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Abstract―A top sublayer with forced convection and a fixed bottom boundary was identified in the convec-
tive atmospheric surface layer. “Linear” approximations were shown to be effective for the description of sec-
ond turbulent moments in this sublayer. These approximations correspond to truncated Taylor expansions
with respect to inverse dimensionless height, in which only two terms are retained. The first terms in the
expansion do not take wind into account and correspond to the limiting relationships of Monin–Obukhov
similarity theory in the regime of free convection. The second terms of the expansion take into account wind
and its effect on convection. The existence of the sublayer of forced convection with a fixed boundary leads
to the construction of a one-parameter family of analytical approximations of turbulent moments depending
on the elevation of the bottom boundary of this sublayer. The proposed approximations of the variances of
vertical velocity, f luctuations of temperature, f luctuations of humidity, and fluctuations of carbon dioxide are
compared with the available experimental data over both water surface and land surface.
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INTRODUCTION

The surface layer of the atmosphere is a thin air
layer about 100 m thick in contact with the underlying
land of water surface. In the case when the air is
warmed by heat f low entering into the atmosphere
through its bottom boundary, the surface layer is
called the surface convective layer.

The classical theory of the similarity of atmo-
spheric surface layer was first presented in [4, 5] for the
approximation of the first turbulent moments of
velocity and temperature. Within the framework of the
Monin–Obukhov theory, the height of the surface
layer  is assumed infinite, because h is not among the
parameters determining the similarity.

Let z be the height of the level over the underlying
surface;  is Monin–Obukhov length parameter

[6]. We introduce dimensionless height .
Now the vertical length of the convective surface layer
satisfies the inequalities .

Note that  when there is no wind and the
heat f low at the underlying surface is positive [6].
Therefore, the domain  corresponds to free con-
vection regime. The Monin–Obukhov similarity the-
ory is known to allow one to find also turbulent
moments of higher order in the domain . In par-
ticular, approximations of second-order turbulent
moments are given in [13, 21]. The approximations of
turbulent moments of the surface layer for the case

 are called free-convection limits.
In this study, in the convective atmospheric surface

layer, the top part of the domain  is

identified with fixed bottom boundary .
Following the approach [3], the turbulent moments in
the domain  are approximated with the use
of universal “linear” forms, consisting of two sum-
mands. The first summands of the “linear” approxi-
mations correspond to free-convection limits in the
domain . The second summands of the “linear”
approximations are obtained by expansion of universal
function into Taylor series with respect to parameter
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 and include wind. Therefore, the identified
domain  corresponds to the sublayer of
forced convection.

Consider a family of turbulent moments in which
subscript i characterizes the chosen turbulent
moment. The proposed linear approximations can be
used to determine the point of extremum  for the
vertical profile of the ith turbulent moment. The exis-
tence of the sublayer of forced convection with a fixed
bottom boundary means that the extreme points of all
turbulent profiles coincide, i.e., . Note that in
the domain , “linear” approximations of the
moments disagree with experimental data and have no
physical sense. Therefore, the extreme point  should
be regarded as the bottom boundary of the forced con-
vection sublayer.

The existence of parameter , which is common
for all turbulent profiles, considerably reduces the
number of unknown coefficients in “linear” approxi-
mations. It can be shown that the a priori specification
of extreme point  allows one to calculate all
unknown coefficients of “linear” approximations. In
other words, the notion of a sublayer of forced convec-
tion with a fixed boundary leads to the construction of
a one-parameter family of approximations, which
depends on an unknown parameter . The a priori
value  should be set in such a way as to meet the con-
dition of acceptable agreement with the experimental
data. The value  implements this condi-
tion.

The analytical construction of a universal one-
parameter family of “linear” approximations, corre-
sponding to field measurements of second turbulent
momenta of the sublayer of forced convection, is the
main result of this study.

LOCAL PARAMETERS OF THE DYNAMIC 
VELOCITY, BUOYANCY FLOW

Let  be the time; , ,  is a rectangular coordinate
system on the underlying surface ,  axis is
directed opposite to the gravity acceleration .

Suppose that , , and
 are components of velocity vector

along x, y, and z, respectively. Suppose that 
is the mean value of the horizontal f low velocity along
x axis;  and  are the values of the horizontal
and vertical velocities along y and z axes, respectively.
The equality  follows from the continuity equa-
tion of the system of convection theory [1, 19] and the
periodicity conditions on the vertical boundaries of
the domain. Now ,

, and  are perturba-
tions of velocity along axes x, y, and z, respectively.
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We assume that  is air temperature;
 is pressure; p0 = 105 Pa is the standard

air pressure on the underlying surface;  and  are
the gas constant and the specific heat capacity of dry
air, respectively. Let  be the poten-
tial air temperature;  is the constant value
of mean potential temperature at the upper boundary
of the surface layer [19]. The pulsation of the potential

temperature  and the
dimensionless pulsation of the potential temperature

 are defined in accor-
dance with [19]. These values are close to the f luctua-
tions and dimensionless f luctuations of the tempera-
ture . The value  will be referred to as
local “adiabatic” buoyancy [22].

In the classical Monin–Obukhov theory, the
velocity friction  is specified as

(1)

where the dimension of  is  . The defini-
tion (1) is in agreement with the equation of turbulent
kinetic energy in a one-dimensional f low (e.g., [11]).

We introduce a parameter of “adiabatic” buoyancy
flux on the underlying surface  and a parame-
ter of turbulent buoyancy , assuming that

(2)

 and  have dimensions 

.

Let  be the mean heat f low entering into the
atmosphere from the underlying surface;  is the
mean air density on the underlying surface;  is
the temperature parameter in Monin–Obukhov the-
ory. Now, considering (2), we have

(3)

Equalities (3) indicate to the proportionality of the
governing parameters  and  to the conventional
parameters of the Monin–Obukhov similarity theory

 and .

As shown in [3], the use of parameters  and 
instead of  and  is more effective theoretically and
does not influence the processing and use of experi-
mental data. Therefore, the theory of similarity
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describes the surface layer of dry air with the use of
three basic parameters: , , and . The parameter
of elevation  is variable, while the parameters of
buoyancy f lux  and dynamic velocity  are con-
stant.

Consider the surface layer of humid atmosphere.
Let  be air humidity and 
be the mean humidity. Following [5] and
[18], we also introduce humidity f luctuations:

.
Based on an analogy with (1), (2), we introduce a

parameter of modified humidity f lux on the underly-
ing surface  and a modified humidity parameter

. Now we have:

(4)

Here  and  have dimensions  and

.

As follows from definition (4), the dimensionless
parameter  is identical to the humidity parameter in
the classical Monin–Obukhov similarity theory,
defined, e.g., according to [18].

The parameters , , and 
allow us to introduce a constant parameter of length
for humid atmosphere . Now, following, e.g.,
[10] and [18], we have

(5)

 is Carman constant.
Hereafter, we will use the approximation of a small

modified moisture f lux . This
approximation is valid

(a) over dry enough land areas with intense convec-
tive heat f lux and low evaporation;

(b) over water surfaces under the conditions in
which the buoyancy f lux is determined mostly by
evaporation.

Indeed, let  kJ/kg be the specific heat of
water vaporization,  J/(kg K) is the
specific heat of dry air,  is the mean value
of potential temperature, then .
Therefore, we can assume that

. The
obtained inequality proves the assumption made
above.
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In the approximation , the
modified moisture f lux  does not enter the defini-

tion of the length parameter (5), so , where

(6)

The relationship (6) determines the classical
Monin–Obukhov length parameter  for the dry
atmosphere.

Nevertheless, the approximation (6) for the
description of the turbulence of humid atmosphere
was used, for example, in [9].

The application of the similarity theory to describ-
ing the convective surface layer of humid air involves
the use of four basic parameters: , , , and .
The parameter of height  is variable, and the param-
eters of the f luxes of buoyancy and moisture , ,
as well as the parameter of dynamic velocity  are
constant.

Importantly, in the approximation
, the moisture f lux , as the basic

similarity parameter, has no effect on the calculation
of turbulent moments existing in dry atmosphere at

, and it needs to be taken into account only
in the calculation of the turbulent moments of humid-
ity .

MONIN–OBUKHOV SIMILARITY THEORY 
AND FREE CONVECTION LIMITS 

OF THE SURFACE LAYER

Consider a convective surface layer of dry atmo-
sphere under the conditions of free convection

, . In this case, only two governing
parameters exist:  and .

In accordance with [21], expressions for the second
moments of the vertical velocity and buoyancy take
the form:

(7)

where  and  are constant coefficients.
Over land surface with poor vegetation and water

surface, we will use coefficients  and
. These values were derived from measure-

ments over both Minnesota prairies [14] and the East
China Sea [16].

The development of relationships (7) with the use
of a statistical model of the ensemble of spontaneous
convective jets is given in [2, 23, 24].
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Consider a convective surface layer of dry atmo-
sphere at weak wind: . In this case, basic
parameters , , and  exist.

To calculate free convective limits of Monin–
Obukhov theory, we assume that the moments of ver-
tical velocity and buoyancy under weak wind

 are the same as in the case of no wind
.

Let ,  be the variances of the vertical velocity
and fluctuation of potential temperature. Then, trans-
formation (7) considering (2), (6) leads to equalities

(8)

Here ,  are positive con-
stants [25].

Over land surface with weak vegetation and water
surface, we have ,  and ;
therefore, the values of the constants are 
and , whatever the type of underlying sur-
face.

Consider a convective surface layer of humid atmo-
sphere. In this case, basic parameters , , , and

 exist. Clearly, in the approximation
 the relationships for momenta

(7), (8) hold true for humid air as well.
The transport of moisture and the transport of

potential temperature are known to obey the same

dynamic equation. This fact leads to an assumption
that the profiles of momenta of potential temperature
and humidity are similar [8]. Now, for the second tur-
bulent moment of humidity f luctuation, we have a
relationship similar to the approximation of buoyancy
momentum (8):

(9)

Here  is the variance of humidity f luctuations;
 is a positive constant.

The relationships (8), (9) are free-advective limits
of the vertical velocity, buoyancy, and humidity. Now,
we assume that above water surface or land surface
with poor vegetation, the values of constant parame-
ters in asymptotic relationships (8), (9) are ,

, and .

LINEAR APPROXIMATIONS OF SECOND 
TURBULENT MOMENTA OF THE VELOCITY, 

TEMPERATURE FLUCTUATIONS, 
AND HUMIDITY FLUCTUATIONS 
IN THE SUBLAYER OF FORCED 

CONVECTION
We consider universal functions of turbulent

momenta in the sublayer of forced convection:
, 

Without loss of generality, we can assume that the
equations for second momenta of the vertical velocity,
“adiabatic” buoyance, and humidity in the layer of
forced convection ,  can be
written as

(10)

Here , ,  are differen-

tiable functions; , ,  are constant coeffi-
cients.

Following [3], we will expand functions

,  and  in Taylor series

in parameter . We restrict ourselves to the lin-

ear Taylor expansion of functions ,

,  in . Then the variances
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Fig. 1. Comparison of the “linear” approximation of the similarity theory (11) with coefficients ,  and mea-

surement data on the variance of the vertical velocity over (a) ocean and (b) land in the domain , .
The full line corresponds to approximation (11). Triangles, crosses, and circles correspond to measurement data [7, 12, 15],
respectively.
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(11)

The dimensionless parameters , , and 
denote the boundaries of forced convection for vertical
velocity profiles, f luctuations of potential temperature
and fluctuations of humidity. The dimensionless
parameters , , and  correspond
to limiting values at free convection and are assumed
known. The dimensionless parameters ,

, and  characterize linear expansions
and are indefinite.

The existence of a sublayer of forced convection
with a fixed boundary , corresponding to the extre-
mum point of profiles, leads to the relationships

(12)

With a priori specified parameter , the equations
of the system (12) allow us to evaluate the coefficients

, ,  and , , . Therefore, approxima-
tions (11), (12) form a one-parameter family of analyt-
ical approximations, depending on .

Hereafter, the coefficients for the domain above
the land surface with weak vegetation and water sur-

face will have the following values: ,
; , , and ,
.

COMPARISON OF “LINEAR” 
APPROXIMATIONS OF THE VARIANCES 
OF VERTICAL VELOCITY, BUOYANCY, 

AND HUMIDITY WITH EXPERIMENTAL 
DATA

The “linear” approximation of the variance of the
vertical velocity (11) with parameters ,

 is compared with the data of measure-
ments over the ocean [12, 15] in the domain

,  in Fig. 1a. The “linear”
approximation of the variance of the vertical
velocity (11) with parameters ,  is
compared with data of measurements over the land [7]
in the domain ,  is given in
Fig. 1b.
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Fig. 2. Comparison of linear approximation of similarity
theory (11) with empirical values of buoyancy variance

 according to measurements [17]. The full line cor-
responds to approximation (11) with coefficients

, .
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 in the form (11) at ,  is
compared with field data [17] in Fig. 2.

The “liner” approximation of the variance of
humidity f luctuation (11) with parameters ,

 is compared with data of measurements
over the ocean [12, 15] in the domain 
in Fig. 3a. The linear approximation of the variance of
humidity f luctuations (11) with parameters ,

 is compared with data of measurements
over land [17, 20] in the domain ,

in Fig. 3b.
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Fig. 3. Comparison of the “linear” approximation of similarity th
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The results of comparison, given in Figs. 1–3, sug-
gest the existence of a thick sublayer of forced convec-
tion in the domain , .

“LINEAR” APPROXIMATION 
OF THE SECOND TURBULENT MOMENT 

OF THE FLUCTUATIONS OF NEUTRAL GAS 
CONCENTRATION IN A SUBLAYER 

OF FORCED CONVECTION
We assume that some neutral gas (for example, car-

bon dioxide) uniformly releases from the underlying
surface into the atmospheric surface layer; this gas is
supposed not to enter into chemical reactions with the
air.

Based on the analogy with relationships (4), we
introduce a parameter of modified concentration f lux
on the underlying surface  and a modified param-
eter of concentration . We obtain

(13)

Here the dimensions of  and  are 

and .

Let  be the variance of the concentration of the
neutral gas, then, by analogy with (11), we obtain

(14)

The undetermined dimensionless parameter 
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eory (11) with coefficients ,  and measure-
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Fig. 4. Comparison of linear approximation of similarity
theory (14) with coefficients , 
and data of measurements of the variance of carbon-diox-
ide concentration f luctuations in the domain

, . The full line corresponds
to approximation (14). Triangles, crosses, circles, and
squares correspond to measurement data [20].
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vection for the profile of f luctuations of carbon diox-
ide concentration. The dimensionless parameter

 characterizes the free convective limit and is
assumed known. The undetermined dimensionless
parameter  characterizes the linear expansion.
The values of coefficients  and  can be calculated
from (12), from where it follows that  and

.

We compare the “linear” approximation for the
variance of f luctuations of carbon dioxide concentra-
tion (14) with available observation data. The compar-
ison of (14) with parameters ,

 and measurement data [20] in the

domain ,  is given in
Fig. 4.

The results of comparison given in Fig. 4, indicate
to the existence of a thick sublayer of forced convec-
tion in the domain , .
Clearly, the approximation (14) supplements the one-
parameter family of approximations (11), (12).

CONCLUSIONS

The analysis of experimental data [12, 15, 17] shows
that a thick sublayer of forced convection with a fixed
bottom boundary exists in the convective surface layer
(above both the sea and the land).

The comparison of approximations with observa-
tion data shows that “linear” approximations (11),
(12), (14) convincingly agree with available experi-
mental data on the variances of the vertical velocity,
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β β 0.016cc qq= =

0ζ *z L≤ < ∞ 2
0ζ 6 10−= ×

0ζ *z L≤ < ∞ 2
0ζ 6 10−= ×
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f luctuations of potential temperature, humidity, and
carbon dioxide concentration.

A sublayer of forced convection can be identified in
the observed profiles of second turbulent moments of
the vertical velocity, f luctuations of potential tempera-
ture, humidity, and carbon-dioxide concentration.

The profiles of the variations of f luctuations of the
potential temperature, humidity, and carbon dioxide
concentrations are similar.

The boundary of the sublayer of forced convection
 does not depend on the choice of the turbulent

moment, and it is the same for the moments of the ver-
tical velocity, f luctuations of potential temperature,
humidity, and carbon dioxide concentration. In addi-
tion, the value of  does not depend on the choice of
the underlying surface, and it is the same over both
land and water surface.
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