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Abstract—Size of the reservoir and dam operation are cited as the primary causes of changes in the post-dam
downstream hydrograph in scientific literature. This study investigates whether upstream basin and climato-
logical characteristics also contribute to such changes. Drawing upon the case study of 18 sites across Penin-
sular India, we employed Multiple Linear Regression (MLR) with two dam-related and five geophysical as
well as climatological factors of upstream basins as predictors to determine key influencing causes. Pre- and
post-dam flow duration curves were used to characterise changes in f low post dam construction. We consid-
ered periods with the least rainfall difference pre- and post-dam and eliminated rainfall’s effect on down-
stream hydrograph changes. Two additional machine learning feature extraction algorithms, such as SelectK-
Best with f_regression and mutual information score, were also deployed to identify the most influential
driver of changes in the post-dam downstream hydrograph. The outcome of three separate methods provided
a robust and unbiased result. The three methods agreed that while dams are the primary determinant of
changes in the typical peak monsoon flow and overall f low variability, potential evapotranspiration and land
use-soil-slope, represented by US Soil Conservation Service Curve Number (CN) of the upstream catch-
ment, could also be key factors affecting changes in the post-dam flood peak. These findings highlight the
importance of considering the geophysical and climatological characteristics of upstream catchments when
assessing the impact of dam construction on downstream hydrology, and potentially aid in the placement,
size, and operation of new and existing reservoirs.

Keywords: Basin characteristics, Post-dam downstream flow, Flow Duration Curve, Flow Variability, Pen-
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INTRODUCTION

Dams have significant impacts on hydrology
downstream due to their disruption of natural river
regimes and the rerouting of river f lows for human
purposes [20]. The past century has seen the construc-
tion of nearly 45000 large dams worldwide, resulting
in artificial f low regimes [37]. Developing nations are
proposing thousands of new dams for hydropower
production and water supply security, following in the
footsteps of industrialized countries that built tens of
thousands of dams in the twentieth century. This
increased number of reservoirs has greatly expanded
the amount of land available for irrigation, driving up
demand for water [17].

Dams have significant effects on river hydrology,
primarily through changes in the timing, magnitude,
and frequency of low and high f lows, resulting in a
hydrologic regime that differs significantly from the
natural f low regime that existed prior to impound-
ment [23]. A vast volume of literature is devoted to this

issue. For example, changes in hydrologic regimes
before and after dam construction throughout the
United States is well documented [2]. Dams have the
most significant impact on rivers with the highest
yearly variations in f low, as they can exert immense
control over downstream hydrology [12]. Spatially
variable alterations in hydrological regimes due to res-
ervoirs were demonstrated in China’s middle and
lower Yellow River [41]. More recently, researchers
conducted a comprehensive analysis [31] of the hydro-
logical regime change across all of China resulting
from the construction of large dams. The study
revealed typical mitigation of high pulses, low pulses,
and rise and fall rates. In another study, the literature
on the impact of dams on the hydrology and geomor-
phology of tropical rivers was reviewed [6], emphasiz-
ing the importance of incorporating before-after com-
parisons in such investigations. Various methods were
utilized to evaluate the impact of reservoirs on down-
stream streamflow. A model was created to quantify
the downstream attenuation of f lood peaks [36], while
842
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a continuous rainfall-runoff model was also employed
to demonstrate the influence of reservoir storage
capacity, release structures, operation rules, and
inflows on regulated f lood frequency [1]. Moreover,
the Indicators of Hydrological Alteration (IHA) statis-
tical measures and the Range Variability Approach
(RVA) [28] were utilized in several studies [16, 21, 31]
to assess dam-induced hydrological changes. Finally,
a simpler approach was also taken by analyzing pre-
and post-dam flow-duration curves to evaluate overall
river regime changes [24].

We observed that most research has focused on
individual reservoirs or a single river basin, except for
regional studies conducted in the USA and more
recently in China. In the past, research on the broader
topic of downstream flow alteration caused by dams
primarily aimed to identify changes in the hydro-
graphs below dams and measure their extent. Less
effort has been directed towards identifying the pri-
mary drivers of hydrological changes downstream of
dams. Existing research has predominantly focused on
determining the specific physical or operational attri-
butes of the reservoir or dam that have the greatest
impact on downstream hydrology. For example, the
storage and yield ratio of reservoirs were found to
influence the effect of reservoirs on downstream
hydrologic conditions; reservoir systems with small
storage ratios lead to much greater values of average
annual instream flow than systems with large storage
ratios [34]. The impact of the operation a large reser-
voir (China’s Three Gorges Dam) on downstream
water level and flow regime was also elaborately dis-
cussed [42]. The rainfall-reservoir composite index
was devised to quantify the impact of reservoirs on
downstream flood frequency [39]. Other studies
found the capacity of the reservoir to be the most
important factor determining the impact on down-
stream streamflow regime [27, 44]. Hydropower gen-
eration was also noted to exert primary control over
changing the f low regime below dams [10]. Relevant
scientific work commented that few site-specific stud-
ies constituted the majority of the literature evaluating
the effects of reservoir operating rules on instream
flow properties, and as a result, few general conclu-
sions can be drawn [35]. To the knowledge of this
author, no recent study has addressed this issue since
this observation.

It may seem evident from the sparse literature
available that the size and functioning of a reservoir
are the sole determinants of alterations in the f low pat-
terns downstream. No specific consideration was
given to the role of the catchment characteristics of the
upstream areas of the reservoirs in such regard. When
reservoir capacity and dam operation mechanisms are
considered at different sites in a region in conjunction
with the physiographic and climatic characteristics of
the upstream catchments, it is unclear how the f low
below the location of the dam can be affected from
pre- to post-dam conditions. This is due to the com-
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plex interplay between dam’s functioning and various
factors such as the slope, land use, moisture availabil-
ity, evaporation rate, and other hydrological charac-
teristics of the diverse upper catchments in different
sites. The prevalent view is that only the capacity of the
reservoir and its operation are responsible for affecting
downstream hydrology. However, number of physio-
graphic and climatological attributes of the upstream
catchment have profound influence on the runoff
generation process. These basin characteristics vary
from one catchment to another and the recommended
before-after research framework [6] can be the most
effective means to capture their changing degree of
influence in runoff generation.

Regional climate conditions, such as water supply
(precipitation) and energy availability (PET), as well
as corresponding underlying characterizations, such as
vegetation, soil, and geography, regulate the regional
hydrological cycle and energy balance [43]. The
USDA SCS Curve Number (CN) can be used to
account for the role of land use (vegetation), soil and
geography (slope). PET is widely used for water bal-
ance in hydrological models [7]. Other basin related
parameters, like Strahler’s stream order is useful to
describe the catchment area and average annual dis-
charge [14]. The variation of these non-dam factors
affects streamflow in any unregulated basin, and it is
possible that these variations from one upper catch-
ment to another provide a better explanation for the
pre- to post-dam changes in downstream flow than
the dam-related parameters.

The purpose of our study is to determine if size and
operation of dams control all aspects of changes in
downstream flow from before to after construction.
We will be using empirical evidence from selected sites
at a regional level to answer this scientific question. To
do so, a before-after dam construction approach has
been adopted, focusing on two aspects of changes in
downstream hydrograph: 1) magnitude of high f low
events and 2) the overall variability of streamflow dis-
charge. We will further evaluate high f low events by
categorizing them as a) rare very high f low events
occurring approximately once a year (f lood condi-
tion), and b) moderate high f low events occurring
approximately four times a year (Typical monsoon
peak f low). We have chosen Peninsular India as our
study area due to its four large river basins and avail-
ability of information on numerous medium to large
reservoirs online, making it an ideal region for select-
ing our sample sites.

There are several benefits of examining our current
research question. Firstly, dams can alter downstream
flow in dry seasons by diverting water for agricultural
purposes via canals, curtailing the ecological f low. It is
no longer feasible to exploit water resources for human
needs without taking into account the ecological f low
requirements. Thus, accurately pinpointing the
cause(s) of variations in water availability throughout
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the year is crucial for developing effective solutions.
Additionally, reducing the magnitude of rare, very
high f low events can disrupt the natural sediment
transport regime of a river. As most sediment transport
occurs during these infrequent events, this can have
consequences for channel morphology and subse-
quent f looding patterns [3, 11]. Sediment transport
from upstream naturally replenishes sediment stored
in river beds, but the absence of sand flux due to dam
building inhibits the sustainability of sand mining [13].
Finally, this overall research has the potential to guide
decisions regarding the placement, size, and operation
of new or existing reservoirs.

MATERIALS AND METHODS

Data

We considered the entire Peninsular India for this
study. Peninsular India is drained by the east f lowing
major rivers, such as the Mahanadi, the Godavari, the
Krishna and the Cauvery. The important west f lowing
rivers are the Narmada and the Tapi. There are
numerous small rivers that originate in the Western
Ghats Mountain, situated parallel to the west coast of
India, and drains in the Arabian Sea traversing the
narrow coastal strip.

The most crucial aspect of this study is to gather
suitable data for pre- and post-dam comparison of
flow characteristics. An acceptable study site for this
purpose is required to meet two criteria: 1) it must
have a dam/reservoir and a streamflow discharge
monitoring station in a downstream location of the
dam 2) at least ~5 years of f low data pertaining to the
pre- and post-dam conditions with similar average
mean annual rainfall before and after dam building
(equal number of years before and after dam is also
required).

It was difficult to find pairs of a dam and its down-
stream stream gauge. Although the Central Water
Commission (CWC), Government of India, has com-
piled details of 2300 dams and hydrological data for
260 streamflow monitoring stations for Peninsular
India [4], this study found only 18 study sites (pair of
dam and stream gauge) that meet the above-men-
tioned criteria (Fig. 1). One of the primary reasons for
the dearth of suitable study sites is the scarcity of pre-
dam gauging records downstream of a dam. Further-
more, a large proportion of river monitoring sites in
India began operations only in the mid 1970s. As a
result, all dams that began operations prior to that date
could not be considered due to the lack of pre-dam
flow records. Only one dam qualified in the Cauvery
River Basin, for example, because the majority of res-
ervoirs in this basin were built in the late nineteenth
and early twentieth centuries, and no pre-dam stream-
flow records exist. The requirement for very similar
average annual rainfall in the pre- and post-dam peri-
ods narrowed the selection of sites even further. Con-
sequently, despite extensive efforts, this study only
identified 18 pairs of dam and downstream river mon-
itoring stations. Table 1 shows some key information
about the dams/reservoirs that were chosen.

We used the daily gridded rainfall data provided by
the Indian Meteorological Department, of 0.25° ×
0.25° cell size and supplied in netCDF format [25]. We
created the drainage network for the entire Peninsular
India using a coarse resolution GTOP30 DEM and
carved out the watershed for each gauging station in
shapefile format using ArcGIS. Later, a Matlab code
was developed by incorporating the Maskregion rou-
tine [18] to extract daily rainfall from the IMD gridded
rainfall product and the watershed boundary for each
basin (zonal mean of grid-cells falling under the water-
shed boundary). The daily figures were then used to
calculate the yearly figures. Obviously, the variation in
precipitation in the pre- and post-dam period is a key
factor that obscures the effect of dams in downstream
streamflow alteration [38]. We tackled this challenge
by considering the periods for which the difference
between post- and pre dam rainfall is minimal (Fig. 2).

Measuring the Downstream Impact of Dams
One goal of this research is to quantify the impact

of dams on high f low conditions in their respective
downstream reaches. We used the f low duration curve
(FDC) to quantify the downstream impact of
impoundments following similar previous studies
[38]. Specifically, the percentage chance that a f low
magnitude would be equal or exceeded (Pp) was calcu-
lated from FDCs. The monitoring stations’ daily
streamflow data were arranged in descending order,
and the Pp was calculated using the following formula:

(1)
where m is the rank of the discharge, and N is the num-
ber of observations used.

The figure for very low frequency high magnitude
river discharge was obtained for Pp < 0.5% to represent
the f lood conditions. Relatively more frequent high
flow magnitudes were derived from Pp < 1%, which
depict moderate high f low condition in peak monsoon
season. Both Pp values were calculated for the pre- and
post-dam states for the 18 study locations. In the next
step, we determined the percentage change in the Pp
values for both Pp < 0.5% and Pp < 1% from pre- to
post-dam conditions. As dams are generally found to
dampen flood peaks the percentage change values
were expected to be positive from pre- to post-dam
conditions with a few odd exceptions. Pp value of 0.5
indicates the highest two days of f low in a year and Pp
of 1 approximately corresponds with the highest 3–4
days of annual f low magnitude.

Flow duration distributions derived from daily
mean discharges are useful indicators of a streamflow
record’s temporal variability. When plotted on log

= + ×p 1 0( 0) 1 ,P m N
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Fig. 1. Location of the 18 study sites of pairs of dam and its downstream river f low monitoring stations.
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scale on both axes, a f low duration curve appears as a
straight line. The slope of these lines indicates how
fluctuating or stable the discharge record has been
over a given time period [33]. The slope of the straight
line was calculated using the f low duration curves for
each study site’s pre- and post-dam conditions.
Figure 3 shows an example for the monitoring station
Malkhed, which is located downstream of the Ben-
nithora reservoir. Because of the longer residence time
of water in the basin, reduced flow variability is
expected after dam construction. Hence, we calcu-
lated the percentage decrease in the slope of the f low
duration curve from pre-dam to post-dam conditions
in order to obtain mostly positive numbers. To assess
the impact of dams on downstream streamflow vari-
ability, the percentage decrease in slope was used as an
WATER RESOURCES  Vol. 50  No. 6  2023
index. Discharge records less than 30 m3/s were
ignored because the precision of such low flow obser-
vations is generally insufficient in India.

Potential Drivers of Post-Dam Changes in Downstream 
Streamflow

There are several potential watershed-related driv-
ers of changes in streamflow characteristics before and
after the construction of a dam, in addition to dam-
linked factors. The causal relationships between these
drivers and changes in streamflow can be complex. In
this study, we only considered factors that can be easily
quantified using national and global data sources.
While there may be other important factors that could
better explain the observed phenomenon, obtaining
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Table 1. Important information regarding the selected 18 pair of dams and their respective downstream stream gauge

* Source of the data-National Register of Large Dams (Central Water Commission, India, 2018).

Sl. no. Major River Basin Gauge Upstream Dam
Year 

of Completion*

Pre-dam

Period 

Considered

Post-dam

Period 

Considered

1
Mahanadi

Bamnidhi Manimata Hasdeo Bango 1990 1979–1988 1995–2004

2 Baronda Sondur 1989 1978–1987 1995–2004

3

Krishna

Malkhed Bennithora 2001 1991–2000 2002–2011

4 Samdoli Warna 2000 1988–1997 2006–2016

5 Huvinhedgi Narayanpura 1982 1976–1981 2009–2014

6 Narsingpur Ujjini 1980 1970–1979 1986–1995

7 K. Agraharam Jurala 1996 1982–1989 1997–2004

8 Narmada Mandlshwar Indira Sagar 2005 1994–2004 2008–2018

9 Cauvery Kudige Harangi 1982 1974–1981 2006–2013

10
Mahi

Rangeli Som Kamla Amba 2000 1978–1999 1995–2016

11 Paderdibadi Bajaj Sagar 1985 1978–1984 1992–1998

12

Godavari

Somanpally Lower Manair 1996 1982–1989 1997–2004

13 Dhalegaon Jayakwadi 1976 1966–1975 1985–1994

14 Saigaon Manjara 1980 1968–1979 2004–2015

15 Mancherial Sriram Sagar 1977 1967–1976 2002–2012

16 Nowrangpur Upper Indravati 2001 1987–1998 2002–2013

17 Manjlegaon Majalgaon 1986 1977–1983 1989–1995

18 Pauni Goshikhurd 2010 1980–1984 2011–2015
quantifiable data for these factors on a regional scale
may be impossible. Additionally, due to the small
sample size of 18, we kept the number of independent
variables relatively small to ensure a meaningful
regression analysis. Our focus was on primary factors
related to dams, such as their size and operation. To
determine size, we considered reservoir capacity,
while for dam operation, we used the demand for irri-
gation water as a substitute variable since no informa-
tion was available to describe dam operation in the
wider context of India. We also considered five water-
shed and climatic attributes of the upstream catch-
ments and one locational factor. Figure 4 illustrates
the variations in these dam and non-dam characteris-
tics across the candidate study sites, and each of these
factors is discussed in detail in the following section.

(1) Dam-related factors

(a) Capacity of the reservoir behind the dam.

The reservoir’s large capacity allows it to store
more water, significantly increasing the residence time
of water in the basin. Higher reservoir capacity can
also help to moderate f lood waves in high f low condi-
tions, which is one of the main topics of this study.
Larger reservoirs also result in more evaporation,
which is likely to have an impact on the f low variability
downstream, which we are also investigating as part of
this research. In general, an increase in reservoir size is
expected to have a greater impact on the downstream

high flow frequency pattern and overall f low variabil-

ity. The gross capacity of each reservoir studied was

obtained from the National Register of Large

Dams [4].

(b) Cultivable command area (CCA) of the dams as

a surrogate for dam operation.

Reservoir yield is a function of reservoir storage

and its operation. Reservoir yield accounts for canal

diversion, requirement for hydropower generation as

well as spillway discharge and other in-stream releases.

Diversion of water to meet the irrigation demand is the

most important part of dam operation that determines

a reservoir’s storage condition and in-stream release of

water. The frequency of spillway discharge is lower in

reservoirs with higher irrigation water demand. Such

reservoirs rarely reach full reservoir capacity and usu-

ally have enough cushion to absorb f lood waves from

upstream areas during storm events. The demand for

irrigation from all dams in Peninsular India is not

readily available. It also varies from year to year,

depending on the weather and the crops grown. As a

result, we used CCA as a proxy for irrigation water

demand. CCA is defined as land that is suitable for

cultivation and can be irrigated by a dam. For major

reservoirs in Peninsular India, this information is
WATER RESOURCES  Vol. 50  No. 6  2023
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Fig. 2. Difference between pre- and post-dam average rainfall in the reservoirs’ catchments (shown in columns) and the number
of years considered for assessing the situation before and after dam construction (shown in line graph); total number of years
(both pre- and post-dam) under consideration is 2x of the numbers plotted in the line graph as equal time span considered for
pre- and post-dam condition.
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Fig. 4. The quantitative characteristics of probable drivers of varied streamflow response to dam construction at 18 basin outlets
situated downstream of dams.
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readily available online (see Table ST1 in Supplemen-
tary Materials).

(2) Non-dam related factors

(a) SCS CN of the basin.

The US Soil Conservation Service Curve Number
(CN) is a widely used measure to account for the com-
bined effect of land use/land cover, drainage charac-

teristics of soil and the slope of the basin. It is an

empirically derived dimensionless entity where a

higher number represents less abstraction of the rain-

fall with more potential for surface runoff and lower

numbers characterise significant percolation and less
WATER RESOURCES  Vol. 50  No. 6  2023
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surface runoff. We derived the basin averaged CN
value for each of the 18 candidate basins from the
global curve number raster database (GCN250) of
250 m grid size [15]. The runoff coefficient of an
uncontrolled basin was found to be very sensitive to
the CN value. We envisaged that construction of a
dam is likely to affect two basins with different runoff
coefficients in a different manner in terms of the
altered downstream flow regime. Hence SCS CN was
considered as one of the important factors that may
explain the varied response of streamflow to
impoundments.

(b) Potential Evapotranspiration (PET).

Under adequate water supply, potential evapo-
transpiration (PET) is the highest mode of water loss.
Changes in PET affect surface water yield by altering
hydrological factors and water balance processes [22].
PET has crucial bearings on the agriculture induced
water consumption as well as the evaporation from the
surface of the reservoir. It was regarded as one of the
factors with high potential for explaining the causes of
different dams’ varied effect on the downstream flow.
We used the global PET raster data which is provided
at 30 arc-second resolution [45] and derived basin-
wise lumped PET values using GIS.

(c) Mean annual rainfall.

This parameter represents a river basin’s overall
moisture condition and hydrological regime. We con-
sidered relatively short periods (<10 years for some
basins) for which records of river discharges were
available and the rainfall amount were similar during
the pre- and post-dam condition (Fig. 2). However,
these short periods are generally insufficient to fully
understand the overall moisture availability in a water-
shed. Various aspects of basin hydrology, such as the
groundwater component, may operate on longer
cycles. Additionally, the cropping pattern in an area,
which depends largely on the overall water availability,
also significantly influences streamflow. To capture
these less dynamic characteristics of basin hydrology,
it was necessary to consider a long-term measure of
average annual rainfall. The long-term annual average
rainfall also indicates the likelihood of a few very high
flow events, which are more common in moist cli-
mates than in dry climates. The impact of dam con-
struction on downstream flow pattern is likely to vary
across river basins with varying annual average rainfall.
Hence, this parameter was included in the set of
potential drivers of the variation in dam response from
basin to basin. We calculated the annual average for
each basin using IMD gridded rainfall data [25] for 46
years (1965–2020). Matlab was used to extract data
from netCDF format, as discussed in Material and
Methods Data section.

(d) Strahler’s stream order at basin outlet (river
gauge).

Strahler’s stream ordering method [32] gives all
streams with no tributaries an order of k = 1. When two
WATER RESOURCES  Vol. 50  No. 6  2023
(or more) streams of the same order k meet down-
stream, they form a stream with an order of k + 1.
When a stream of order k meets one of a lower order,
the downstream order remains unchanged. Strahler’s
stream order at the basin outlet has an indirect control
over the manner in which surface runoff turns into
stream discharge and f lows to the basin outlet. Higher
order stream generally indicates higher connectivity in
the basin. Provided the size, shape and other physio-
graphic factors are similar between two basins, the sur-
face runoff is likely to reach early at the basin outlet
where the stream order is higher. Hence, the effect of
dam construction could affect the frequency of high
magnitude f low events differently at basin outlets
where the stream order is different. For this reason, we
selected Strahler’s stream order at basin outlet as one
of our explanatory factors.

(e) Distance from the dam to the basin outlet (river
gauge).

This is significant because the f low hydrograph
downstream of a dam experiences attenuation and
translation, with the degree of attenuation increasing
with distance. It is caused primarily by friction
between the channel bed and the vegetation in the
riparian zone. A significant amount of f lowing water
percolates underground through the streambed in
dry conditions with loose bed material. This aspect is
considered as an important factor that decides the
intensity of downstream flow change post impound-
ment [40].

Determining the Significant Factors Affecting 
Downstream Flow Response to Dam Construction Across 

Peninsular India
Due to the interconnection and complexity of the

potential explanatory factors we relied on statistical
methods to determine whether watershed and clima-
tological characteristics of the upstream contributing
areas were significant drivers of changes in different
aspects of the downstream streamflow following the
construction of the dam. We primarily adopted a lin-
ear multiple regression (backward) method to this end.
However, we also employed univariate feature selec-
tion methods commonly used in machine learning,
such as SelectKBest technique [26] for the same pur-
pose. SelectKBest is a feature selection technique in
machine learning, which is used to select a specified
number of the most informative features from a data-
set. It was recently used for assessing the impact of cli-
mate and soil properties on the yields of crops [30]. In
this study, the univariate statistical test based on
ANOVA F-test and Mutual Information score were
used as part of SelectKBest technique. To minimize
the uncertainty in the findings, particularly due to the
limited sample size of 18 dams in this study, we utilized
three distinct techniques to identify key factors that
contributed to the varying downstream response
among the candidate dams.
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In a backward linear multiple regression model, all
explanatory variables (X1, X2…) (the factors mentioned

in Potential drivers of post-dam changes in down-
stream streamflow section) are entered together in the
model. The variable showing a level of significance(p)
of ≤0.05 are retained in the model while the variables
reporting p > 0.1 are dropped from the model as they
are not deemed statistically significant. The model
runs in steps and the final model contains the set of
variables (if any) that can explain the variation in the
dependant variable (Y) in a statistically significant

manner. The R2 value denotes the percentage variation
of the dependant variable that could be explained by
the combination of explanatory variables. The
ANOVA table reveals the overall p value of the final
model and the standardised coefficient (also known as
BETA coefficient) is useful in understanding the rela-
tive importance of explanatory factors if more than
one is found to be statistically significant. Finally, the
VIF value denotes the degree of collinearity or mutual
correlation among the explanatory variables. Ideally
VIF should be near 1 but values up to 5 are considered
acceptable [9].

SelectKBest with f_regression is a feature selection
method in scikit-learn, a popular machine learning
library in Python. f_regression works in four steps:

(a) Given a set of features X and a target variable y,
f_regression calculates the correlation between each
feature and the target variable.

(b) Then, it converts these correlations into F-
scores, which measure the ratio of explained variance
between the feature and the target variable relative to
the unexplained variance.

(c) Finally, f_regression returns the F-scores for
each feature, which can be used as a score to select the
k best features. The features with the highest F-scores
are considered to have the strongest linear relationship
with the target variable.

The mutual information score is a measure of the
dependency between two variables and is used as the
criterion for selecting the best features. In the context
of SelectKBest with mutual information score, the
algorithm calculates the mutual information between
each feature and the target variable. The features with
the highest mutual information scores are selected as
the best features, while the others are discarded. When
examining the distributions of two discrete variables,
mutual information is straightforward. However, it
can be modified for use with numerical input and out-
put data [29]. The mutual info regression function of
the scikit-learn machine learning library implements
mutual information for feature selection with numeric
input and output variables.

We considered the seven potential explanatory
causes as independent variables, which comprises
both dam-related factors and upstream watershed as
well as climatic characteristics and computed three
aforementioned models using the following response
(Y) variables:

(a) the percentage change in the Pp values for Pp <

0.5%, characterising f lood conditions, from pre- to
post-dam conditions (Henceforth, Pp < 0.5%)

(b) the percentage change in the Pp values for Pp <

1%, typical of peak monsoon flow, from pre- to post-
dam conditions (Henceforth, Pp < 1%)

(c) the percentage decrease in the slope of the f low
duration curve from the pre- to post-dam condition
(Henceforth, Variability Change). It represented the
impact on the overall river regime, including the low
flow conditions, crucial for determining the environ-
mental f low in the downstream reach.

RESULTS

We adopted multiple linear regression (MLR)
method as the primary technique and the identified
statistically significant influencing factors were shown
in Table 2. SelectKBest with f_regression and with
Mutual Information Score also identified the import-
ant causes of change in the same three response vari-
ables as mentioned in the previous section. We did not
use more complicated techniques, such as partial lin-
ear regression (PLR), which was used in similar con-
text [5], because partial regression model may provide
a good fit to the data and accurate predictions, but the
linear terms are more difficult to interpret than in the
standard linear model [8].

The only statistically significant cause of changes
in the moderately high f low (Pp < 1%) post-dam con-

struction was related to cultivable command area
(CCA), which is directly related to diversion of water
through irrigation canals, a matter within the purview
of dam operation. The overall model shows a statisti-
cally significant (+ve BETA value of 0.628) positive

relationship (Model p value 0.05). According to the R2

value, the model can explain 40% of the variability in
the dependent variable.

When flood conditions (Pp < 0.5%) are considered,

four potential drivers were found to be statistically sig-
nificant with a statistically significant overall model
(p = 0.020). This model explains 57% of variability
in Y. PET was the most influential factor, followed by
Mean Annual Rainfall, CCA, and stream order at the
basin outlet (river monitoring station), as indicated by
the BETA coefficients. The first three factors are pos-
itively correlated with the dependent variable, while
the result (–ve BETA value of –0.449) indicates that a
higher stream order at basin outlets increases rather
than decreases the magnitude of the Pp < 0.5% flow in

the post-dam scenarios. As the VIF value was less than
5, the possibility of collinearity among the indepen-
dent variables was deemed insignificant. It is noted
that all factors other than CCA are not related to the
WATER RESOURCES  Vol. 50  No. 6  2023
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Table 2. Salient results of linear multiple regression (Backward) models established to find the causes behind pre- to post-
dam downstream change in high f low conditions and the variability in the overall f low regime using 18 pairs of dam
and their downstream river gauges in Peninsular India

Y Model R2

Model p 

Value 

(ANOVA)

Significant

Influencers
p t

Standardized

Coefficients

(BETA)

Collinearity 

Statistics

(VIF)

Pre- to Post-dam 

Percentage 

Reduction

in Pp < 1%

0.40 0.005 Cultivable 

Command 

Area, ha

0.005 3.231 0.628 N/A

Pre- to Post-dam 

Percentage 

Reduction 

in Pp < 0.5%

0.57 0.020 Mean Annual 

Rainfall, mm

0.025 2.523 0.902 3.841

PET, mm 0.011 2.957 1.075 3.973

Stream Order 0.091 –1.825 –0.449 1.820

Cultivable 

Command Area, ha

0.014 2.820 0.590 1.318

Pre- to Post-dam 

Percentage 

Reduction 

in Flow Variability

0.37 0.032 Mean Annual 

Rainfall, mm

0.077 1.899 0.391 1.003

Cultivable 

Command Area, ha

0.033 2.352 0.484 1.003
upstream dams per se but to the nature of the upstream
catchments.

We created a partial regression plot (Fig. 5) to visu-
alize the individual relationship between the response
variable Pp < 0.5% and each of the six potential drivers,

given that the rest of the predictor variables are also in
the model. This figure further attests the relationship
revealed by the BETA coefficients in Table 2. Accord-
ingly, PET (Panel a) depicted a strong linear positive
correlation with 0.5% < Pp < 0.5%, conditioned upon

others. Another statistically significant estimator,
namely Mean Annual Rainfall also revealed a negative
relationship with the response variable (Fig. 5c) but
the relationship appears to be less linear than the case
for PET.

Although the dam-related CCA emerged as the sta-
tistically significant controlling factor for all three
dependent variables (as shown in Table 2), for f lood
conditions (where Pp < 0.5%), the linear relationship

with the dam-related factor (CCA) was found to be
weak, when conditioned on all other independent
variables (as shown in Fig. 5b). This weak linear rela-
tionship is also reflected in the rather low beta coeffi-
cient of 0.59 (as shown in Table 2).

MLR revealed that a statistically significant rela-
tionship existed between reduction in f low variability
and Mean Annual Rainfall and the CCA (Model
p value of 0.032). The influencing factors are a combi-
nation of dam-related and upstream catchment related
attributes. The post-dam streamflow variability
decreases more when the upstream dam diverts more
WATER RESOURCES  Vol. 50  No. 6  2023
water to irrigation canals (higher CCA) and is associ-
ated with generally moist climate (greater annual aver-
age precipitation). Both independent variables lack
evidence of multicollinearity, as evidenced by their
VIP values of less than 1.

By comparing the MLR results (Table 2) with the
most influential factors identified by SelectKBest
using f_regression and Mutual Information Score
(Table 3), it was observed that all three methods con-
verged on the same conclusion regarding the pre- to
post-dam changes in the typical peak monsoon flow
and the overall variability of the downstream river
regime. The role of dam-related factors was found to
be paramount. However, it cannot be unequivocally
stated that dam-related factors are the most crucial in
determining the pre- to post-dam changes in the mag-
nitude of rare high f low events, which are typically
associated with f lood conditions. Instead, through the
use of the MLR and Mutual Information Score
method, it has been identified that PET and SCS CN
are the most influential factors that contribute to post-
dam changes in f low magnitude. These factors are
independent characteristics of the upstream catch-
ments that are not associated with the capacity or
operation of the dams.

DISCUSSION

In this experiment, we considered periods for
which the difference in rainfall between the pre- and
post-dam situation was minimum. By doing so, we
eliminated the influence of rainfall in affecting the
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Fig. 5. Partial regression plot showing the linear relationship between change in very high magnitude streamflow (Pp< 0.5%)
before and after dam construction and each of the six predictor variables while considering the influence of other six predictors
in the multiple regression.
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pre- to post-dam changes in the downstream hydro-
graph. This allowed us to make a comparative assess-

ment of the impact of dam-related and upstream
catchment-related factors on altering post-dam

downstream streamflow. The consideration of mean
annual rainfall as an explanatory variable was also not

likely to interfere with this process as it was calculated

based on 46 years of annual rainfall data (1965–2020).
This lengthy period covers both the pre- and post-dam

durations for all 18 sites by a significant margin. As a
result, this estimator is unlikely to introduce bias in the

pre- or post-dam streamflow. Our findings suggest
that as far as the changes in the post-dam magnitude

of very high f low events are concerned, physical char-
acteristics and climatic conditions of the upstream

basin, such as PET and SCS CN, can play decisive
roles.

When PET is high, it indicates that conditions are

favourable for evapotranspiration and that soil water is

likely to evaporate and transpire rapidly. This reduces
the amount of available water for runoff, which can

result in decreased f lows. In contrast, when PET is
low, less water is lost to evapotranspiration and more
water is available for runoff, which can result in

increased f lows. In the pre-dam condition, PET can
play a crucial role in determining the severity of very

high f low events, such as f loods. If PET levels are
high, they can reduce the amount of water available for

runoff, making f looding less likely. When a dam is

constructed in such basins, the post-dam reduction in
the magnitude of high f low events is pronounced

because a) higher PET will evaporate more water,
leaving more cushion or empty capacity for the reser-

voir to absorb f lood waves, and b) due to the higher
PET, the peak inflow itself will be of lower magnitude,

resulting in less frequent spillway discharge. Given
that the capacity and operation schedule of the reser-

voirs at two sites are comparable, the reservoir at the
location with the higher PET is likely to experience a

more pronounced decrease in the frequency and mag-

nitude of rare extremely high f low events.

In general, higher curve numbers (CN) lead to
greater peak f lows because they represent a greater

proportion of the rainfall becoming direct runoff,
WATER RESOURCES  Vol. 50  No. 6  2023
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Table 3. Comparison of the inf luential predictor variables identified by Multiple Linear Regression, SelectKBest
with f_regression and with Mutual Information Score

* Mutual Information Score did not identify any influencing factor.

Response Variables Methods Most Influencing Factor Dam-related

Pre- to post-dam change 

in Pp < 1%

(Typical Monsoon High Flow)

Multiple Linear Regression Cultivable Command Area

SelectKBest with f_regression Cultivable Command Area

SelectKBest with Mutual

Information Score

Cultivable Command Area

Pre- to post-dam change 

in Pp < 0.5%

(Flood Condition)

Multiple Linear Regression PET ×

SelectKBest with f_regression Cultivable Command Area

SelectKBest with Mutual 

Information Score

SCS Curve Number (CN)
×

Pre- to post-dam change 

in downstream flow variability

(River Regime)

Multiple Linear Regression Cultivable Command Area

SelectKBest with f_regression Reservoir Capacity  

SelectKBest with Mutual 

Information Score

None*
–

assuming other factors such as the size and shape of
the watershed remains constant. In an uncontrolled
basin, as the CN value increases, the amount of runoff
increases, resulting in a f lashy peak f low with smaller
lag time. In the post-dam situation, the high magni-
tude peak is attenuated by the reservoir to a significant
extent. Thus, the difference in the peak f low magni-
tude between the pre- and post-dam scenario is accen-
tuated. Conversely, for the upstream catchments with
lower CN values the natural f lood peak is itself low
and the reduction in the post-dam condition is lim-
ited.

The most influential drivers identified by SelectK-
Best with f_regression and with Mutual Information
Score differed with MLR on number of occasions.
Notably, f_regression assumes that the relationships
between the features (independent) and the target
(dependant or response) variable are linear, making it
similar to MLR in some ways. However, mutual infor-
mation, which is calculated between two variables,
measures the degree to which one variable’s uncer-
tainty is reduced when the value of the other variable
is known. It differs from MLR and related theories and
is suitable for nonlinear correlation detection [46].
SCS CN, which takes into account land use, soil, and
slope, may have a nonlinear relationship with Pp <

0.5% that the other two methods missed.

The capacity of each reservoir appears intuitively to
be a potentially powerful dam-related cause of post-
WATER RESOURCES  Vol. 50  No. 6  2023
dam changes in the river regime. While MLR did not
find this factor statistically significant, f_regression
detects it as the most influential covariate for explain-
ing the Variability Change (Table 3). The reason for
this difference in the results could be due to the fact
that MLR builds the model sequentially, whereas f_re-
gression constructs the model simultaneously. As per
the official online documentation of SelectKBest with
f_regression, there is no sequential application, and
most importantly, unlike MLR, p-values are never
used.

The MLR results (Table 2) indicate that Variability
Change is expected to be greater in moist river basins,
where high f low events are more frequent. Flow vari-
ability decreased in post-dam periods as a result of the
increased canalization of irrigation water. During the
dry season, irrigation consumes even the baseflow
accumulating in the reservoir from its upstream catch-
ment. As a result, after the construction of a dam, the
controlled rivers' f low variability is reduced.

We acknowledge that the sample size of this
study (18) is relatively small due to the difficulty
involved in finding a pair of dam and downstream
monitoring site that meets all of the experiment’s
requirements. Hence, the inferences drawn from this
small sample size are subject to some degree of uncer-
tainty. As it was beyond our control to increase the
sample size, we tried to compensate for it by validating
the MLR results with two additional modern tech-



854 SANYAL
niques of data science. It played a crucial role in
reducing the uncertainty in determining the important
environmental controls on the variation of dams’
effect in Peninsular India.

The values for the coefficient of determination (R2)
listed in Table 2 are not particularly high. We
attempted to explain dimensionless response variables
using a variety of 1D ('mm' for PET & Rainfall, 'km'
for distance from dam), 2D ('ha' for CCA), and 3D

('m3' for reservoir capacity) explanatory factors. These
quantities are measured for purposes wholly unrelated
to the purpose of this study, but we were able to estab-
lish a statistically significant relationship between
them and our response variables. Under such condi-

tions high R2 value for the models is not expected in
pragmatic terms.

This study has produced valuable datasets that con-
sist of pairs of reservoirs and their corresponding
downstream stream gauges, where streamflow data is
available for both pre- and post-dam periods with sim-
ilar annual average rainfall. These datasets can be uti-
lized in future research to investigate the correlation
between climate, basin characteristics, and dams in
South Asia.

CONCLUSIONS

The aim of our study was to challenge the widely
accepted notion that the size and operation of reser-
voirs are the primary drivers of changes in downstream
hydrographs following dam construction. We pro-
posed a research hypothesis that the watershed and
climatic characteristics of the upstream catchment
also contribute significantly to this phenomenon. To
test this hypothesis, we selected 18 sample sites from
the major river basins of Peninsular India where
streamflow records exist downstream of reservoirs for
at least five years before and after dam construction.
We eliminated the effect of varying rainfall amounts
during the pre- and post-dam conditions by consider-
ing periods where the difference between post and pre-
dam average rainfall was minimal. We evaluated the
post-dam changes in the downstream streamflow
records in three dimensions: (1) rare high f low events
associated with f lood conditions, (2) relatively more
frequent high f low events typically associated with
peak monsoon, and (3) the overall variability of the
flow regime.

In this study, we employed multiple linear regres-
sion (MLR) and two machine learning feature
extraction algorithms to determine the key drivers of
change in the downstream hydrograph at 18 sample
locations. We used various dam-related, geophysical,
and climatic characteristics of the basin as indepen-
dent variables to explain the post-dam changes. The
findings from all three techniques agreed that dam-
related factors, such as capacity and operation, were
the primary cause of post-dam changes in moderately
high flow and overall f low variability. However, the
post-dam changes in rare peak f low may possibly be
attributed to characteristics of upstream basins, such
as energy availability (PET), and the combined effect
of land use, drainage properties of soils, and slope
(SCS CN).

This study offers a decision-making tool for water
resource managers that can be applied on a macro
scale. It helps identify the appropriate course of action
for maintaining environmental f low below dams,
while also minimizing disruption to f looding patterns
after dam construction. Our research has empirically
demonstrated that in large geographic regions like
Peninsular India, the watershed and climatic compo-
nents of upstream contributing areas are critical in
understanding variations in downstream streamflow
following dam construction. Therefore, these factors
require greater attention in managing water resources.
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