price is a series
of fractal equations. Written in physical units, these
pure math equalities lead precisely to equations of
quantum (Schrödinger, Pauli) and classical mechan-
ics (the Hamilton-Jacobi equation, the Newtonian
dynamic equation). Simultaneously a fractal pro-
toparticle model arises, its phase having the meaning
of mechanical action; the respective geometric analog
is a rotating massive pointlike particle. This model
leads to an original “helix-line” formulation of me-
chanics of a free relativistic particle (if the helix is a
regular cylindrical “spring”); for an irregular “spring”
the space-time metric becomes point-dependent, and
the relativistic mechanics is described by the geodesic
equation, so that the theory acquires features of gen-
eral relativity. The respective nonrelativistic fractal
equation is again that of Hamilton-Jacobi.

There are some challenging problems waiting for
solution; among them are the analysis of the static
equation for a particle’s fractal density (as well as
physical density) distribution, construction of prege-
ometric models for massless particles, and possibly
for the electric charge.
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