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Abstract—The article presents a revue of the estimates of soil surface moisture, soil water content, and evapo-
transpiration as elements of water and heat regimes of land surface areas at various spatial scales, made with
the use of remote sensing data for Earth in various spectral ranges. In most cases considered in the study, such
estimates were obtained with the use of land surface models. A special section is focused on the results of esti-
mating soil surface moisture and water content using satellite data from microwave range, including radar
data. Estimates of soil surface moisture content obtained with the use of neural networks are presented. A
brief description is given to international hydrological–atmosphere experiments carried out under world
research projects aimed to obtain data on the processes of moisture and heat exchange between the land sur-
face and the surface atmosphere layer. Land surface, satellite, and model databases that have been formed
using the results of studies in the field under consideration since the mid-1980s are reviewed. Prospects of fur-
ther studies based on the development of new multispectral instrumentation, the creation of new databases,
and the use of a new generation of satellites—global-coverage microsatellites with high-resolution sensors are
presented.
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INTRODUCTION. THE PROBLEMS 
UNDER CONSIDERATION

The interest to the use of remote sensing data in the
simulation of water and heat regimes in land areas has
formed by the mid-1980s, when, on the one hand,
rapid development of land surface models began [7,
39, 71, 132], and, on the other hand, the progress in
the development of new optoelectronic and radio
instrumentation installed on space vehicles, along
with remote measurements of land surface character-
istics provided data on the space and time variations in
those characteristics [68, 126–128, 134], which could
be used to extend the information base of the models
[13, 110, 133, 142]. Combining these two approaches
into one general direction of research on the processes
of moisture and heat transfer prompted the conduct of
hydrological–atmospheric field experiments
HAPEX-MOBILHY (1986) [14, 124], HAPEX-
SAHEL (1992, 1991–1993) [51], FIFE (1987, 1989)
[129, 130], KUREKS (1988, 1991) [70, 72], EFEDA
(1991–1994) [26, 27], BOREAS (1993–1996) [108,
131], MOPEX (1996–2003, 2004–2009) [15, 42, 123],
etc., the organization, under the World Climate
Research Program WCRP (since 1980), of a project of
global energy and water exchange GEWEX (since
1990) [141], as well as the implementation under inter-

national geospheric–biospheric program IGBP
(1987–2015) [62], of the main BAHS program (since
1993) [24, 59]. The objective of practically all field
experiments mentioned above was to measure the land
surface (LS) parameters, including the characteristics
of vegetation, as well as water and heat f luxes and the
fluxes of matter (as a rule, with the incorporation of
the data of earth remote sensing (ERS)), with the aim
to evaluate the model parameters of the interaction
between LS and the atmosphere and to reveal the role
of the biosphere in this interaction. The objective of
the GEWEX project is to study the energy and water
cycles of the Earth and to evaluate the water and
energy f luxes at the regional and global scales [141].
The objective of the IGBP program is the formation of
the knowledge on the behavior of various elements of
the Earth system under the effect of physical, chemi-
cal, and biological processes, as well as the description
of the anthropogenic effect on global processes
involved in the water cycle as well as the cycles of car-
bon, nitrogen, sulfur, and phosphorus. The BAHC
project was intended to study the effect of biosphere
elements, in particular, vegetation, on the dynamics of
the hydrological cycle by carrying out experiments and
simulating processes of the formation of energy, water,
carbon dioxide f luxes, and sediments in the system
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soil–vegetation–atmosphere for various space and
time scales. As the considerable effect of vegetation on
the formation of these f luxes makes it an important
factor of hydrological cycle regulation and climate for-
mation, an important task of the project was the iden-
tification of vegetation cover transformations caused
by human activity and considered as a factor of climate
changes. The BAHC program also included studying
the effect of the climate and human activity on the
accumulation and river transport of sediments [59].

The data collected by surface measurements and
ERS, as well as by simulating moisture and heat
exchange were, to a certain extent, combined to form
regional and global databases on LS and weather char-
acteristics, including those extending up to now and
newly formed. These include the systems and data-
bases GCOS [50], NCEI NOAA [102]—ISD [63], and
LCD [77]. The observation system GCOS, created in
1992 with the support of WCRP, determined 50 key
climate variables applicable to global climate observa-
tions. Considerable contribution to GCOS was made
by the World Integrated Global Observing System
WIGOS WMO and the World Hydrological Cycle
Observing System WHYCOS with databases. ISD is a
global database of hourly and synoptic observations of
the characteristics of LS and surface atmosphere layer
from numerous (more than 100) sources from more
than 20000 stations. These data are collected in a
common format and combined to form a single data
model. The LCD base contains sets of climate data,
obtained by generalization of local climate conditions
for more than 2500 weather stations and airports of the
USA. ECOCLIMAP-I database [5, 91] and ECO-
CLIMAP-II [46], improved with the use of datasets
for European territory, are used to initialize (to specify
the initial conditions and parameter values) models of
SVAT type for meteorological and climate models (at
all horizontal scales). At the formation of ECOCLI-
MAP-I database for regions with homogeneous vege-
tation, identified by combining LS maps and climatic
maps with the incorporation of AVHRR data with the
use of fields of LAI values, constructed by these data,
the values of all model parameters were constructed
(the characteristics of vegetation cover and weather
characteristics) [91]. The construction of ECOCLI-
MAP II database used a more complex specification of
the examined areas by LS and plant types (some clus-
ters) and incorporated two proxy variables NDVI and
LAI, determined by data of radiometers SPOT/Vege-
tation and MODIS, respectively. The values of all
parameters of model ISBA, class SVAT (developed by
Météo France) were obtained for these clusters [46].
The global database ISLSCP II, formed in ORNL
DAAC NASA under the project with the same name,
a part of GEWEX project, contains archived overall
databases of 1986–1995 on the LS characteristics;
hydrological, meteorological, radiation, and soil char-
acteristics with resolution of 1/4°, 1/2°, and 1° [29].
These archives were supplemented by sets of estimates
of LS–NDVI, albedo, LAI, and other characteristics
by satellite data of sensors AVHRR, MODIS,
SPOT/Vegetation, and VIIRS over later years [29].
The part “Hydrology and Soils” in this database con-
tains, for example, sets of estimates of the proportion
of soil moisture available for plants, estimates of the
monthly runoff volumes, datasets on daily, pentad,
and monthly total precipitation, as well as data on pre-
cipitation, required for solving climate problems [64],
as well as many other datasets.

In the recent 25 years, global and continental GIS-
databases in different fields were developed including
hydrological, climate, and soil ones. The global data-
bases include, for example, USGS database LCI on
land cover; IRI/LDEO CDL database of the Earth
Institute, the University of Columbia and the Obser-
vatory of Land Lamont-Doherty at the same univer-
sity, containing datasets from more than 300 climate
models and databases; the database of soil characteris-
tics HWSD FAO [45], containing data on the texture
parameters, depths, and soil acidity; the global eleva-
tion database ASTER GDEM with a 30-m resolution,
constructed based on satellite images of ASTER radi-
ometer; a set of renewable maps of soil properties and
classes in the world with a resolution of 1 km (Soil-
Grids1km—soil property and class maps), compiled
with the use of modern statistical methods; the global
database CHELSA with a resolution of 1 km, the first
implementation of which [66] contained sets of air
temperature estimates, formed at a statistical decrease
of the scale, and monthly precipitation totals,
obtained by data of climatic reanalysis ERA-Interim
with the use of wind speed, valley slope aspects, and
the heights of the atmospheric boundary layer. The
second implementation [30] included sets of monthly
estimates of air pressure deficit, incoming short-wave
radiation, potential evapotranspiration, climatic water
humidity index, and area water index over 1980–2018.
These estimates were formed based on the results of
calculation with combined data obtained by joining
the data derived by a decrease by delta-method of the
scale of time series of relative air humidity near land
surface and the proportion of cloud area along with a
mechanical decrease of the scale for the data on tem-
perature, precipitation, and solar radiation. The GIS-
databases of global level also include OpenAerialMap
with an open license, which provides a set of instru-
ments for the search, exchange, and use of images
from satellites and UAV (Unmanned Aerial Vehicle)
and OpenLandMap, containing sets of various data on
the Earth (the so-called Earth mask) on LS, vegeta-
tion, soils, climate, information on terrain etc.

One of the continental GIS bases is the European
base ESDAC [112], containing information of the
European Soil Data Base, sets of estimates of soil ero-
sion, the amount of organic carbon in soil, its biodi-
versity, as well as data of LUCAS (results of laboratory
physical and chemical analyses of the top (0–20 cm)
soil layer for samples taken at more than 20000 sites in
WATER RESOURCES  Vol. 50  No. 5  2023



UTILIZATION OF REMOTE SENSING DATA 711
the European Union countries), etc. We will also
mention two GIS-databases for USA: NGDC—a base
of digital elevation models (DEV) in free access, data
on LS, seismological and other data, as well as a soil
database of US Ministry of Agriculture (USDA
NRCS). The latter can be combined with various
datasets with the use of an online mapping instrument
Web Soil Survey.

In the recent decades, considerable attention was
also paid to the formation of ERS databases on LS and
weather characteristics for their use in simulating the
processes of moisture and heat exchange. For exam-
ple, the sources of such data in open access include:
the database USGS Earth Explorer for various territo-
ries, containing Landsat data, unclassified 1960–1970
data from satellites of CORONA system, geospectral
data, obtained with the use of NASA Hyperion spec-
trometer; Sentinel Open Access Hub with survey data
of twelve-channel multispectral camera in the
ranges from the visible to SWIR from Sentinel-2 board
at 10-m resolution in VNIR ranges and the survey data
with the use of SAR in the microwave C-range from
the board of Sentinel-1 with a resolution from 5 × 5 to
20 × 40 m at the quality of images poorer than that of
Sentinel-2; NASA Earthdata Search base (the major-
ity of data enters into it from the NASA DAAC cen-
ter), representing products for the analysis of Earth
processes, is a high-class source of data on the global
land use and vegetation cover and contains specialized
satellite data, such as the types of permafrost and
water–swamp fields; the set of NOAA Data Access
Viewer, containing satellite images, aerial photo-
graphs, and images obtained with the use of lidars;
database of DigitalGlobe—a commercial operator of
high-resolution satellites GeoEye-1, QuickBird,
IKONOS, WorldView group, from which the entire
library of 30-cm images DigitalGlobe can be loaded
free of charge. In the case of any natural disaster, the
Open Data Programme DigitalGlobe for help pres-
ents, free of charge, satellite images of fires, f loods,
hurricanes, typhoons, and earthquakes. Also, data
samples can be obtained free of charge, including con-
tours of buildings, elevations, stereo images, and
images in real color. The database of the Geo-Airbus
Defense company, a commercial supplier of satellite
images from SPOT, Pleiades, and RapidEye satellites,
includes a set of image samples; however, the choice of
satellite images free of charge is very limited. The pro-
posed samples include optical images SPOT with a
resolution of ≤1.5 m, radar images TerraSAR-X with a
resolution of ≤3 m and horizontal sections of DEM
WorldDEM with a resolution of 12 m (more accurate
than DEMs ASTER, and SRTM). The database of the
National Institute of Space Studies of Brasilia (INPE)
is a catalogue of INPE images, similar to the library
for free of charge loading of satellite images. The
major portion of this catalogue consists of images from
CBERS Chinese–Brazilian satellites, and all the data
refer to the South America and Africa. It will also con-
WATER RESOURCES  Vol. 50  No. 5  2023
tain the data from CBERS-4 [114], Indian satellite
ResourceSat and British UK-DMC 2. The global
DEM AW3D30 with a 30-m resolution is an open-
access set of world level data based on the results of
surveying from onboard satellite ALOS JAXA by
PRISM instruments in the optical range with a resolu-
tion of 2.5 m. This set was formed based on a dataset
from DEM version with a 5-m grid World 3D Topo-
graphic Data, which now contains the most accurate
data on elevations at a global scale. The web-site VITO
Vision presents free of charge images of satellites
PROBA-V (PROBA-Vegetation), SPOT-Vegetation,
and MetOp. These satellites with a low-resolution cut
patterns of vegetation on the Earth surface. The Satel-
lite Land Cover database at a global level gives the
sources of data from Landsat, MODIS, and AVHRR
on the land cover, which allow observing quantitative
changes in its characteristics all over the world—for
territories with various geological and hydrological
conditions, various vegetation and agricultural fea-
tures, as well as for urban areas. An extending data-
base, used in the simulation of moisture and heat
exchange, is the GLASS base, the number of satellite
products in which increased from 5 in 2012 [84] to 14
in 2020 [83]. Now, the database contains datasets on
LAI, broad-band albedo A and longwave radiation
capacity E, incoming shortwave R and resultant long-
wave radiation, photosynthetic active radiation PAR
and its adsorbed fraction FAPAR, LS temperature
LST, projective cover by vegetation B, evapotranspira-
tion ET, latent heat f lux LE, etc. [83]. The duration of
uninterrupted measurements of LAI, A, E, R, and PAR
exceeds 35 years (since 1981 until now) without gaps,
the space and time resolution of the former three is 1–
5 km and 3 h, respectively. The Landsat USGS data-
base [74], which has been updated with the results of
sounding from Landsat-9 since February 2022, is also
widely used [75]. The global data of Landsat-9 OLI-2
in nine ranges (VNIR, SWIR, and others) with a reso-
lution of 30 m and TIRS-2 in two thermal ranges [76]
enable numerous estimates of the characteristics of PP
and atmospheric boundary layer, as required for the
implementation of hydrological models. The use of
data on land classification, carried out in accordance
with IGBP classification scheme, from the dataset of
terrestrial ecosystem classification MODIS
MOD12Q1 [98], as well as daily, eight-day, and
monthly data on the albedo and NDVI, obtained by
MODIS measurements with a resolution of 1 angular
minute [97], combined with Landsat-9 data,
will improve the accuracy of calculations using these
models.

The launch in the recent 15–20 years of the satel-
lites mentioned above with instruments of either high
or low resolution has resulted in the appearance of
additional data that can be used in models for areas of
various scales, from local to global, and, therefore, the
formation of appropriate databases. These are GLCC
[87], GLDAS [120], NLDAS-1 [96], and NLDAS-2
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[155] and other LDAS [154]. The launch into orbit of
satellites MetOp-A, -B, -C, SMOS, SMAP, GCOM-
W1, and GCOM-C1, as well as above-mentioned Sen-
tinel-1, and others with active or passive microwave
range sensors, as well as with radars, allowed the
obtained data to be used to calculate soil moisture
content in areas with a size determined by satellite
equipment resolution and varying from an individual
field to a continent [44, 69, 107, 116, 118, 137, 138,
145]. The satellite imagery with the use of synthetic
aperture radars, which has been actively developing in
recent years, attracts the interest of users because of its
all-weather capability, i.e., the independence of
cloudiness, which is typical of data of VNIR ranges,
and the ability of radio waves emitted from a satellite
to penetrate under tree crowns and next to be recorded
in the form of a reflected signal, thus presenting data
without time delays. Examples of the implementation
of this technology include 1-st generation satellites
(2007–2012) TerraSAR-X, Radarsat-2, COSMO-
SkyMed, TanDEM-X and 2-nd generation (since
2018): SGS-1, PAZ. Note also that the Sentinel-1
images with 10-m resolution with resurvey within 6–
12 days were found to be acceptable for the established
community of SAR data users. Now these data are
used to study Antarctic icebergs and to reveal environ-
mental changes, as well as to map the effects of natural
or anthropogenic impacts. Examples of such use are
tracing the effect of explosions, destruction, forest
fires, and flood scales; monitoring marine and coastal
zones, including oil spills at tanker accidents; moni-
toring of land, in particular, determining the location
of land subsidence and domains subject to the risk of
collapses and landslides; studying the state of vegeta-
tion (the formation of canopy, the density and growth
rates of crops) and the specific features of agricultural
activities (the determination of field boundaries and
sizes, as well as the time of planting and harvesting). At
the passage in the recent 5–7 years to the formation of
constellations of small-size microsatellites with a
weight of <100 kg, due to the much lower cost of their
launch compared with the conventional satellites, the
potential of the use of SAR data have increased dra-
matically. Finnish microsatellite ICEYE-X1 appeared
in 2018, followed by 16 other satellites of ICEYE com-
pany; satellites SAR Denali (2018) and Sequoia (2020)
were launched by Capella Space (USA), followed by 5
global level satellites with hourly time resolution. The
maximal number of CubeSat microsatellites (almost
200) was launched by the Planet company. Their data
are actively used to solve the problems described
above.

In addition to the incorporation of data from vari-
ous carriers in the simulation—conventional satellites
with equipment of various spectral bands, microsatel-
lites with VNIR sensors and radars, aircrafts, and
UAV, these data are often combined with models to
form appropriate databases, e.g., GLDAS Noah data-
base—a symbiose of the Global Land Data Assimila-
tion System and LSM Noah. Such combination con-
tains a larger volume of data than the results of com-
mon observations [92, 143]. The sets of simulation
results thus formed are compared with the results of
measurements collected in databases created under
programs NASA GRACE [173] and its continuation
(since 2018) GRACE-FO [52] which are among the
most informative. They are supplemented, in addition
to the conventional data, by the data of ICESat-2 sat-
ellite [36, 60, 61] and will be supplemented by the data
from WCOM [135–137] and SWOT [23, 43, 54]
scheduled for launch. In the implementation of the
programs analogous to GRACE-FO, the appropriate
databases of terrestrial and satellite data are also
extended, along with the data of reanalysis and the
results of simulating the processes of moisture and
heat exchange, e.g., OSCAR/Surface and
OSCAR/Space [109], working in the WIGOS system
[149, 150].

The development perspectives of satellite technol-
ogies for evaluating the characteristics of land surface
and the surface layer of the atmosphere and the use of
the obtained estimates for simulating moisture and
heat exchange include the construction of new high-
resolution multispectral instrumentation, the forma-
tion of vast databases, including cloud, and methods
for their processing and assimilating in models. The
acquisition of such data with the use of numerous
microsatellites with low launch costs and with sensors
in various ranges (from VNIR to microwave), showing
a high (1.5–4 m) resolution, and covering land surface
several times a day, is also highly demanded and prom-
ising.

Within the range of problems described above, this
review will consider the issues of satellite data utiliza-
tion in simulating elements of water and thermal
regimes of land areas, i.e., the vertical f luxes of mois-
ture and heat, and soil moisture content.

USING REMOTE SENSING DATA 
IN SIMULATING ELEMENTS OF WATER
AND HEAT REGIMES OF LAND AREAS

The Use of Satellite Data in Simulating Vertical Fluxes
of Moisture and Heat

Simulating the water and heat regimes of various
territories implies reproducing the dynamics of soil
water content, evapotranspiration ET (i.e., the total
evaporation, including evaporation from bare soil and
transpiration by plants), the vertical heat f luxes LE
and H, as well as other components of the hydrological
cycle, commonly, with the use of models of water and
heat exchange between the land surface and the atmo-
sphere, for example, of LSM class, containing equa-
tions of water transfer and heat conduction [9, 111,
115, 140]), or balance models of the type of SEBAL,
METRIC, SEBS, TSEB, etc. [20, 21, 80, 88]. The
information basis of LSM is the sets of soil, vegetation,
WATER RESOURCES  Vol. 50  No. 5  2023
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and snow cover characteristics, used as input variables
[8, 9, 93, 101, 140]. Under conventional approaches,
these values were derived from ground observations,
while now they are mostly taken from Earth remote
sensing. These data are used in LSM to evaluate
parameters, e.g., the characteristics of soils and LS; to
reveal precipitation zones and amounts; to specify the
initial conditions for the model, e.g., soil moisture
SM, and to construct time-varying estimates of LS
state, e.g., snow water equivalent SWE. The set of
hydrological characteristics used in LSM and the
methods for their assimilation in models are given in
[55]. Estimates of some of these characteristics, i.e.,
vegetation index NDVI, LS emissivity E, vegetation
cover fraction B, leaf area index LAI, land surface tem-
perature LST, and precipitation, were constructed
with the use of the developed procedures for thematic
processing of measurement data in the visible and IR
channels of radiometers AVHRR/NOAA,
VIIRS/SNPP, MODIS/Terra, and Aqua, MSU-
MR/Meteor-M, SEVIRI/Meteosat [1–4, 10, 11]. In
[93], the values of albedo, NDVI, and LAI were deter-
mined using MODIS data. Many studies in this field,
carried out with the use of balance models were aimed
to obtain estimates only of ET or LE [12, 22, 32, 144,
147, 160]. In such studies, the values of these variables
were determined by different methods: calculated by
Penman-Monteith [80, 88, 144] or Priestley−Taylor
[32], evaluated with the use of lysimeter measurement
data [22, 144], or as a residual term in the radiation
balance equation [12, 22, 82, 144, 147], by measure-
ments of f lows from towers [80, 88, 153] or scintillom-
eters with a large aperture LAS [80], or estimated
based on data of MODIS/TERRA (product
MOD16A2) and MODIS/AQUA (MYD16A2) [80,
144]. In [16], the LE (and ET) and H f luxes were cal-
culated using the SEBAL model, in whose equations
the albedo and LST values were introduced, which
were determined using data from the OLI and TIRS
sensors of the Landsat-8 and MODIS/Terra satellites
(the product MOD09A1). The error in ET estimates
did not exceed 0.35 mm/day and lied between 11 and
12.5%, and that for H estimates lied between 26 and
35%. The study [103] gives estimates of subsoil water
level at the construction of its regression dependences
on the potential evapotranspiration, calculated with
the use of a balance algorithm of SEBAL model. A
common feature of all these models is the use of data
on vegetation characteristics—NDVI, E, and LAI,
obtained from data of MODIS [32, 144, 147], VIIRS
[80], Landsat-5, -8 [22, 103, 147], as well as data on
heat f luxes, which are used to calculate LST and LE,
determined by data of MODIS and Landsat [32, 144,
147], Landsat-5, -8 [22, 49, 103] with a resolution of
30–120 m, MODIS and VIIRS [80], and ASTER
[88]. Measurements of airborne radiometers are also
used to obtain estimates of NDVI, B, and LAI [153], as
well as heat f luxes [49]. The latter estimates are com-
pared with the results of measurements from “flux
WATER RESOURCES  Vol. 50  No. 5  2023
towers” [153]. Estimation of the vertical f luxes of
moisture and heat at different levels above the land
surface were also carried out in the framework of a
complex experiment LAFE [152], in which Doppler
lidars were used to determine wind speed, air tempera-
ture and absolute humidity; airplane and helicopter
data on an area 10 × 10 km were used to determine the
albedo, NDVI, LAI, and LST; soil moisture was deter-
mined by network data; radiation f luxes were mea-
sured by vortex covariation method on flux towers
installed on SEB-stations. The time resolution of lidar
data was 1–10 s, and their space resolution was 30–
300 m. In many studies, a part of source data was taken
from satellite and surface databases; thus, in study
[12], a set of plant characteristics was loaded from
archives SPOT-Vegetation data and Global Land
Cover Map, and estimates of LST and radiation
fluxes, from LSA SAF database with a 15-min time
resolution and 3-km space resolution.

A similar approach was implemented at a global
level in studying the agreement between estimates of
evapotranspiration, obtained with the use of satellite
data by three different methods and input data sets,
including CSIRO-PML [163], MOD16(A2) [99], and
GLEAM [86, 89, 90, 94, 95], as well as estimates of
precipitation based on GPCP data [57] and changes in
soil water content by GRACE data [92] for the basins
of Lake Erie, the Aral Sea, and the rivers of Colorado
and Niger [86]. The spatial resolution was 0.5° for
MOD16 (A2), 0.25° for СSIRO-PML and GLEAM,
1° for precipitation GPCP (1DD v1.2) [58], and
333 km for GRACE. Estimates of vegetation cover
characteristics (NDVI, LAI, etc.), the data on LST,
radiation f luxes, weather data, including precipita-
tion, were taken from various bases and archives. The
increase in the last 3–4 years of the amount of infor-
mation used to estimate the vertical moisture and heat
fluxes increases the possibilities for implementing
modern LSM such as SURFEX, JULES,
ORCHIDEE, CLM5, and CABLE, for territories at
various space scales with the use of mosaic subgrid
structure, when using a mosaic subgrid structure,
which makes it possible to disaggregate sets of required
estimates of water and energy characteristics from sat-
ellite and ground-based databases [25, 48].

The Use of ERS Data for Evaluating 
Soil Moisture Content

The need for estimates of soil water content W for
territories of different size is determined by the signif-
icance of this characteristic as a component of their
water balance—an indicator of the state of water
resources. For example, K. Zhang et al. [162] evalu-
ated changes in subsurface water content for 168 river
catchments as an overall response to global changes in
the values of precipitation, evapotranspiration, and
runoff volumes. The data on subsurface water content
were taken from GRACE information; the estimates
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of soil and vegetation water content, water content on
land surface, as well as snow water equivalent were
compiled from GLDAS databases; two datasets on
precipitation were taken from CRU and GPCC data-
bases. Estimates of evapotranspiration were formed
using MODIS (MOD16A2) data and taken from
GLDAS database, the values of potential evapotrans-
piration were taken from CPU dataset; and the data on
runoff, from study [37]. A digital map for 168 catch-
ments was obtained from GRDC. The contribution of
precipitation to the global changes of subsurface water
content, determined by GRACE data was 42.6%, that
of evapotranspiration was 43.2%, and that of runoff
was 14.2%. The obtained results can illustrate the pos-
sible structure of such changes under changing cli-
mate. The water content W are also an important char-
acteristic of available water supply, they determine the
dynamics of plant growth and, as a consequence, agri-
cultural production, which can be seen in the case of
deficiency of such reserves and droughts. Estimates of
W are also required for calculating runoff characteris-
tics and forecasting f loods and freshets, especially, in
large rivers.

Soil Surface Moisture Estimates and Water Content 
of Its Active Layer Using Microwave Remote 

Sensing Data

In the recent 20 years, the number of estimates of
W based on ERS data of the microwave range and
obtained at any weather has increased considerably.
Depending on the problem to be solved, these esti-
mates were carried out for territories with areas rang-
ing from a few to hundreds of thousands of square
kilometers with the use of the measurement results
with radiometers AMSR-E/Aqua [111] and AMSR-
2/GCOM-W1 [6, 107, 138] in C-, X-, K-, Ka-, and
W-ranges with a resolution for AMSR-2 from 35 ×
62 km at a frequency of 6.9 HGz to 3 × 5 km at a fre-
quency of 89.0 GHz [6, 107]; radiometer MIRAS of
SMOS satellite in L-range with a mean resolution of
43 km [69]; radiometer and radar of SMAP satellite in
the same range with a resolution of radiometer of 40
and radar of 3 km [44, 118]; scatterometer
ASCAT/MetOp-A, -B, -C in C-range with a resolu-
tion of 12.5 km [19, 145]; radar of satellites Sentinel-
1A, -1B within the same range with a resolution from
5 × 5 to 25 × 100 m [17, 18]. Since the spatial resolu-
tion is proportional to the antenna diameter and
inversely proportional to the wavelength, at small
wavelengths, an antenna of large diameter is required
to obtain high resolution at sounding from a height of
several hundred kilometers, which causes considerable
engineering problems [69]. Note that, to solve some
practical problems under H-SAF [56], a procedure
was proposed for disaggregation of the estimates of soil
surface humidity (SSH) using ASCAT data with a res-
olution from 25 to 1 km, based on the use of a linear
regression equation with the incorporation of the
ASAR radar data from ENVISAT satellite and in-situ
data [145]. At the described scatter in the microwave
equipment resolution, the values of W can be esti-
mated at a global and regional scale, at a level of indi-
vidual river catchment, and even a field. L. Brocca
et al. [28] used data of an AMSR-E/Aqua radiometer
(with the use of three different algorithms) and an
ASCAT/MetOp scatterometer to evaluate SSH down
to the depth of 5 cm in 17 areas in Italy, Spain, France,
and Luxemburg. An exponential filter was used to cal-
culate soil moisture SM in the root zone. The correla-
tion between the obtained estimates and observation
data was largest for the results based on ASCAT data
for all areas in France and central Italy; the results for
other regions are identical. It was also found that an
increase in vegetation density leads to a decrease in the
reliability of all satellite estimates of SM. The estimates
of SM formed for various applications with the use of
measurement data from microwave range sensors,
such as AMSR-E, TRMM-TMI, SSM/I, WindSat,
ERS-1, and -2, ASCAT, as well as SMOS and, later,
SMAP, obtained with the use of LSM or reanalysis
results, as well as from prognostic centers, e.g.
ECMWF or GLDAS and GSWP databases, were
combined into ISMN in 2011 [41, 65]. The calibration
and verification of the satellite and model estimates of
soil moisture were made using in-situ measurement
data with a 1-h interval from reliable sources. These
data provided information on the space and time vari-
ations of SM at different scales. W.A. Dorigo et al. [41]
give a review of direct and indirect methods of in-situ
SM measurements (gravimetric, with the use of neu-
tron humidimeter and a cosmic ray neutron detector,
by the difference between the dielectric constants of
soil components and water, with the use of tensiome-
ters, by changes in soil temperature associated with its
water content, as well as other methods). As of May
2011, ISMN contained data of 16 regional networks
and more than 500 stations in Italy, France, the
United States, Russia, Mongolia, Australia, France,
West African countries, and others for a period from
1952 to 2011, and this database was expanded in the
following years.

J. Shi et al [137] used airborne radiometer measure-
ments of the L- and S-, as well as L- and С-ranges for
various space scales to construct SM profiles from 0.1
to 0.4 m in depth, which were compared with mea-
surement results. In this case, the main interfering fac-
tors were surface roughness and the presence of vege-
tation. These results showed that the joint use of
L-band and S-band devices improve the accuracy of
SM estimation due to the better correction of the
effects of vegetation. In addition, the data of observa-
tions in the S- and C-bands have a higher spatial reso-
lution than that of data in the L-band; therefore, they
can be used to reduce the scale of L-band observation
data from, for example, SMOS and SMAP and later
WCOM satellites. Since the microwave band data are
used to directly estimate the surface (0–3 cm) soil
WATER RESOURCES  Vol. 50  No. 5  2023
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Fig. 1. Soil surface humidity calculated with the use of the model (1) by data of ground measurements and (2) with the use of
evaporation estimates obtained with the use of ASCAT/MetOp data, and (3) determined directly by ASCAT measurements.
Danilovka Agrometeorologial Station (Volgograd province). 2019 Vegetation season. 
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layer, the water content of its active layer are evaluated
with the use of several approaches. The first approach
consists in simulating the process of water transport
into deeper soil layers with the use of SWI time series,
which have an exponential autocorrelation function
with a characteristic time that is consistent with the
theoretical expectation time and observation results
[145]. The second approach is based on the applica-
tion of extended Kalman filter, which takes into
account the errors of the prognostic model without
limitations on the time interval of acquisition of earlier
satellite data with the division of the soil mass into four
layers: 0–7, 7–28, 28–100, and 100–289 cm [33, 34,
73, 120, 145]. The studies [116, 118] use Kalman
ensemble filters, in which their ensembles are used to
estimate the covariation matrix of forecast errors. The
source information used in the studies are ASCAT
data in [33, 34, 73, 120, 145], SMAP data in [118], and
Sentinel-1 data in [116]. Under the third approach, W
is estimated with the use of LSM. In SVAT models, the
vertical profiles of soil moisture content are calculated
with the use of water transfer and heat equations [8, 9].
The estimates of the characteristics of vegetation, pre-
cipitation and LST are constructed using measure-
ment data from meteorological satellites. In the calcu-
lation of water content, daily SSH composites, formed
based on ASCAT/MetOp data, were used at each time
step to specify the initial profiles of SM as well as to
evaluate evaporation from soil surface with the use of
bulk-formulas at each time step [8, 101]. Examples
given in Fig. 1 show time variations of SSH over the
vegetation season, constructed for a station in Volgo-
grad region based on ASCAT data and by simulation
results, and Fig. 2 shows the distribution of soil water
content in a part of the Central Chernozem Region of
Russia (TsChR) for a day in the vegetation season of
2017, calculated by the model with the use of SSH esti-
mates based on ASCAT data and by surface data [101].

LSM Noah [35, 105] is also used to evaluate values
of W (at both global and regional scales). In [161],
such estimates obtained with the use of this model,
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associated with GLDAS database, and with the use of
ECV, European reanalysis ERA-Interim, and
MERRA data with a spatial resolution of 0.25° ×
0.25°, 0.5° × 0.5°, and 1° × 1°, were compared with
the results of 100 in situ observations for three areas of
Himalaya–Tibet plateau. In this case, Noah model
generally showed better results. We note the difference
between the used data sets. GLDAS-1 and GLDAS-2
are databases of estimates of LS and fluxes, which
were formed by joining the results of satellite and
ground-based measurements with the use of LSM and
data assimilation methods. In ECV, the sets of W esti-
mates are combined from the measurement data of
various sensors from radiometer SMMR/Nimbus-7 to
scatterometer ASCAT/MetOp. In ERA-Interim, the
results of reanalysis were obtained at an alternative
regime of data assimilation with the use of 6-hour
cycles of analysis, and contain estimates of W for four
soil layers (0–7, 7–28, 28–100, and 100–289 cm)
[158]. MERRA is a set of reanalysis assimilation
results, containing ERS and ground-based observa-
tions of the atmospheric characteristics, as well as
radiation data from probes, and wind data from scat-
terometers. LSM Noah GLDAS along with other
three models—BHOA [47], ERA-Interim TESSEL,
and LISFLOOD [31]—and satellite data ESA CCI
was used to evaluate variations of soil surface moisture
and water content of its root layer with the aim to com-
pare them with in-situ data from eight sites in Argen-
tinian pampa [139]. It was found that the time distri-
butions of soil water content constructed based on the
data of model and satellite estimates are incorrect in
some cases, and to extend the possibility for detecting
droughts or overmoistening with the use of LSM, it is
necessary to have more accurate weather data and the
values of soil characteristics.

Miralles et al. [94] calculated the soil water content
W in the root zone for global scale with the use of
GLEAM model with balance equations solved by dif-
ference scheme for successive soil levels. The input
variables were the meltwater volume and the total rain
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precipitation minus the volume of moisture inter-
cepted by plants, and the output variables were the val-
ues of evaporation and moisture infiltration into
deeper soil layers. The estimates of water balance were
corrected for each day with the use of the Kalman fil-
ter for satellite observations. The evaporation was cal-
culated by the Priestley–Taylor formula for bare soil,
low (0–5, 5–100 cm), and high (0–5, 5–100 cm and
1.0–2.5 m) vegetation at the use of estimates of SSH,
LST, plant cover density, and snow depth, obtained
using measurement data from AMSR-E/AQUA radi-
ometer in the 36.5 GHz band with a resolution of 12
km and within the 6.9 GHz with a resolution of 56 km.
Precipitation was determined by observations with a
half an hour interval within IR-range by geostationary
satellites GOES, GMS, and Meteosat for increasing
the volume of their more accurate estimates in the
microwave range by data of sensors AMSU-B, SSM/I,
TMI, and AMSR. The set of data on vegetation VCF
product was formed using MODIS data (MOD44B
package). Air pressure was calculated by the baromet-
ric height formula with the use of digital elevation
model. Evaporation estimates were verified using data
of FLUXNET stations in Europe and USA for the
most typical climate conditions and vegetation types.
Such approach based on the use of GLEAM to evalu-
ate the water content W of the root layer and evapora-
tion ET, was also used in [95]. Both values were calcu-
lated with the use of water balance equation with the
incorporation of data on runoff from the basins of
24 large rivers; the evaporation was calculated by
Priestley−Taylor formula, and the water content were
estimated with the use of Kalman filter. The correct-
ness of the daily ET estimates for the global scale was
checked by their comparison with the appropriate val-
ues from Princeton University product and MERRA
databases. The former were obtained with the use of
Penman–Monteith equation with incorporation of
data from various satellites. The latter were based on
the reanalysis data from GEOS-5 DAS NASA. The
results of calculations for different months were used
to construct maps of evaporation and transpiration for
the globe. Analogous estimates of soil water content W
in the root zone and evaporation, including a set of
calculation results over 36 years (1980–2015) (v3a),
were obtained in [90] with the use of a new (v3) ver-
sion of GLEAM, containing the same input variables
as the previous (v2) version of the model [94], also
with the incorporation of satellite data. The version v3
used Priestley–Taylor formula, Kalman-filter algo-
rithm, MOD44B package, and other products. For
low vegetation, the root zone was considered in a two-
layer variant (0–10, 10–100 cm), and for high vegeta-
tion, in a three-layer variant (0–10, 10–100, 100–
250 cm). At a three-layer description, the water con-
tent were calculated with the use of finite-difference
schemes for each horizon. New estimates of W and ET
were obtained when modeling based on the data of
measurements of various passive and active microwave
sensors in C- and L-ranges of ESA CCI (for the set of
results over 2003–2015, v3b) and data of SMOS satel-
lite (for an analogous set over 2011–2015, v3c). The
adequacy of the estimates of W and ET from sets v3а,
v3b, and v3c is confirmed by their comparison with
the measurement results of 2325 soil moisture sensors
and fluxes at 91 f lux towers by vortex covariation
method for various types of LS. The comparison of W
estimates from data sets showed their quality to be
higher than that of analogous estimates from v2. All-
weather satellite data in microwave range with a high
resolution (100 m) were used in GLEAM to evaluate
the ET and SSH for the Netherlands, Flanders, and
West Germany [89]. SSH and LST were evaluated at a
lesser scale with the use of LPRM model using mea-
surements of AMSR-2 radiometer on GCOM-W1 sat-
ellite. The surface moisture content was also deter-
mined by the data of scatterometer ASCAT/Metop-A,
-B. The water content in the root zone W were calcu-
lated with the use of a multilayer water balance
model—a part of GLEAM, based on the observations
of precipitation with assimilation of data on SSH. The
datasets that enter the used version of GLEAM
included estimates of potential ET from water surface,
low and high vegetation, and bare soil with the use of
Penman–Monteith equations and Priestley–Taylor
constants. The data on short- and long-wave radiation
were obtained from measurements of radiometer
SEVIRI/Meteosat with resolution of 5 km, as well as
from EUMETSAT LSA-SAF archive; the data on
albedo were taken from measurements of
MODIS/Terra and Aqua with 500-m resolution once
in 16 days (MCD43A3 package). SSH estimates were
compared with in-situ measurements at 29 sites in the
examined territories, the mean coefficient of correla-
tion was 0.76. The comparison of ET estimates
obtained with the use of GLEAM with LSA SAF data
revealed difference between them (coefficients of cor-
relation of 0.65–0.95) depending on the vegetation
type—for woody vegetation, the errors were greater
than those for grassy and shrubby vegetation because
of the interception of water by plants, which was the
dominant process. Combining the data obtained from
passive (AMSR-E) and active (ASCAT) microwave
satellite sensors and the use of a developed technology
[85] gave more accurate estimates of SSH for a soil
layer with a depth up to 10 cm on a global scale. Such
and analogous estimates, obtained with the use of
Noah model (a component of GLDAS), were com-
pared with the results of in-situ SSH measurements,
taken from OZNET networks for the southeastern
part of Australia, REMEDHUS for the central Spain,
SMOSMANIA for the southern France, and CNR-
IRP for Italy. These comparisons show that at a good
correlation between both satellite products (R > 0.65),
their combining improves the time resolution of SSH
estimates. In addition, the use of scaled estimates
AMSR-E and ASCAT was found to be effective for
regions with sparse or moderate vegetation. K. Zhang
WATER RESOURCES  Vol. 50  No. 5  2023
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et al. [159] showed that the accuracy of the daily esti-
mate of soil water content based on the joint use of
observation data on the brightness temperature from
several satellites in the regime close to real time is
higher than the accuracy of analogous estimates by
data of each satellite. Estimates of soil moisture were
based on the measurements of the brightness tempera-
ture by SMAP, SMOS, AMSR-2, FY3B, and FY3C
equipment for the same day, followed by averaging
these estimates to obtain their daily aggregate. The
comparison of the combined estimates and those from
each satellite with ground-based data from two net-
works in the Central Tibet and Anhui province
(China) showed a noticeable increase in the accuracy
of soil moisture estimates, especially in the second
region. B. Zhu et al. [167] present a simplified algo-
rithm for determining the moisture of bare soil surface
with the use of measurements of L-range radiometers
installed on SMOS and SMAP satellites. This algo-
rithm consists of two parts: a model of surface radia-
tion with dual polarization, which allows the effect of
surface roughness to be reduced by using data on the
reflectivity of the surface, and a model of soil moisture
recovery, which utilizes the relationship between the
corrected actual refractive index and the volumetric
soil moisture content. In this approach, SM was deter-
mined with the incorporation of several available input
characteristics: the brightness temperature of the
microwave range at dual polarization, the surface tem-
perature, and the content of sand and clay in the sur-
face (0–10 cm) soil layer. The obtained estimates
showed good agreement with the SM values calculated
with the use of an appropriate integral equation (the
RMSE values were <3% at all angles of incidence).
The subsequent test of the algorithm with data of four-
year experiments with radiation in L-range, carried
out in BARC, yielded RMSE of 4.3 and 3.4% at the
angles of incidence of 40° and 50°, respectively. The
algorithm also showed a high efficiency for radiome-
ters in L-range with larger angles of incidence installed
on SMAP.

Estimation of Soil Surface Moisture 
Using Neural Networks

SSH estimates by satellite data can be also obtained
with the use of neural networks NN [100, 121, 156].
N.J. Rodríguez-Fernández et al. [121] choose this set
of estimates by SMOS data as a reference in learning
NN to obtain a global nonlinear dependence (search
for global nonlinear regression), relating the bright-
ness temperatures Tbr, measured by AMSR-E radiom-

eter, with SMOS data set over the period of simultane-
ous mission of 1.5 year, after which the constructed
network was used to evaluate SSH by the earlier
AMSR-E observations. The sensitivity of Tbr AMSR-

E to changes in soil temperature was evaluated with
the use of information from databases ERA-Land and
MERRA-Land. One of the articles, where data of C-
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and X-ranges AMSR-E and information about soils

was used, was chosen to obtain SSH estimates over

2003–2011. This set of estimates showed small biases

(<0.02 m3/m3) and standard deviations (<0.04 m3/m3)

from SMOS data over most of the world surface. SSH

estimates from this set, as well as from sets AMSR-E,

SM CCI, MERRA-Land, and ERA-Land were com-

pared with many in-situ measurement results on four

continents. A good agreement with field data was

obtained for Australia, the results of calculations were

found acceptable for Europe, mountain regions of the

North America, and, to a much lesser extent, to the

Sahel region. They also demonstrated considerable

errors for regions of tropic and boreal forests. A similar

approach was implemented in [156], where backprop-

agation neural networks BPNN were used to recon-

struct a long time series of SSH values with the use of

satellite-based estimates of the microwave vegetation

index MVI. Here, BPNN training for each grid pixel

was carried out for two years with the use of data on

SSH from SMOS of level 3 (SMOSL3sm) as a training

objective, taking into account the reflection indices Rs
within ranges C/X/Ku/Ka /Q, as well as MVI from the

data of radiometers AMSR-E and AMSR-2 as input

characteristics, where MVI was used for correction for

the effect of vegetation. In this case, the values of Rs
and MVI were determined from the relationships with

the brightness temperature Tbr, measured by AMSR-E

and AMSR-2. The training accuracy of the networks

was evaluated by comparing the SSH values obtained

with the use of BPNN (NN sm) with SMOSL3sm

within the training period BPNN, by correlation coef-

ficients (~0.67), bias (~–0.0005 m3/m3) and the root-

mean-square error RMSE (~0.055 m3/m3). Good

results at a global scale were obtained for Australia, the

central part of USA, and Central Asia. The trained

networks were used to construct for each pixel,

according to AMSR-E data, global SSH time series

over period 2003–2015, after which the products NN

sm were evaluated by comparison with in-situ SSH

observation data in all fragments of SCAN network.

K. Muzalevskiy et al. [100] substantiated the possibil-

ity to evaluate the moisture content of bare soil surface

with the help of NN, using radar data from Sentinel-

1B satellite. Here, NN were considered as a means to

construct a regression relationship between the back-

scatter coefficients, determined in Sentinel measure-

ments, and polarimetric scatter characteristics, i.e.,

the anisotropy and entropy, and the reflectivity of

SSH. The moisture and roughness of the soil surface

are the main characteristics that affect this coefficient

[106]). The required moisture values were determined

using the obtained data on the reflecting capacity of

soil. Estimates of the moisture content of the surface

(0–5 cm) soil layer with the use of the proposed

method for an agricultural field out of crop with bare

soil in a village in Krasnoyarsk Krai, RF, yielded a



718 MUZYLEV
root-mean-square error ≥3% and a coefficient of
determination ≤0.726 [100].

Estimates of Soil Moisture for Drought Conditions

In studies [78, 146], SM was evaluated based on its
relationship with the water deficiency index WDI and
precipitation. WDI was calculated as a combination of
differences between the temperatures of LS and air,
obtained with the use of their dependence on the pro-
jective cover (LST~VI), determined using MODIS
data, in the form of a trapezoid with vortices corre-
sponding to dry and saturated bare soil, vegetation in
the state of water stress, and well moistened. These
differences were constructed for each pixel using the
energy balance equation, where the f luxes of latent
and sensible heat f luxes were calculated with the use of
data on meteorological characteristics, including air
temperature, solar radiation, wind speed, and specific
moisture content, the results of calculation of the sur-
face and aerodynamic resistances, as well as MODIS
data on albedo and LAI. The calculated values of tem-
perature differences were used to determine the
boundaries of a trapezoid for the dry and wet state of
LS. The values of meteorological characteristics in
[146] were derived from the data of direct measure-
ments at weather stations, and those in [78] were
loaded from CLDAS database. At the approach used
in the study, the root-mean-square error of soil mois-
ture estimate relative to measurements at different

depths varied within 0.067–0.079 m3/m3. Variations
in SSH at a global scale over the recent 40 years were
analyzed by data ESA CCI (for the layer 0–5 cm),
GLDAS-Noah (for the layer 0–10 cm), and ERA-
Interim (for the layer 0–7 cm), the latter were closest
to the measured values [38]. The authors note an
appreciable decrease in the global averages of SSH in
1979–2017 and an increase in the downward trend in
2001–2017, illustrating them by global SSH maps.
Drying was observed in sols with the seven main land
use types, the largest proportion among them (~80%)
being recorded in urban areas. At the same time, in
65% of cases of soil drying, it was due to an increase in
temperature, while in 82% of moistening cases, due to
the joint effect of temperature, precipitation, and an
increase in vegetation area, characterized by NDVI.
Under the condition of global warming, the area of
soil drying in 1979–2017 increased at a rate of 1% per
year. N. Nicolai-Shaw et al. [104] obtained quantita-
tive estimates of the relationship between soil moisture
SM during draught, determined by satellite data, and
the temperature, precipitation, evapotranspiration,
and plant characteristics at a peak of vegetation period
for a global scale. The values of SM were obtained by
data of ESA-CCI and ERA-Interim/Land; the values
of evapotranspiration ET, by GLEAM data, and the
values of temperature and precipitation, by data of
ERA-Interim (ERA-Tx and ERA-P) (all values with a
resolution of 0.25°, at a daily basis, over more than
30 years), the values of NDVI, by AVHRR/NOAA

data with a resolution of (1/12)° once in two weeks,

the values of LAI and PAR, by MODIS data with a res-

olution of 1 km once in 8 days, and the data on the

degree of coverage by plants, by data of ESA CCI. The

values of SM at drought, determined by satellite data

from ESA CCI, were compared with analogous values

obtained using ERA-Interim data and with the use of

LSM and data of multi-frequency radiometer on the

precipitation index SPI for the territories of all conti-

nents. For different parts of these territories, for

drought peaks, specific features of the relationships

between SM and the temperature, precipitation, the

values of ET and the vegetation area were described.

This approach enables monitoring droughts at large

space and time scales with the use of satellite data.

Note that, to analyze the long-term dynamics of water,

energy, and carbon cycles over land surface, the Euro-

pean Space Agency ESA, under its program CCI in

2012, made available the first long-term set of global

satellite data on soil moisture SM, ESA CCI SM. This

set combined various active and passive microwave

products of soil moisture, formed with the use of a sin-

gle sensor, into three harmonized products—joined

active, passive, and combined active + passive micro-

wave products [40]. Compared with the first issue of

this set, the latest (as of 2019) version ESA CCI SM
contains many improvements along with data of sev-

eral new satellite sensors with the expansion of its time

coverage up to the interval 1978–2018 [53]. W. Wie et

al. [148] used ERS data to develop a drought index

TVPDI, which, in the authors’ opinion, is a better

indicator of land surface drying than those associated

with the amount of precipitation P—the temperature

LST, and with the state of vegetation—soil moisture

SM (because of the interaction between the likely

causes of draughts mentioned above). The possibility

to use this index was substantiated based on its com-

parison with data on SM, P, NDVI, LST, other aridity

indices, as well as the crop yield per unit area and the

net primary production NPP (appropriate analysis was

carried out for various space scales). TVPDI estimates

at drought were more accurate than the results of the

use of P, NDVI, and LST, in this case, the coefficient

of correlation between TVPDI and SM was >0.64.

TVPDI time series showed a good agreement over the

space with other dryness indices and over time, with

the crop yield per unit area and NPP for most regions

of China. Estimates of TVPDI by MODIS data corre-

sponded also to analogous estimates obtained with the

use of Landsat data. As the result, the use of TVPDI for

monitoring arid and humid areas in China made it

possible to record noticeable space and time differ-

ences between the states of dryness–wetness on both

monthly and annual scale.
WATER RESOURCES  Vol. 50  No. 5  2023
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Estimates of Soil Moisture Using New Promising 
Microwave Satellite Sensors

In the several recent years, integrated (airborne and
surface) experiments were carried out to test micro-
wave instruments planned for installation on new
space platforms. Thus, study [164] is focused on SSH
estimation based on measurement data from an air-
borne L-range microwave radiometer with synthe-
sized aperture, which carried out earth surface sound-
ing at variable incidence angles and planned for oper-
ation on satellites WCOM [135, 136] and TWRS [166].
T. Zhao et al. [164] studied the dependence of SSH
estimates on these angles in algorithms corresponding
to different polarizations, used to evaluate the bright-
ness temperature and SSH, and in model LPRM; the
effect of vegetation and LS roughness on the accuracy
of those calculations was also estimated. These results
were compared with the data of ground-based mea-
surements of SM and the temperature; in this case, a
range of angles was found for different polarizations,
making it possible to obtain optimal SSH estimates.
Publications [165, 166] present the results of analo-
gous studies carried out to test the instruments for
microwave L-range for TWRS satellite and aimed to
increase the spatial resolution and the accuracy of
SSH mapping by the joint use of the data of active and
passive ERS in L-range [166], in L-, C-, and X-ranges
[165], as well as data of the optical range. In both stud-
ies, SSH estimates for the 0–5 cm layer, obtained with
the use of aircraft data of different resolutions (air-
borne radiometer and radar) for different sounding
angles and frequencies, were compared with the
results of ground-based measurements of soil mois-
ture and temperature on two grids (in the basins of two
rivers of Inner Mongolia (China)). High spatial vari-
ability was found in the values of both temperature and
SSH for different types of land use (arable land, grain
and grass vegetation) [166]. T. Zhao et al. [165]
showed that difference between the brightness tem-
peratures for the adjacent frequencies L- and C-, as
well as C- and X-ranges are determined by the differ-
ence between SSH values, while the difference
between the values of the brightness temperature at
different angles of incidence are mostly due to the dif-
ferent moisture content of vegetation. In the authors’
opinion, an increase in the number of observation
channels leads to more reliable estimates of SSH at a
resolution of L-band sensor of about 18 km.

Analysis of Possible Errors in Soil Moisture Estimates
by Satellite Data

The difficulty in estimating soil moisture SM by
high-resolution SAR data is mostly due to the need to
provide accurate parameterization of soil roughness,
to take into account the effect of the observation angle,
and to ensure the continuity of the data. To use the
existing sets of SM estimates by microwave data with a
low resolution over a long time, for example, from
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ESA CCI SM web site, requires the use of scale-
reducing algorithms to increase the spatial resolution
of estimates from these sets. In addition to the data of
such microwave measurements, the results of observa-
tions in VNIR ranges were used either to increase the
scale of soil moisture estimates by microwave data or
to directly determine its values. The advantages of
VNIR range measurements are their very high resolu-
tion—both spatial (10 m for Sentinel-2) and temporal
(less than a day for geostationary satellites) [113]. For
example, S. Sabaghy et al. [122] discuss the results of
SSH estimation by microwave data of SAR and radi-
ometers of SMAP and SMOS satellites at a decrease in
the scale, by data of VNIR ranges Landsat-8 OLI and
MODIS, at the use of method of rediscretization
(changes in the resolution of images in pixels), by data
of airborne measurements with the use of PLMR radi-
ometer and PLIS scatterometer under projects SMA-
PEx-4,-5 [157] and ground-based measurements in-
situ and on OzNet network on the agricultural area
Yanko in New South Wales (Australia).

Studying the specifics of errors in SSH estimates
with the use of ERS data, carried out in [151], was
aimed to improve the methods for optimal assimila-
tion of such estimates in hydrological models. The
authors considered the differences between time-
invariant and daily errors in SSH estimates by ASCAT
and SMAP measurements and analyzed the correla-
tion between these daily errors and a quantitative esti-
mate of plant biomass by leaf area index LAI and the
amount of precipitation. In tropical regions, the dif-
ference between the time-invariant and daily errors is
large in the dry season and small in the rain season.
For the major portion of land surface, the daily errors
show higher correlation with precipitation than with
LAI. In areas with a low vegetation cover, including in
barren lands, meadows, and open brushes, rain peaks
coincide with peaks in the errors in SSH estimates,
and the peaks in LAI values in all cases are attained
after the passage of SSH error peaks. Thus, the time
variations in the errors in soil moisture estimates is
more due to precipitation than to variations in LAI.

An original method for estimating the moisture
content of the surface soil layer with the use of GNSS
navigation system is proposed in [81]. Taking into
account the decrease in the amplitude of the beam
refracted by soil, the authors constructed a polynomial
regression relationship between the ratio of this ampli-
tude to that of the incident beam and the moisture
content of the surface (3.5 cm) layer and its tempera-
ture. The form of this relationship was determined by
its calibration against measurement data of 18 satellites
over 62 days out of the total of 241 days of measure-
ments. The coefficient of correlation was 0.947, and

the RMSE value was 0.013 cm3/cm3 (1.3%) at a scatter

of SSH values between 0.272 and 0.489 cm3/cm3. This
approach seems to require improvement, in particular,
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Fig. 2. Distribution of moisture storage in the 1-m soil layer in a part of Central Russia on August 22, 2017, calculated by the model
(a) with the use of surface measurement data, (b) with initial soil moisture profile specified with the use of ASCAT data, and (c)
their difference.
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carrying out more measurements and detail verifying
the accuracy of results.
CONCLUSIONS

The review gives the results of the use of ERS data
WATER RESOURCES  Vol. 50  No. 5  2023
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in different spectral ranges to evaluate the evapotrans-
piration and the soil surface humidity (SSH) and the
moisture reserves of its active layer W as elements of
the water and heat regimes of territories of different
scales—from local to global. Under such approach, the
article presents a retrospective of studies of the pro-
cesses of water and heat exchange between land areas
and the atmosphere (by implementing field hydrolog-
ical–atmospheric experiments, regular collection of
data on the LS and the surface layer of the atmo-
sphere, and the development of models of these pro-
cesses) since the mid-1980s until now. In addition, a
review of databases of ground-based, satellite, and
model data (global, regional, and local), accumulated
in those studies, is given.

Considerable attention is paid in the study to the
results of estimation of SSH and W with the incorpo-
ration of microwave range data, including those
obtained with the use of SAR, as one of the most effec-
tively developing lines of evaluating those values,
which characterize the water availability in the exam-
ined territories. The results of application of such data
under various physiographic conditions are analyzed.
Estimates of the SSH, obtained with the use of neural
networks, are given. The issues of the application of
ERS data to estimating soil moisture content under
drought conditions are considered.

The prospects of the development of satellite tech-
nologies for estimating LS and meteorological charac-
teristics, used to calculate soil moisture content and
other elements of water and heat regimes, are out-
lined, including the development of new high-resolu-
tion multispectral instrumentation, the construction
of large databases, including cloud, methods of their
treatment and assimilation in models. A brief descrip-
tion is given to a new promising line of obtaining
remote sensing data with the use of numerous micro-
satellites of small size and weight with high-resolution
sensors in either VNIR or microwave ranges. These
microsatellites show a high (several times a day) recur-
rence.

The presented review can be used by researchers
focused on simulating the processes of water and heat
exchange in territories of different natural zones and
obtaining estimates of soil water content and evapora-
tion.
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APPENDIX
ABBREVIATIONS USED

WMO, World Meteorological Organization

KUREX,  Kursk experiment (1988 and 1991)

LR MS,  Low-Resolution Multichannel Scanner

ALOS,  Advanced Land Observing Satellite

AMSR, Advanced Microwave Scanning Radiome-
ter

AMSU-B, Advanced Microwave Sounding Unit-B

ASAR, Advanced Synthetic Aperture Radar
WATER RESOURCES  Vol. 50  No. 5  2023
ASCAT, Advanced Scatterometer

ASTER, Advanced Spaceborne Thermal Emission
and Reflection Radiometer

AVHRR, Advanced Very High-Resolution Radi-
ometer

AW3D30, ALOS Global Digital Surface Model
with a 30-m Resolution

BAHC, Biospheric Aspects of the Hydrological
Cycle (core project of IGBP)

BARC, Beltsville Agricultural Research Center

BHOA, Balance Hidrolуgico Operativo para el
Agro

BOREAS, Boreal Ecosystem-Atmosphere Study

BPNN, Back Propagation Neural Network

CCI, Climate Change Initiative

CHELSA, Climatologies at High Resolution for
the Earth’s Land Surface Areas

CRU, Climate Research Union

CSIRO, Commonwealth Scientific and Industrial
Research Organization

DAAC, Distributed Active Archive Center for Bio-
geochemical Dynamics

ECMWF, European Centre for Medium-Range
Weather Forecasts

ECV, Essential Climate Variables

ERA-Interim TESSEL, ERA-Interim Tiled
ECMWF’s Scheme for Surface Exchanges over Land

EROS, Earth Resources Observation and Science
center in Sioux Falls, South Dakota, USA

ERS, European Remote Sensing satellite

ESA, European Space Agency

ESA CCI, European Space Agency Climate
Change Initiative

ESDAC, European Soil Data Centre

EUMETSAT, European Organization for the
Exploitation of Meteorological Satellites

FAO, Food and Agriculture Organization of the
United Nations

FAPAR, Fraction of Absorbed Photosynthetically
Active Radiation

FIFE project, First ISLSCP Field Experiment
(1987 and 1989)

GCOM-W1 and GCOM-C1, Global Change
Observation Mission, Water and Climate

GCOS, Global Climate Observing System

GEOS-5 DAS, Goddard Earth Observing System-
5 Data Assimilation System

GEWEX, Global Energy and Water Cycle
EXchanges Project

GLASS, Global LAnd Surface Satellite

GLCC, Global Land Cover Characterization

GLDAS, Global Land Data Assimilation System
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GLEAM, Global Land Evaporation: the Amster-
dam Methodology

GMS, Geostationary Meteorological Satellite

GNSS, Global Navigation Satellite System

GOES, Geostationary Operational Environmental
Satellite

GPCC, Global Precipitation Climatology Centre

GPCP, Global Precipitation Climatology Project

GRACE-FO, Gravity Recovery and Climate
Experiment-Follow-On

GRDC, Global Runoff Data Centre

GSWP, Global Soil Wetness Project

Hyperion, Space-Based Imaging Spectrometer

H-SAF, Satellite Application Facility on Support
to Operational Hydrology and Water Management

HWSD, Harmonized World Soil Database

ICESat-2, Ice, Cloud, and Land Elevation Satel-
lite-2

IGBP, International Geosphere-Biosphere Pro-
gramme

IRI/LDEO CDL, International Research Insti-
tute/Lamont-Doherty Earth Observatory Climate
Data Library

ISBA model, Interactions between Soil–Bio-
sphere–Atmosphere land surface model

ISD, Integrated Surface Database

ISLSCP II, International Satellite Land Surface
Climatology Project, Initiative II, part of the GEWEX
project

ISMN, International Soil Moisture Network

JAXA, Japan Aerospace Exploration Agency

LAFE, Land Atmosphere Feedback Experiment

LAI, Leaf Area Index

LAS, Large Aperture Scintillometer

LDAS, Land Data Assimilation System

LE, Latent Heat Flux

LISFLOOD, rainfall-runoff model

LPRM, Land Parameter Retrieval Model

LSA SAF, Land Surface Analysis Satellite Applica-
tions Facility

LSM, Land Surface Model

LST, Land Surface Temperature

LUCAS, Land Use/Cover Area frame statistical
Survey

MERRA, Modern-Era Retrospective analysis for
Research and Applications

Meteosat, Meteorological Satellite (geostationary
satellite Meteosat Second Generation, MSG)

MetOp, Meteorological Operational satellite

METRIC, Mapping Evapotranspiration at High
Resolution with Internalized Calibration

MIRAS, Microwave Imaging Radiometer with
Aperture Synthesis
MODIS, MODerate resolution Imaging Spectro-
radiometer

MVI, Microwave Vegetation Index

NASA, National Aeronautics and Space Adminis-
tration

NCEI, National Centres for Environmental Infor-
mation

NDVI, Normalized Difference Vegetation Index

NLDAS, North American Land Data Assimilation
System

NN, Neural Network

NOAA, National Oceanic and Atmospheric
Administration

NGDC, National Geophysical Data Center

NPP, Net Primary Productivity

NRCS, Natural Resources Conservation Services

OLI, Operational Land Imager

ORNL, Oak Ridge National Laboratory in Oak
Ridge, Tennessee, USA

OSCAR, Observing Systems Capability Analysis
and Review

PAR, Photosynthetically Active Radiation

PLIS, Polarimetric L-band Imaging Scatterometer

PLMR, Polarimetric L-band Multibeam Radiom-
eter

PML, Penman-Monteith-Leuning

PRISM, Panchromatic Remote-sensing Instru-
ment for Stereo Mapping

PROBA, PRoject for On-Board Autonomy

RMSE, Root Mean Square Error

SCAN, Soil Climate Analysis Network

SEB, Surface Energy Balance

SEBAL, Surface Energy Balance Algorithm for
Land

SEBS, Surface Energy Balance System

SEVIRI, Spinning Enhanced Visible Infra-Red
Imager

SM, Soil Moisture

SMAP, Soil Moisture Active Passive

SMMR, Scanning Multichannel Microwave Radi-
ometer

SMOS, Soil Moisture and Oceans Salinity

SNPP, Suomi National Polar-orbiting Partnership

SPI, Standardized Precipitation Index

SPOT, Satellite Pour l’Observation de la Terre

SRTM, Shuttle Radar Topography Mission

SSM/I, Special Sensor Microwave/Imager

SVAT, Soil Vegetation Atmosphere Transfer

SWE, Snow Water Equivalent

SWI, Soil Water Index

SWIR, shortwave infrared

SWOT, Surface Water and Ocean Topography
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TIRS, Thermal Infrared Sensor

TRMM, Tropical Rainfall Measuring Mission

TRMM-TMI, TRMM Microwave Imager

TSEB, Two-Source Energy Balance

TVPDI, Temperature Vegetation Precipitation
Dryness Index

TWRS, Terrestrial Water Resources Satellite

USDA, United States Department of Agriculture

USGS, United States Geological Survey

USGS LCI, USGS Land Cover Institute, USGS
Land Cover Database 

VCF product, Vegetation Continuous Fields prod-
uct

VI, Vegetation Index

VIIRS, Visible Infrared Imaging Radiometer Suite

VNIR, visible and near-infrared

WCOM, Water Cycle Observation Mission

WCRP, World Climate Research Programme

WDI, Water Deficit Index

WHYCOS, World Hydrological Cycle Observing
System

WIGOS, WMO Integrated Global Observing Sys-
tem

Windsat, Coriolis satellite with WindSat space-
borne polarimetric microwave radiometer on board
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